Synchronization and Kron Reduction in Power Networks

Florian Dörfler and Francesco Bullo

Center for Control,
Dynamical Systems & Computation
University of California at Santa Barbara
http://motion.me.ucsb.edu

LANL Workshop on Optimization and Control Theory for Smart Grids Center for Nonlinear Studies, Aug 10-11, 2010

Today's presentation is about a controversial topic

"Well known" observations:

- power networks are coupled oscillators
- Wuramoto oscillators synchronize for large coupling
- $oldsymbol{3}$ graph theory quantifies coupling in a network, eg, λ_2
- lacktriangledown hence, power networks synchronize for large λ_2
- ... anyways, transient stability is solved

Misundestandings between physicists and control engineers:

- exact conditions for as realistic model as possible
- Onot aiming for the most insightful and concise model

Today's talk = theorems about these observations

Today's presentation is about a controversial topic

"Well known" observations:

- power networks are coupled oscillators
- Wuramoto oscillators synchronize for large coupling
- $oldsymbol{3}$ graph theory quantifies coupling in a network, eg, λ_2
- lacktriangledown hence, power networks synchronize for large λ_2
- ... anyways, transient stability is solved

Misundestandings between physicists and control engineers:

- exact conditions for as realistic model as possible
- not aiming for the most insightful and concise model

Today's talk = theorems about these observations

Today's presentation is about a controversial topic

"Well known" observations:

- power networks are coupled oscillators
- Wuramoto oscillators synchronize for large coupling
- $oldsymbol{0}$ graph theory quantifies coupling in a network, eg, λ_2
- lacktriangle hence, power networks synchronize for large λ_2
- ... anyways, transient stability is solved

Misundestandings between physicists and control engineers:

- exact conditions for as realistic model as possible
- not aiming for the most insightful and concise model

Today's talk = theorems about these observations

Intro: The North American Power Grid

- "...the largest and most complex machine engineered by humankind."

 [P. Kundur '94, V. Vittal '03, ...]
 - "... the greatest engineering achievement of the 20th century."

 [National Academy of Engineering '10]
- large-scale, complex, nonlinear, and rich dynamic behavior
- 2 100 years old and operating at its capacity limits
- \Rightarrow recent blackouts: New England '03 + Italy '03, Brazil '09

The New York Times

THE BLACKOUT OF 2003: Failure Reveals Creaky System, Experts Believe 8/15/2003

Energy is one of the top three national priorities

Expected additional synergetic effects in future "smart grid":

- ⇒ increasing complexity and renewable stochastic power sources
- \Rightarrow increasingly many transient disturbances to be detected and rejected

Transient Stability: Generators have to maintain synchronism in presence of large transient disturbances such as faults or loss of

- transmission lines and components,
- generation or load.

Intro: New England Power Grid

Power network topology:

- \bigcirc n generators \blacksquare , each connected to a generator terminal bus \diamondsuit
- 2 n generators terminal buses \diamond and m load buses \bullet form connected graph
- **3** admittance matrix $\mathbf{Y}_{network} \in \mathbb{C}^{(2n+m)\times(2n+m)}$ characterizes the network

Structure-preserving DAE power network model:

■ dynamic swing equations for generators ■:

$$\frac{M_i}{\pi f_0}\ddot{\theta}_i = -D_i\dot{\theta}_i + P_{\text{mech.in},i} - P_{\text{electr.out},i}$$

active output power ■ → ♦ :

$$P_{\mathsf{electr.out},i} = \Re(V_i \, \mathbf{Y}^*_{\mathsf{network},i,j} (V_i^* - V_j^*))$$

- ullet $heta_i(t)$ is measured w.r.t. a 60Hz rotating frame
- ② passive interior network ♦ & ●:
 - loads are modeled as shunt admittances
 - \Rightarrow Kirchhoff equations: $I = \mathbf{Y}_{network} V$
 - ⇒ algebraic power flow equations for ♦ & •:

$$0 = V_i \sum_{i \in \blacksquare} V_{i} \bullet V_{network,i,j}^* V_j^*$$

Structure-preserving DAE power network model:

■ dynamic swing equations for generators ■:

$$\frac{M_i}{\pi f_0}\ddot{\theta}_i = -D_i\dot{\theta}_i + P_{\text{mech.in},i} - P_{\text{electr.out},i}$$

ullet active output power $\blacksquare
ightarrow igle$:

$$P_{\mathsf{electr.out},i} = \Re(V_i \, \mathbf{Y}^*_{\mathsf{network},i,j} (V_i^* - V_j^*))$$

- ullet $heta_i(t)$ is measured w.r.t. a 60Hz rotating frame
- passive interior network ♦ & •:
 - loads are modeled as shunt admittances
 - \Rightarrow Kirchhoff equations: $I = \mathbf{Y}_{network} V$
 - ⇒ algebraic power flow equations for ♦ & •:

$$0 = V_i \sum_{i \in \blacksquare \cup \lozenge \cup \blacksquare} \mathbf{Y}_{network, i, j}^* V_j^*$$

Network-Reduction to an ODE power network model:

- boundary nodes (■) & interior nodes (● & ♦)
- algebraic Kirchhoff equations $I = \mathbf{Y}_{network} V$:

Map between boundary nodes
$$I_{boundary} = \frac{V_{reduced}}{V_{boundary}} V_{boundary}$$
 given by Schur-complement: $\frac{V_{reduced}}{V_{reduced}} = \frac{V_{reduced}}{V_{interior}} V_{interior}$

- network reduced to active nodes (generators)
- Y_{reduced} induces complete "all-to-all" coupling graph
- active output power → ■:

$$P_{\text{electr.out},i} = \Re \left(V_i \sum_{i=1}^{n} \frac{Y_{\text{reduced},i,j}^* V_j^*}{V_i^*} \right)$$

Network-Reduced ODE power network model:

classic model of interconnected swing equations [Anderson et al. '77, M. Pai '89, P. Kundur '94, . . .]:

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

defined on "all-to-all" reduced network $Y_{reduced}$ with

$$P_{ij} = |V_i||V_j||Y_{\text{reduced},i,j}| > 0$$

is max. power transferred $i \leftrightarrow j$

$$\varphi_{ij} = \arctan(\Re(Y_{\mathsf{reduced},i,j})/\Im(Y_{\mathsf{reduced},i,j})) \in [0,\pi/2)$$

reflects losses $i \leftrightarrow j$

$$\omega_i = P_{\mathsf{mech.in},i} - |V_i|^2 \Re(Y_{\mathsf{reduced},i,i})$$

is effective power input of *i*

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

Classic problem setup in transient stability analysis:

- frequency equilibrium: $(\dot{\theta}_i, \ddot{\theta}_i) = (0, 0)$ for all i
 - 1 power network in stable frequency equilibrium

 - stability analysis of a new frequency equilibrium in post-fault network

General synchronization problem:

• synchronous equilibrium: $|\theta_i - \theta_j|$ bounded & $\theta_i = \theta_j$ for all $\{i, j\}$

synchronization in presence of transient network disturbances

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

Classic problem setup in transient stability analysis:

- frequency equilibrium: $(\dot{\theta}_i,\ddot{\theta}_i)=(0,0)$ for all i
 - power network in stable frequency equilibrium

 - stability analysis of a new frequency equilibrium in post-fault network

General synchronization problem:

• synchronous equilibrium: $|\theta_i - \theta_j|$ bounded & $\dot{\theta}_i = \dot{\theta}_j$ for all $\{i,j\}$

synchronization in presence of transient network disturbances

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

Classic analysis methods: Hamiltonian arguments

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i - \nabla_i U(\theta)^T$$

Energy function analysis or analysis of reduced gradient flow:

[N. Kakimoto et al. '78, H.-D. Chiang et al. '94]

$$\dot{\theta}_i = -\nabla_i U(\theta)^T$$

Key objective: compute domain of attraction via numerical methods

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

Classic analysis methods: Hamiltonian arguments

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i - \nabla_i U(\theta)^T$$

Energy function analysis or analysis of reduced gradient flow:

[N. Kakimoto et al. '78, H.-D. Chiang et al. '94]

$$\dot{\theta}_i = -\nabla_i U(\theta)^T$$

Key objective: compute domain of attraction via numerical methods

⇒ Open problem [D. Hill and G. Chen '06]: power system [?] network:

transient stability, performance, and robustness of a power network ?
graph properties of underlying network (topologic, spectral, etc)

Detour - Consensus Protocols & Kuramoto Oscillators

Consensus protocol in \mathbb{R}^n :

$$\dot{x}_i = -\sum_{j \neq i} a_{ij} (x_i - x_j)$$

- n identical **agents** with state variable $x_i \in \mathbb{R}$
- **objective**: state agreement: $x_i(t) x_j(t) \rightarrow 0$
- application: agreement and coordination algorithms, . . .
- references: [M. DeGroot '74, J. Tsitsiklis '84, R. Olfati-Saber '04, ...]

Detour - Consensus Protocols & Kuramoto Oscillators

Consensus protocol in \mathbb{R}^n :

$$\dot{x}_i = -\sum_{j \neq i} a_{ij} (x_i - x_j)$$

- n identical **agents** with state variable $x_i \in \mathbb{R}$
- **objective**: state agreement: $x_i(t) x_i(t) \rightarrow 0$
- **application:** agreement and coordination algorithms, ...
- references: [M. DeGroot '74, J. Tsitsiklis '84, R. Olfati-Saber '04, ...]

Kuramoto model in \mathbb{T}^n :

$$\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$$

- n non-identical **oscillators** with phase $\theta_i \in \mathbb{T}$ & frequency $\omega_i \in \mathbb{R}$
- **objective**: synchronization: $|\theta_i(t) \theta_j(t)|$ bounded $\dot{\theta}_i(t) \dot{\theta}_i(t) \rightarrow 0$
- application: sync phenomena
- references: [Y. Kuramoto '75, A. Winfree '80, S. Strogatz '00, ...]

The Big Picture

Open problem in synchronization and transient stability in **power networks:** relation to underlying network state, parameters, and topology

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

Consensus Protocols:

$$\dot{x}_i = -\sum_{j \neq i} a_{ij} (x_i - x_j)$$

Kuramoto Oscillators:

$$\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$$

The Big Picture

Open problem in synchronization and transient stability in **power networks:** relation to underlying network state, parameters, and topology

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

Consensus Protocols:

$$\dot{x}_i = -\sum_{i \neq i} a_{ij} (x_i - x_j)$$

Kuramoto Oscillators:

$$\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$$

Possible connection has often been hinted at in the literature

Power systems: [D. Subbarao et al., '01, G. Filatrella et al., '08, V. Fioriti et al., '09] Networked control: [D. Hill et al., '06, M. Arcak, '07]

Dynamical systems: [H. Tanaka et al., '97, A. Arenas '08]

Outline

- Introduction and Motivation
- Singular perturbation analysis
 (to relate power network and Kuramoto model)

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

$$\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$$

- 3 Synchronization analysis (of non-uniform Kuramoto model)
- 4 Conclusions

Time-scale separation in power network model:

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

- singular perturbation parameter: $\epsilon = \frac{M_{\text{max}}}{\pi f_0 D_{\text{min}}}$
- reduced dynamics on slow time-scale (for $\epsilon = 0$) \Rightarrow non-uniform Kuramoto model:

$$D_i\dot{\theta}_i = \omega_i - \sum\nolimits_{j \neq i} P_{ij}\sin(\theta_i - \theta_j + \varphi_{ij})$$

Tikhonov's Theorem [H. Khalil '02]:

Assume the non-uniform Kuramoto model synchronizes exponentially. Then $\forall (\theta(0), \dot{\theta}(0))$ there exists $\epsilon^* > 0$ such that $\forall \epsilon < \epsilon^*$ and $\forall t \geq 0$

$$\theta_i(t)_{\text{power network}} - \theta_i(t)_{\text{non-uniform Kuramoto model}} = \mathcal{O}(\epsilon)$$

Time-scale separation in power network model:

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

- singular perturbation parameter: $\epsilon = \frac{M_{\text{max}}}{\pi f_0 D_{\text{min}}}$
- reduced dynamics on slow time-scale (for $\epsilon = 0$) \Rightarrow non-uniform Kuramoto model:

$$D_i \dot{\theta}_i = \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

Tikhonov's Theorem [H. Khalil '02]:

Assume the non-uniform Kuramoto model synchronizes exponentially. Then $\forall \ (\theta(0),\dot{\theta}(0))$ there exists $\epsilon^*>0$ such that $\forall \ \epsilon<\epsilon^*$ and $\forall \ t\geq 0$

$$\theta_i(t)$$
power network $-\theta_i(t)$ non-uniform Kuramoto model $=\mathcal{O}(\epsilon)$

Time-scale separation in power network model:

$$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

- singular perturbation parameter: $\epsilon = \frac{M_{\rm max}}{\pi f_0 D_{\rm min}}$
- ullet reduced dynamics on slow time-scale (for $\epsilon=0$)
 - ⇒ non-uniform Kuramoto model:

$$D_i \dot{\theta}_i = \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

Tikhonov's Theorem [H. Khalil '02]:

Assume the non-uniform Kuramoto model synchronizes exponentially. Then $\forall (\theta(0), \dot{\theta}(0))$ there exists $\epsilon^* > 0$ such that $\forall \epsilon < \epsilon^*$ and $\forall t \geq 0$

$$\theta_i(t)_{ extsf{power network}} - \theta_i(t)_{ extsf{non-uniform Kuramoto model}} = \mathcal{O}(\epsilon)$$
 .

Discussion of the assumption

$$\epsilon = \frac{M_{\text{max}}}{\pi f_0 D_{\text{min}}}$$
 sufficiently small

- 1 physical interpretation: damping and sync on separate time-scales
- 2 classic assumption in literature on coupled oscillators: over-damped mechanical pendula and Josephson junctions
- **3** physical reality: with generator internal control effects $\epsilon \in \mathcal{O}(0.1)$
- **(a)** simulation studies show accurate approximation even for large ϵ
- **3** topological equivalence independent of ϵ : 1st-order and 2nd-order models have the same equilibria, the Jacobians have the same inertia, and the regions of attractions are bounded by the same separatrices
- o non-uniform Kuramoto model corresponds to reduced gradient system $\dot{\theta}_i = -\nabla_i U(\theta)^T$ used successfully in academia and industry since 1978

Outline

- Introduction and Motivation
- Singular perturbation analysis
 (to relate power network and Kuramoto model)
- Synchronization analysis (of non-uniform Kuramoto model)
- Conclusions

Non-uniform Kuramoto Model in \mathbb{T}^n :

$$D_i \dot{\theta}_i = \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

- **Non-uniformity** in network: D_i , ω_i , P_{ij} , φ_{ij}
- Phase shift φ_{ij} induces lossless and lossy coupling:

$$\dot{\theta}_i = \frac{\omega_i}{D_i} - \sum_{j \neq i} \frac{P_{ij}}{D_i} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$$

- Directed coupling between oscillator i and j
- Synchronization analysis in multiple steps:
 - **1** phase locking: $|\theta_i(t) \theta_j(t)|$ becomes bounded
 - 2 frequency entrainment: $\dot{\theta}_i(t) \dot{\theta}_i(t) \rightarrow 0$
 - **3** phase synchronization: $|\theta_i(t) \theta_i(t)| \rightarrow 0$

Main Synchronization Result

Condition on network parameters:

 $network\ connectivity > network's\ non-uniformity\ +\ network's\ losses$

- Non-Uniform Kuramoto Model:
- \Rightarrow exponential synchronization: phase locking & frequency entrainment
- \Rightarrow guaranteed region of attraction: $| heta_i(t_0) heta_j(t_0)| < \pi/2 arphi_{ ext{max}}$
- ⇒ gap in condition determines ultimate phase locking
 - 2 Power Network Model:
- \Rightarrow there exists ϵ sufficiently small such that for all $t \geq 0$
 - $\theta_i(t)_{\text{power network}} \theta_i(t)_{\text{non-uniform Kuramoto model}} = \mathcal{O}(\epsilon)$
- \Rightarrow for ϵ and network losses φ_{ii} sufficiently small, $\mathcal{O}(\epsilon)$ error converges

Main Synchronization Result

Condition on network parameters:

 $network \ connectivity > network's \ non-uniformity + network's \ losses$

Non-Uniform Kuramoto Model:

- \Rightarrow exponential synchronization: phase locking & frequency entrainment
- \Rightarrow guaranteed region of attraction: $|\theta_i(t_0) \theta_j(t_0)| < \pi/2 \varphi_{\sf max}$
- ⇒ gap in condition determines ultimate phase locking
 - 2 Power Network Model:
- \Rightarrow there exists ϵ sufficiently small such that for all $t \geq 0$

$$\theta_i(t)$$
power network $-\theta_i(t)$ non-uniform Kuramoto model $=\mathcal{O}(\epsilon)$

 \Rightarrow for ϵ and network losses φ_{ii} sufficiently small, $\mathcal{O}(\epsilon)$ error converges

Main Synchronization Result

Condition on network parameters:

 $network\ connectivity > network's\ non-uniformity\ +\ network's\ losses$

Non-Uniform Kuramoto Model:

- \Rightarrow exponential synchronization: phase locking & frequency entrainment
- \Rightarrow guaranteed region of attraction: $|\theta_i(t_0) \theta_j(t_0)| < \pi/2 \varphi_{\sf max}$
- ⇒ gap in condition determines ultimate phase locking

2 Power Network Model:

 \Rightarrow there exists ϵ sufficiently small such that for all $t \geq 0$

$$heta_i(t)_{ extsf{power network}} - heta_i(t)_{ extsf{non-uniform Kuramoto model}} = \mathcal{O}(\epsilon)$$
 .

 \Rightarrow for ϵ and network losses φ_{ij} sufficiently small, $\mathcal{O}(\epsilon)$ error converges

Non-uniform Kuramoto Model in \mathbb{T}^n - rewritten:

$$\dot{\theta}_i = \frac{\omega_i}{D_i} - \sum_{j \neq i} \frac{P_{ij}}{D_i} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$$

Synchronization condition (*):

$$\underbrace{n\frac{P_{\min}}{D_{\max}}\cos(\varphi_{\max})}_{\text{orst lossless coupling}} > \underbrace{\max_{\{i,j\}} \left(\frac{\omega_i}{D_i} - \frac{\omega_j}{D_j}\right)}_{\text{worst non-uniformity}} + \underbrace{\max_i \sum_j \frac{P_{ij}}{D_i}\sin(\varphi_{ij})}_{\text{worst lossy coupling}}.$$

- ⇒ phase locking
- ⇒ frequency entrainment

Non-uniform Kuramoto Model in \mathbb{T}^n - rewritten:

$$\dot{\theta}_i = \frac{\omega_i}{D_i} - \sum_{j \neq i} \frac{P_{ij}}{D_i} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$$

Synchronization condition (*):

$$\underbrace{n\frac{P_{\min}}{D_{\max}}\cos(\varphi_{\max})}_{\text{worst lossless coupling}} > \underbrace{\max_{\{i,j\}} \left(\frac{\omega_i}{D_i} - \frac{\omega_j}{D_j}\right)}_{\text{worst non-uniformity}} + \underbrace{\max_i \sum_j \frac{P_{ij}}{D_i}\sin(\varphi_{ij})}_{\text{worst lossy coupling}}.$$

- ⇒ phase locking
- ⇒ frequency entrainment

Non-uniform Kuramoto Model in \mathbb{T}^n - rewritten:

$$\dot{\theta}_i = \frac{\omega_i}{D_i} - \sum_{j \neq i} \frac{P_{ij}}{D_i} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$$

Synchronization condition (*):

$$\underbrace{n\frac{P_{\min}}{D_{\max}}\cos(\varphi_{\max})}_{\text{worst lossless coupling}} > \underbrace{\max_{\{i,j\}} \left(\frac{\omega_i}{D_i} - \frac{\omega_j}{D_j}\right)}_{\text{worst non-uniformity}} + \underbrace{\max_i \sum_j \frac{P_{ij}}{D_i}\sin(\varphi_{ij})}_{\text{worst lossy coupling}}.$$

- ⇒ phase locking
- ⇒ frequency entrainment

Non-uniform Kuramoto Model in \mathbb{T}^n - rewritten:

$$\dot{\theta}_i = \frac{\omega_i}{D_i} - \sum_{j \neq i} \frac{P_{ij}}{D_i} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$$

Synchronization condition (\star) :

$$\underbrace{n\frac{P_{\min}}{D_{\max}}\cos(\varphi_{\max})}_{\text{worst lossless coupling}} > \underbrace{\max_{\{i,j\}} \left(\frac{\omega_i}{D_i} - \frac{\omega_j}{D_j}\right)}_{\text{worst non-uniformity}} + \underbrace{\max_i \sum_j \frac{P_{ij}}{D_i}\sin(\varphi_{ij})}_{\text{worst lossy coupling}}.$$

- ⇒ phase locking
- ⇒ frequency entrainment

Classic (uniform) Kuramoto Model in \mathbb{T}^n :

$$\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$$

Synchronization condition (\star) :

$$K > \omega_{\text{max}} - \omega_{\text{min}}$$

Condition (*) is necessary and sufficient

when considering all distributions of $\omega \in [\omega_{\min}, \omega_{\max}]$

Condition (*) strictly improves existing bounds on Kuramoto model:

[F. de Smet et al. '07, N. Chopra et al. '09, G. Schmidt et al. '09,

A. Jadbabaie et al. '04, S.J. Chung et al. '10, J.L. van Hemmen et al. '93].

Necessary condition synchronization: $K > \frac{n}{2(n-1)}(\omega_{\mathsf{max}} - \omega_{\mathsf{min}})$

[J.L. van Hemmen et al. '93, A. Jadbabaie et al. '04, N. Chopra et al. '09

Classic (uniform) Kuramoto Model in \mathbb{T}^n :

$$\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$$

Synchronization condition (\star) :

$$K > \omega_{\text{max}} - \omega_{\text{min}}$$

Condition (*) is **necessary and sufficient**

when considering all distributions of $\omega \in [\omega_{\min}, \omega_{\max}]$.

Condition (*) strictly improves existing bounds on Kuramoto model:

A ladhahaie et al. '04 S.I. Chung et al. '10 III van Hemmen et al. '03]

Necessary condition synchronization: $K > \frac{n}{2(n-1)}(\omega_{\max} - \omega_{\min})$

[J.L. van Hemmen et al. '93, A. Jadbabaie et al. '04, N. Chopra et al. '09]

Classic (uniform) Kuramoto Model in \mathbb{T}^n :

$$\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$$

Synchronization condition (\star) :

$$K > \omega_{\text{max}} - \omega_{\text{min}}$$

Condition (*) is **necessary and sufficient**

when considering all distributions of $\omega \in [\omega_{\min}, \omega_{\max}].$

Condition (*) strictly improves existing bounds on Kuramoto model:

[F. de Smet et al. '07, N. Chopra et al. '09, G. Schmidt et al. '09,

A. Jadbabaie et al. '04, S.J. Chung et al. '10, J.L. van Hemmen et al. '93].

Necessary condition synchronization: $K > \frac{n}{2(n-1)}(\omega_{\max} - \omega_{\min})$

[J.L. van Hemmen et al. '93, A. Jadbabaie et al. '04, N. Chopra et al. '09]

Non-uniform Kuramoto Model in \mathbb{T}^n - rewritten:

$$\dot{\theta}_i = \frac{\omega_i}{D_i} - \sum_{j \neq i} \frac{P_{ij}}{D_i} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$$

Synchronization condition $(\star\star)$:

$$\underbrace{\lambda_2(L(P_{ij}\cos(\varphi_{ij})))}_{\text{lossless connectivity}} > \underbrace{f(D_i)}_{\text{non-uniform }D_i \text{s necessary phase locking}} \times \underbrace{\left(\left\|\left[\dots, \frac{\omega_i}{D_i} - \frac{\omega_j}{D_j}, \dots\right]\right\|_2}_{\text{non-uniformity}} + \sqrt{\lambda_{\max}(L)} \underbrace{\left\|\left[\dots, \sum_j \frac{P_{ij}}{D_i} \sin(\varphi_{ij}), \dots\right]\right\|_2}_{\text{lossy coupling}}\right)$$

Non-uniform Kuramoto Model in \mathbb{T}^n - rewritten:

$$\dot{\theta}_i = \frac{\omega_i}{D_i} - \sum_{j \neq i} \frac{P_{ij}}{D_i} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$$

Synchronization condition $(\star\star)$:

$$\underbrace{\lambda_2(L(P_{ij}\cos(\varphi_{ij})))}_{\text{lossless connectivity}} > \underbrace{f(D_i)}_{\text{non-uniform }D_i \text{s necessary phase locking}} \times \underbrace{\left(\left\|\left[\dots, \frac{\omega_i}{D_i} - \frac{\omega_j}{D_j}, \dots\right]\right\|_2}_{\text{non-uniformity}} + \sqrt{\lambda_{\max}(L)} \underbrace{\left\|\left[\dots, \sum_j \frac{P_{ij}}{D_i} \sin(\varphi_{ij}), \dots\right]\right\|_2}_{\text{lossy coupling}}\right)$$

- ⇒ phase locking
- ⇒ frequency entrainment

Non-uniform Kuramoto Model in \mathbb{T}^n - rewritten:

$$\dot{\theta}_i = \frac{\omega_i}{D_i} - \sum_{j \neq i} \frac{P_{ij}}{D_i} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$$

Synchronization condition $(\star\star)$:

$$\underbrace{\frac{\lambda_2(L(P_{ij}\cos(\varphi_{ij})))}{\log sless \; connectivity \; \; non-uniform \; D_i s \; necessary \; phase \; locking}}_{lossy \; coupling} \times \underbrace{\left(\left\|\left[\dots,\frac{\omega_i}{D_i}-\frac{\omega_j}{D_j},\dots\right]\right\|_2}_{lossy \; coupling} \times \frac{\left(\left\|\left[\dots,\frac{\omega_i}{D_i}-\frac{\omega_j}{D_j},\dots\right]\right\|_2}{\log sless}\right)}_{lossy \; coupling}$$

Condition $(\star\star)$ for regular Kuramoto model: $K > ||[\dots, \omega_i - \omega_i, \dots]||_2$

$$K > ||[\ldots, \omega_i - \omega_j, \ldots]||_2$$

Non-uniform Kuramoto Model in \mathbb{T}^n - rewritten:

$$\dot{\theta}_i = \frac{\omega_i}{D_i} - \sum_{j \neq i} \frac{P_{ij}}{D_i} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$$

Further interesting results:

- explicit synchronization frequency
- exponential rate of frequency entrainment
- 3 conditions for phase synchronization
- results for general non-complete graphs
- ... to be found in our papers.

- Introduction
 - Power Network Model
 - Synchronization and Transient Stability
 - Consensus Protocols & Kuramoto Oscillators
 - The Big Picture
- 2 Singular Perturbation Analysis (to relate power network and Kuramoto model)
- 3 Synchronization analysis (of non-uniform Kuramoto model)
 - Main Synchronization Result
 - Synchronization of Non-Uniform Kuramoto Oscillators
- 4 Structure-preserving power network models
 - Kron Reduction of Graphs
 - Sufficient Conditions for Synchronization
- 5 Conclusions and Future Work

Structure-preserving power network models

So far we considered a **network-reduced** power system model:

- network reduced to generator nodes
- ullet synchronization conditions on $\lambda_2(P)$ and P_{\min}
- all-to-all reduced admittance matrix $Y_{\text{reduced}} \sim P/V^2$ (for uniform voltage levels $|V_i| = V$)

Topological non-reduced **structure-preserving** power system model:

- boundary nodes (generators) & interior nodes (buses)
- ullet topological bus admittance matrix $oldsymbol{Y}_{network}$ indicating transmission lines and loads (self-loops)
- Schur-complement relation: Y_{reduced} = Y_{network}/Y_{interior}
 c.f. "Kron reduction", "Dirichlet-to-Neumann map",
 "Schur contraction", "Gaussian elimination", ...

- Introduction
 - Power Network Model
 - Synchronization and Transient Stability
 - Consensus Protocols & Kuramoto Oscillators
 - The Big Picture
- Singular Perturbation Analysis (to relate power network and Kuramoto model)
- 3 Synchronization analysis (of non-uniform Kuramoto model)
 - Main Synchronization Result
 - Synchronization of Non-Uniform Kuramoto Oscillators
- 4 Structure-preserving power network models
 - Kron Reduction of Graphs
 - Sufficient Conditions for Synchronization
- 5 Conclusions and Future Work

Kron reduction of a graph with

- boundary nodes
- interior nodes with nonnegative self-loops *○
- (loopy) Laplacian matrix Y_{network}

- Iterative Kron reduction of a single interior node •:
 - Algebraic evolution of Laplacian matrix:

$$\mathbf{Y}_{\mathsf{reduced}}^{k+1} = \mathbf{Y}_{\mathsf{reduced}}^{k} / \bullet$$

Topological evolution of the corresponding graph

Kron reduction of a graph with

- boundary nodes
- interior nodes with nonnegative self-loops ♡
- ullet (loopy) Laplacian matrix $oldsymbol{Y}_{network}$

■ Iterative Kron reduction of a single interior node •:

$$\mathbf{Y}_{\mathsf{reduced}}^{k+1} = \mathbf{Y}_{\mathsf{reduced}}^{k} / ledown$$

2 Fully reduced Laplacian Y_{reduced} is equivalent to Schur complement:

- Well-posedness: Symmetric & irreducible (loopy) Laplacian matrices can be reduced and are closed under Kron reduction
- 2 Topological properties:
 - interior network connected ⇒ reduced network complete
 - at least one node in interior network features a self-loop ○
 ⇒ all nodes in reduced network feature self-loops ○
- 3 Algebraic properties: self-loops in interior network . . .
 - decrease mutual coupling in reduced network
 - increase self-loops in reduced network

- Well-posedness: Symmetric & irreducible (loopy) Laplacian matrices can be reduced and are closed under Kron reduction
- 2 Topological properties:
 - interior network connected ⇒ reduced network complete
 - at least one node in interior network features a self-loop □
 ⇒ all nodes in reduced network feature self-loops □
- 3 Algebraic properties: self-loops in interior network . . .
 - decrease mutual coupling in reduced network
 - increase self-loops in reduced network

- Well-posedness: Symmetric & irreducible (loopy) Laplacian matrices can be reduced and are closed under Kron reduction
- 2 Topological properties:
 - interior network connected ⇒ reduced network complete
 - at least one node in interior network features a self-loop □
 ⇒ all nodes in reduced network feature self-loops □
- Algebraic properties: self-loops in interior network . . .
 - decrease mutual coupling in reduced network
 - increase self-loops in reduced network

- :
- Spectral properties:
 - interlacing property: $\lambda_i(\mathbf{Y}_{\text{network}}) \leq \lambda_i(\mathbf{Y}_{\text{reduced}}) \leq \lambda_{i+n-|\mathbf{I}|}(\mathbf{Y}_{\text{network}})$
 - \Rightarrow algebraic connectivity λ_2 is non-decreasing
 - effect of self-loops \odot on loop-less Laplacian matrices:

$$\begin{split} &\lambda_2(\textit{L}_{\text{reduced}}) + \max\{\circlearrowleft\} \geq \lambda_2(\textit{L}_{\text{network}}) + \min\{\circlearrowleft\} \\ &\lambda_2(\textit{L}_{\text{reduced}}) + \min\{\circlearrowleft\} \leq \lambda_{2+n-|\blacksquare|}(\textit{L}_{\text{network}}) + \max\{\circlearrowleft\} \end{split}$$

- 6 Effective resistance
 - Effective resistance R(i,j) among boundary nodes \blacksquare is invariant
 - For boundary nodes \blacksquare : effective resistance R(i,j) uniform \Leftrightarrow coupling $Y_{\text{reduced}}(i,j)$ uniform $\Leftrightarrow 1/R(i,j) = \frac{n}{2}|Y_{\text{reduced}}(i,j)$

Some properties of the Kron reduction process:

:

Spectral properties:

- interlacing property: $\lambda_i(\mathbf{Y}_{\text{network}}) \leq \lambda_i(\mathbf{Y}_{\text{reduced}}) \leq \lambda_{i+n-|\mathbf{I}|}(\mathbf{Y}_{\text{network}})$
- \Rightarrow algebraic connectivity λ_2 is non-decreasing
 - effect of self-loops \circ on loop-less Laplacian matrices:

$$\begin{split} &\lambda_2(\textit{L}_{\text{reduced}}) + \max\{\circlearrowleft\} \geq \lambda_2(\textit{L}_{\text{network}}) + \min\{\circlearrowleft\} \\ &\lambda_2(\textit{L}_{\text{reduced}}) + \min\{\circlearrowleft\} \leq \lambda_{2+n-|\blacksquare|}(\textit{L}_{\text{network}}) + \max\{\circlearrowleft\} \end{split}$$

6 Effective resistance:

- Effective resistance R(i,j) among boundary nodes \blacksquare is invariant
- For boundary nodes \blacksquare : effective resistance R(i,j) uniform \Leftrightarrow coupling $Y_{\text{reduced}}(i,j)$ uniform $\Leftrightarrow 1/R(i,j) = \frac{n}{2} |Y_{\text{reduced}}(i,j)|$

- Introduction
 - Power Network Model
 - Synchronization and Transient Stability
 - Consensus Protocols & Kuramoto Oscillators
 - The Big Picture
- Singular Perturbation Analysis (to relate power network and Kuramoto model)
- 3 Synchronization analysis (of non-uniform Kuramoto model)
 - Main Synchronization Result
 - Synchronization of Non-Uniform Kuramoto Oscillators
- 4 Structure-preserving power network models
 - Kron Reduction of Graphs
 - Sufficient Conditions for Synchronization
- 5 Conclusions and Future Work

Synchronization in structure-preserving models

Assumption I: lossless network and uniform voltage levels V at generators

① Spectral condition for synchronization: $\lambda_2(P) \geq ...$ becomes

$$\lambda_2(i \cdot \mathbf{L}_{\mathsf{network}}) > \left| \left| \left(\frac{\omega_2}{D_2} - \frac{\omega_1}{D_1}, \dots \right) \right| \right|_2 \cdot \frac{f(D_i)}{V^2} + \min\{0\}$$

Assumption II: effective resistance R among generator nodes is uniform

② Resistance-based condition for synchronization: $nP_{\min} \ge ...$ becomes

$$\frac{1}{R} > \max_{\{i,j\}} \left\{ \frac{\omega_i}{D_i} - \frac{\omega_j}{D_i} \right\} \cdot \frac{D_{\text{max}}}{2V^2}$$

Synchronization in structure-preserving models

Assumption I: lossless network and uniform voltage levels V at generators

① Spectral condition for synchronization: $\lambda_2(P) \geq ...$ becomes

$$\lambda_2(i \cdot \mathbf{L}_{\mathsf{network}}) > \left| \left| \left(\frac{\omega_2}{D_2} - \frac{\omega_1}{D_1}, \dots \right) \right| \right|_2 \cdot \frac{f(D_i)}{V^2} + \min\{ \bigcirc \}$$

Assumption II: effective resistance R among generator nodes is uniform

Q Resistance-based condition for synchronization: $nP_{min} \ge ...$ becomes

$$\frac{1}{R} > \max_{\{i,j\}} \left\{ \frac{\omega_i}{D_i} - \frac{\omega_j}{D_i} \right\} \cdot \frac{D_{\text{max}}}{2V^2}$$

- Introduction
 - Power Network Model
 - Synchronization and Transient Stability
 - Consensus Protocols & Kuramoto Oscillators
 - The Big Picture
- 2 Singular Perturbation Analysis (to relate power network and Kuramoto model)
- Synchronization analysis (of non-uniform Kuramoto model)
 - Main Synchronization Result
 - Synchronization of Non-Uniform Kuramoto Oscillators
- 4 Structure-preserving power network models
 - Kron Reduction of Graphs
 - Sufficient Conditions for Synchronization
- 5 Conclusions and Future Work

Conclusions

- Details and papers can be found at: http://motion.me.ucsb.edu
- **Ongoing work**: more detailed models, inverters and power electronics. . .