Overview of Control Research & Robust Broadcast-Communication Control of Electric Vehicle Charging

Konstantin Turitsyn1

Nikolai Sinitsyn1

Scott Backhaus2

Michael Chertkov1

1Theoretical Division, Los Alamos National Laboratory

² Materials, Physics and Applications Division, Los Alamos National Laboratory

U N C L A S S I F I E D

Slide 1

Electrical Grid Hierarchy

U N C L A S S I F I E D

Slide 2

Electrical Distribution System

- **Designed to handle peak loads with some margin**
- **Deliver real power from the substation to the loads (one way)**
- **Ensure voltage regulation by control of reactive power (centralized utility control)**

We will be asking the grid to do things it was not designed to do

U N C L A S S I F I E D

Slide 3

Some of the New Technology in the Distribution System

- **Distributed generation—Utility scale and consumer scale**
	- **Photovoltaic—US**
	- Small wind generation—mostly Europe
- **Demand response**
	- **Electric vehicles**
	- HVAC -Air conditioning systems-Electric heaters
- **Storage**
	- Utility-scale at the substation
	- Community Energy Storage
	- Individual consumer—coupled with distributed generation
	- Electric vehicles
- **Controls—Distribution Automation—Reliability—Integration of DER**
	- **Distributed control—fast—inexpensive—secure?**
	- Centralized control—slower—costly—cyber vulnerable?
	- **Voltage regulation—reactive dispatch**—control coordination
	- **Capacity constraints—**DG**/Load curtailment**—real-time switching

U N C L A S S I F I E D

Bold=this year's focus

Red=next year's direction

Need for Control with New Technologies

Electric vehicle charging is a significant new load

- Type 2 charging rates \sim 7-10 kW
- Uncontrolled charging—peak load during evening hours
- Coincident with the existing peak on many residential distribution circuits
- Could easily double the peak load resulting in circuit overloads
- *Need a robust and fair way to control EV charging*
- **High-penetration distributed photovoltaic generation**
	- Rapidly fluctuating real power flows during partly cloudy days
	- Large voltage swings and loss of regulation and power quality
	- Existing utility-scale equipment is too slow to compensate
	- Latent reactive power capability of the PV inverters can leveraged
	- *Need a fast, distributed algorithm to dispatch PV inverter reactive power*

U N C L A S S I F I E D

Slide 5

EV Charging—Objectives / Outline

- **<u>E** Distribution circuits with a high penetration of uncontrolled EV charging</u> **may…**
	- experience large EV charging load in the evening.... Resulting in....
	- a coincidence with existing peak loads…..Causing...
	- potential circuit overloads, breaker operation, equipment damage.....
- **We seek to control circuit loading by spreading out EV charging via regulation of the rate of random charging start times because…**
	- it only requires one-way broadcast communication (less expensive), and
	- only requires periodic updating of the connection rate, and
	- customers treated equally.
- Control of circuit loading also allows....
	- maximum utilization of existing utility assets, but
	- analysis and engineering judgment are required to determine loading limits.
- **Questions we will try to (at least partially) answer:**
	- Is broadcast communication sufficient to control EV charging?
	- How does the control performance depend on communication rate?
	- How many EVs can be integrated into a circuit?

Simplified Physical Model

- **Reducit** Single branch circuit
- **EVs randomly distributed**
- **May need to consider clustering in multi-branch circuits**
- **Power flow modeled as capacity**
- **No voltage effects**

Broadcast Communication and Distributed Control Model

Some Math—Determination of Control Function

Probability of an overload $P_N = \sum W_{mn}(\lambda(n)\tau)\pi_n^{i-1}$ $n < N, m > N$

Control function $\lambda(n)$ to cap P_N $\sum W_{mn}(\lambda(n)\tau) = P_N^* \ll 1$ $m > N$

 $W_{nm}(\lambda \tau) = \exp(-q) \sum_{k=0}^{n} \frac{n! q^{n-k} \epsilon^{m-k} (1-\epsilon)^k}{k! (n-k)! (m-k)!}$ where $\epsilon = 1 - \exp(-\mu \tau)$ and $q = \lambda \epsilon / \mu$.

U N C L A S S I F I E D

Slide 9

Determination of Control Function

Steady-State Performance vs. Communication Rate, N=100

A little bit of communication goes a long way

Steady-State Performance vs N

More loads allows for slower communication — smaller fluctuations

Conclusions

- **IF 10** distribution circuits with a high penetration of EVs where uncontrolled **charging will lead to coincident peaks and overloads, excellent EV load management can be achieved by:**
	- Randomization of EV charging start times
	- Control of rate of EV connections by one-way broadcast communication.
- **Quality of control depends on the communication rate, but**
	- Modest communication rates can achieve high circuit utilization
	- Control gets better as the number of EV increases (for a fixed communication rate)
	- Subtle aspects to control function when $n-N$
- **How many EVs can be integrated into a circuit?**
	- Requires engineering judgment to balance cost versus performance, but....
	- Greater than 90% of excess circuit capacity can be utilized with modest communication requirements.

U N C L A S S I F I E D

Slide 13

$t_s \approx \tau[\log(-N \log(P_N))] \approx [a \text{ few}] \tau$

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Slide 14

Control model with significant latency

