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Objectives / Outline
 Distribution circuits with a high penetration of PV generation may

• experience rapid changes in cloud cover.  Inducing…
• rapid variations in PV generation.  Causing…
• reversals of real power flow and potentially large voltage variations

 We seek to control the voltage variations by controlling PV-inverter reactive 
power generation because
• it does not affect the PV owners ability to generate, and
• we can make a significant impact with modest oversizing of inverters

 Control of reactive power also allows for reducing distribution circuit 
losses, but
• voltage regulation and loss reduction are fundamentally competing objectives, and
• analysis and engineering judgment are required to find the appropriate balance

 Questions we will try to (at least partially) answer:
• Should control be centralized or distributed (i.e. local)?
• What variables should we use as control inputs?
• How to turn those variables into effective control?
• Does the control equitably divide the reactive generation duty?
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Simplified Models
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Power Flow—Voltage Variations and Losses
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Competing objectives

Minimize losses → Qj=0

Voltage regulation → Qj=-(rj/xj)Pj
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Fundamental Problem—Import versus Export
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 Rapid reversal of real power flow 
can cause undesirably large 
voltage changes

 Rapid PV variability cannot be 
handled by current electro-
mechanical systems

 Use PV inverters to generate or 
absorb reactive power to restore 
voltage regulation

 In addition… optimize power flows 
for minimum dissipation

Pj
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Parameters Available to Affect Control of Vj
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Limits on Control—Inverter Capacity (s) 
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Availability of Inputs to a Local Control Scheme
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Consider a Few Simple Schemes
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Prototypical Distribution Circuit

 V0=7.2 kV line-to-neutral

 n=250 nodes

 Distance between nodes = 200 meters

 Line impedance = 0.33 + i 0.38 Ω/km

 50% of nodes are PV-enabled with 2 kW maximum generation

 Inverter capacity s=2.2 kVA – 10% excess capacity
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Import and Export Cases

Import—Heavy cloud cover

 pc = uniformly distributed 0-2.5 kW

 qc = uniformly distributed 0.2pc-0.3pc

 pg = 0 kW

 Average import per node = 1.25 kW

Export—Full sun

 pc = uniformly distributed 0-1.0 kW

 qc = uniformly distributed 0.2pc-0.3pc

 pg = 2.0 kW

 Average export per node = 0.5 kW
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Measures of control performance

 δV—maximum voltage deviation in 
transition from export to import

 Average of import and export 
circuit dissipation relative to “Do 
Nothing-Base Case”
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Performance of Simple Schemes 
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δV

qg=0

qg=qc

Voltage control-qmax

Voltage control-qmax/2

 Distributed (local) control 
is sufficient to maintain 
voltage regulation

 10% excess inverter 
capacity (s=1.1 pg,max) is 
sufficient

 Clearly important 
differences between 
different control inputs 
(here, qc vs. V)

 Volt-control schemes 
increase dissipation

 qc scheme reduces 
dissipation, but small 
gains in δV.  
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More Sophisticated Schemes?—Improve Voltage 
Regulation of qg=qc 

 Use heuristics to infer line flows Pj and Qj –for example, circuit segment 
j has no voltage drop if 

 This suggests that the following control scheme for PV-enabled nodes 

 Or, equivalently…..

 Blend FV with qg=FL=qc to achieve both loss reduction and voltage 
regulation:
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Performance of Composite Control F(K)
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 Voltage regulation 
is somewhat 
improved, but at a 
high cost of 
increased losses

 Can we do better?
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Hybrid Control Schemes
 qg=qc achieves good loss reduction

 Proportional control on Vj achieves good voltage regulation
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Performance of Hybrid Control H(K,V)
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 Leverage nodes 
that already have 
Vj~1.0 p.u. for loss 
minimization

 Provides voltage 
regulation and loss 
reduction

 K allows for trade 
between loss and 
voltage regulation

 Scaling factor 
provides related 
trades
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Conclusions

 In high PV penetration distribution circuits where difficult transient 
conditions will occur, adequate voltage regulation and reduction in 
circuit dissipation can be achieved by:
• Local control of PV-inverter reactive generation (as opposed to centralized control)
• Moderately oversized PV-inverter capacity (s~1.1 pg,max)

 Using voltage as the only input variable to the control may lead to 
increased average circuit dissipation
• Other inputs should be considered such as pc, qc, and pg.  
• Blending of schemes that focus on voltage regulation or loss reduction into a hybrid 

control shows improved performance and allows for simple tuning of the control to 
different conditions.

 Equitable division of reactive generation duty and adequate voltage 
regulation will be difficult to ensure simultaneously.  
• Cap reactive generation capability by enforcing artificial limit given by s~1.1 pg,max
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