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Social welfare analysis

.

.

. ..

.

.

...1 We establish an efficiency bound, which depends only on one
single parameter extracted from the model, for Cournot oligopoly
games.

...2 We formulate the centralized PHEV scheduling as a dynamic
programming problem, and then introduce several approximate
dynamic programming methods to approach the optimal solution.

...3 We propose a dynamic game theoretical model to study the
decentralized PHEV scheduling problem.
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Cournot Oligopoly

.

.

. ..

.

.

Consider a market for a single homogeneous good with N
suppliers.
Supplier n ∈ {1,2, . . . ,N} has a cost function
Cn : [0,∞) → [0,∞).
The inverse demand function p : [0,∞) → [0,∞), which maps the
total supply into price.
Suppose that supplier n produces xn amount of good, and the
price will be p(X ), where X =

∑N
n=1 xn.

The payoff of supplier n is

πn(xn, x−n) = xnp
(∑N

n=1
xn

)
− Cn(xn).
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Social Welfare in a Cournot oligopoly
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The aggregate utility received by the consumers is given by
U(X ) =

∫ X
0 p(q)dq.

The consumer surplus is given by
∫ X

0 p(q)dq − p(X )X .
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Social Welfare in a Cournot oligopoly
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The profit earned by suppliers is p(X )X −
∑N

n=1 Cn(xn).

The social welfare:
∫ X

0 p(q)dq −
∑N

n=1 Cn(xn).
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Price of Anarchy in Cournot Oligopoly

.

.

. ..

.

.

The efficiency of a nonnegative vector x = (x1, . . . , xN) is defined as

γ(x) =
∫∑N

n=1 xn
0 p(q)dq −

∑N
n=1 C(xn)∫∑N

n=1 xS
n

0 p(q)dq −
∑N

n=1 C(xS
n )

, (1)

where (xS
1 , . . . , x

S
N ) is an optimal solution to the following optimization

problem,
maximize

∫ X
0 p(q)dq −

∑N
n=1 Cn(xn)

subject to xn ≥ 0, n = 1,2, . . . ,N.
(2)
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Related work

.

.

. ..

.

.

(Anderson and Renault 2003) quantifies the efficiency loss in
Cournot oligopoly models with concave demand functions.
However, most of their results are not on the relation between the
social welfare achieved at a Cournot equilibrium and a socially
optimal competitive equilibrium.
(Kluberg and Perakis 2008) compares the social welfare under
Cournot competition to the corresponding maximum possible, for
the case where the price demand relationship is linear.
(Johari and Tsitsiklis 2005) establishes a 2/3 lower bound on the
efficiency of a Cournot equilibrium, when the inverse demand
function is affine.
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Theorem
.

.

. ..

.

.

...1 If p(X ) = p(X S), then γ(x) = 1.

...2 Otherwise, let c = p′(X ), d = (p(X S)− p(X ))/(X S − X ) and
c = c/d . Then, γ(x) ≥ f (c), c ≥ 1.
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Piece-wise Linear Inverse Demand Functions
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Application
.
A lucky case
..

.

. ..

.

.

Consider a group of convex inverse demand functions (eq.6,
Bulow and Pfleiderer 1983))

p(q) = α− β log q, α, β > 0, 0 < q < exp(α/β).

There exists at least one Cournot equilibrium, and the efficiency of
a Cournot equilibrium is no less than 0.5237.

.

.

. ..

.

.

Consider a group of constant elasticity demand curves (eq.4,
Bulow and Pfleiderer 1983))

p(q) = αq−β, 0 < α, 0 < β < 1, 0 ≤ q.

The efficiency of a Cournot equilibrium is no less than
f
(
(1 − β)

−β−1
β

)
.
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Summary
.

.

. ..

.

.

Social optimum (SO), where the social welfare is maximized.
Monopoly Output (MO): where the aggregate profit of suppliers is
maximized.

CE vs SO CE vs MO MO vs SO

Social welfare γ(x) ≤ 1 ≤ 1 or > 1 γ(xP) ≤ 1
efficiency lower bound1 efficiency lower bound1

Consumer surplus ≤ 1 ≥ 1 ≤ 1

Profit ≤ 1 or > 1 η(x) ≤ 1
profit lower bound2 η(xS) ≤ 1

.

.

. ..

.

.

...1 Results derived for convex inverse demand functions.

...2 Results hold when the function qp(q) is concave over the interval
where p(q) is positive.
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Efficiency lower bounds for CE and MO
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A lower bound on the profit ratio of a Cournot
equilibrium.
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.The profit ratio bound decreases with the number of suppliers.
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Plug-in (hybrid) electric vehicles

.

.

. ..

.

.

Plug-in (hybrid) electric vehicles (PHEVs) may help to reduce
greenhouse gas emissions.
Large penetration of PHEVs will put considerable additional loads
onto existing power grids.
Proper scheduling of PHEV charging may help to balance the
load.

.
Objective
..

.

. ..

.

.

Appropriately schedule the charging of electric vehicles to maximize
the social welfare.
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Dynamic Programming Approach
.
Elements..

.

. ..

.

.

...1 Consider a discrete time model, where time periods are indexed
by t = 0,1, . . . ,T .

...2 At each stage t , let It be the set of electric vehicles which has
arrived at stage t , with a battery which is not fully charged at stage
t .

...3 For each vehicle i ∈ It , let αi and βi be its arrival and departure
time, respectively. It can be charged from stage αi + 1 through βi .
We assume that each vehicle can stay at the station for at most B
time units, where B is a positive integer.

...4 At stage t , let γi,t be the number of time units needed to fully
charge vehicle i ’s battery.

...5 Let ai,t = 1 if vehicle i is charged at stage t ; otherwise let ai,t = 0.

...6 A feasible action at stage t is to charge At arrived electric
vehicles, where At =

∑
i∈It

ai,t .
Yunjian Xu (MIT&LANL) Los Alamos National Lab July 20, 2011 18 / 42



Dynamic Programming Approach II

.
Utility received by a vehicle
..

.

. ..

.

.

...1 At stage t , let xi,t = (βi − t , γi,t) denote the state of vehicle i .

...2 For example, a vehicle arrives at stage αi = 0, will leave at stage
βi = 8, and requires 5 time units of charging. At stage 1, it is
charged for one time unit. Its state at stage 2 is (7,4).

...3 For each vehicle i in It , it receives a utility
U(ai,t , xi,t) = ai,t · V (xi,t), where V (·) is a function of the current
state of the vehicle.

...4 For example, a vehicle with a state (7,4) receives a higher utility
than a vehicle with a state (7,2), i.e., V (7,4) > V (7,2).
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Dynamic Programming Approach III
.
State of the grid
..

.

. ..

.

.

...1 At each stage t , let st be the state of the grid. The cost caused by
battery charging of electric vehicles is C(st ,At).

...2 The state of the grid, st , may present the the electric capacity
available for electric vehicles. The cost caused by battery
charging of electric vehicles, C(st ,At), depends on the residual
capacity and the capacity used by electric vehicles.

.
Elements-Continued..

.

. ..

.

.

...1 The grid state, st , evolves as a controlled Markov chain, where the
transition probability depends on the current grid state and the
current action, At .

...2 The probability distribution on the number and state of the
vehicles which will come in future stages is calculated according
to the state of all vehicles in It .
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Dynamic Programming Approach III

.
Dynamic Programming Model
..

.

. ..

.

.

...1 At each stage t , the system state, xt , consists of the state of all
vehicles in It , and the grid state st .

...2 For t = 1, . . . ,T , the stage cost function, gt(xt ,ut), is
C(st ,At)−

∑
i∈It

ai,t · V (xi,t).
...3 A feasible action at stage t , ut , is to charge At electric vehicles in

the set It .
...4 The system state, xt , evolves as a controlled Markov chain, where

the transition probability depends on the current system state and
the current action taken by the centralized operator, ut .
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Approximate Dynamic Programming
.
Dynamic Programming Model-Continued
..

.

. ..

.

.

The system state evolves as a controlled Markov chain, where the
transition probability, Pt(xt+1 | xt ,ut), depends on the current system
state and the action taken by the operator, ut .

.
Challenges and the proposed approach
..

.

. ..

.

.

...1 Since the system state includes the state of all arrived vehicles,
the state space grows exponentially with the number of arrived
vehicles.

...2 To address this issue, we plan to first reduce the number of states
by combining many of them into aggregate states.

...3 Solve the DP problem with aggregate state space.

...4 The cost-to-go function of the aggregate problem will then be
used as heuristics for the limited look ahead policy for the original
problem.
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State Aggregation
.

.

. ..

.

.

...1 We choose a positive integer b which is no more than B.

...2 Given the set of arrived vehicles It , m̃t is a b-dimensional vector
such that its nth component reflects the number of battery units
which has to be charged before time t + n − 1.

...3 We use m̃t as the aggregate state for the arrived vehicles.

.
Example
..

.

. ..

.

.

At stage 1, there are 3 vehicles which arrive during stage 0. Consider
two possibilities:

...1 Two vehicles will leave at stage 3, which require to be charged for
4 time units in total. The other one leaves at stage 4 and requires
to be charged for 3 time units.

...2 All three vehicles leave at stage 3, which require to be charged for
4 time units in total.

What if b = 3? How about b = 4?
Yunjian Xu (MIT&LANL) Los Alamos National Lab July 20, 2011 23 / 42



State Aggregation II
.
Example
..

.

. ..

.

.

At stage 1, there are 3 vehicles that arrive during stage 0. Consider
two possibilities:

...1 Two vehicles will leave at stage 3, which require to be charged for
4 time units in total. The other one leaves at stage 4 and requires
to be charged for 3 time units.

...2 All three vehicles leave at stage 3, which require to be charged for
4 time units in total.

If b = 3, for both cases we have m̃1 = (0,0,4).
If b = 4, for the first case we have m̃1 = (0,0,4,3), and for the second
case we have m̃1 = (0,0,4,0).

.
Aggregate State
..

.

. ..

.

.

At each time t , the aggregate system state, x̃t , consists of the vector
m̃t , and the state of the grid st .
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State Aggregation III

.
Comparison on the state space
..

.

. ..

.

.

Suppose that there are N vehicles, and the battery capacity of each
vehicle is C.

...1 The state space of the original model is larger than CN .

...2 The state space of the aggregate model is in the order of (CN)b.
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Cost function in the aggregate model
.
Action..

.

. ..

.

.

In the aggregate model, given the current system state x̃t , an feasible
action, ũt , is a b-dimensional vector such that its n-th component
denotes the number of vehicles which will leave at stage t + n − 1 and
are charged at stage t .

.
Cost function..

.

. ..

.

.

In the aggregate model, given the current system state x̃t and the
current action ũt , the stage cost function is given by

g̃t(x̃t , ũt) = −C(st ,At) +
b∑

y=1

ũt(y) ·

(
Z∑

z=1

wzV (y , z)

)
/Z

where At =
∑b

y=1 ũt(y), Z is the maximum capacity of a vehicle’s
battery, and wz are weighted factors such that

∑Z
z=1 wz = 1.
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Transition probability in the aggregate model
.

.

. ..

.

.

...1 The randomness of the original dynamic programming problem
come from two aspects: the future grid status, as well as the
number and the states of vehicles that will arrive in the next stage.

...2 In the original model, given the current system state xt , for an
event e on the vehicles that arrive at the next stage t + 1, let
Pt(e | xt) denote the probability that event e occurs.

...3 In the aggregate model, given the current system state x̃t , for an
event e on the vehicles that arrive at the next stage t + 1, the
probability that event e occurs, Pt(e | x̃t), is calculated by

Pt(e | x̃t) =
∑

x∈S(x̃t )
Pt(e | x)/N (x̃t),

where S(x̃t) is the set of states in the original model that are
presented as x̃t in the aggregate model, and N (x̃t) is the number
of elements in the set S(x̃t).
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Transition probability in the aggregate model II

.
Transition probability
..

.

. ..

.

.

In the aggregate model, given the current system state, x̃t = (m̃t , st),
and the current action ũt , the probability that the next system state is
x̃t+1, Pt(x̃t+1 | x̃t , ũt), is given by

Pt(x̃t+1 | x̃t , ũt) = Pt(st+1 | st)
∑

x∈S(x̃t )

∑
e∈T (m̃t+1−(m̃t−ũt ))

Pt(e | x)/N (x̃t),

where m̃t − ũt is the aggregate state (a b-dimensional vector) at the
end of stage t , T (m̃t+1 − (m̃t − ũt)) is the set of all possible events (on
vehicles which will arrive at t + 1) which lead to the state m̃t+1, and
Pt(st+1 | st) is the transition probability of the grid state.
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Solving the aggregate dynamic programming problem

.
A T -stage dynamic programming problem
..

.

. ..

.

.

...1 For the last stage, the cost-to-go function can be obtained by

J̃T (x̃T ) = min
ũT

{g̃T (x̃T , ũT )}, ∀x̃T .

...2 For t = 1, . . . ,T − 1, the cost-to-go function can be calculated
through:

J̃t(x̃t) = min
ũt

{
g̃t(x̃t , ũt) +

∑
x̃t+1

Pt(x̃t+1 | x̃t , ũt) · J̃t+1(x̃t+1)

}
, ∀x̃t .
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One-step look ahead policy

.
One-step look ahead policy
..

.

. ..

.

.

...1 First calculate the probability Pt(x̃t+1 | xt ,ut) by

Pt(x̃t+1 | xt ,ut) =
∑

x∈S(x̃t+1)
Pt(x | xt ,ut).

...2 At stage t , under state xt , one-step look ahead policy chooses an
action ut such that

ut ∈ arg min
ut

{
gt(xt ,ut) +

∑
x̃t+1

Pt(x̃t+1 | xt ,ut) · J̃t+1(x̃t+1)

}
.
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Performance bound for one-step look ahead policy

.

.

. ..

.

.

It is known that one-step look ahead policy achieves better
performance than the heuristics, i.e.,

min
ut

{
gt(xt ,ut) +

∑
x̃t+1

Pt(x̃t+1 | xt ,ut) · J̃t+1(x̃t+1)

}
≤ J̃t(x̃t),

where xt is included in the aggregate state x̃t .
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Decentralized Scheduling

.
Introduction..

.

. ..

.

.

...1 Suppose that the decision that a vehicle is charged or not is made
by the owner of the vehicle.

...2 The charging decision is made by each individual who aim to
maximize her own payoff.

.
Objective
..

.

. ..

.

.

To design a proper pricing mechanism for electric vehicles to benefit
the social welfare when each individual makes her own charing plan to
maximize her payoff.
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Dynamic game model I

.

.

. ..

.

.

...1 The game is played in discrete time. We index time periods
t = 0,1, . . . ,T .

...2 At each stage t , let st ∈ S be the state of the grid, which evolves
as a Markov chain and its transition is independent of each
vehicle’s decision.

...3 At each stage t , for each vehicle i ∈ It , the state of vehicle i is
denoted by xi,t ∈ X , which is a two dimensional vector such that
the first component indicates the number of time units it will stay at
the station, and the second component reflects the number of time
units it needs to be charged before departure.

...4 For example, a vehicle arrives at stage αi = 0, will leave at stage
βi = 8, and requires 5 time units of charging. At stage 1, it is
charged for one time unit. Its state at stage 2 is (7,4).

Yunjian Xu (MIT&LANL) Los Alamos National Lab July 20, 2011 34 / 42



Dynamic game model II

.

.

. ..

.

.

...1 At stage t , for each vehicle i ∈ It , it chooses whether or not to
charge the vehicle, ai,t . ai,t = 1 indicates it is charged at stage t
and ai,t = 0 means it is not.

...2 At stage t , for each vehicle i ∈ It , it receives a utility ai,t · V (xi,t).

...3 At stage t , for each vehicle i ∈ It , it pays ai,t · pt , where pt is the
current price set for electric vehicles. Its payoff function is given by
ai,t · (V (xi,t)− pt).
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Dynamic game model III

.
State transition..

.

. ..

.

.

...1 For those unarrived vehicles, we say they are in a state “NULL”.
For a vehicle which has been fully charged or left the station, it is
in a state “Completed”.

...2 At the first stage 0, the initial states of all vehicles are drawn from
a given distribution.

...3 For an arrived vehicle, the first component of a vehicle’s state is
easily calculated. The second component is reduced by 1 at stage
t + 1 if the vehicle is charged at stage t .

...4 For a vehicle at the NULL state, its state transits to other (arrived
vehicle’s) states under a given state transition probability vector.

...5 For a vehicle at the Completed state, its state transits to the state
of NULL with a given probability.
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Dynamic game model IV

.
Cost function and social welfare..

.

. ..

.

.

...1 Under current grid state st , let C(st ,At) denote the cost caused by
battery charging of electric vehicles, where At =

∑
i ai,t is the

number of electric vehicles charged at stage t .
...2 The social welfare realized at stage t = 1, . . . ,T is given by∑

i∈I−t
ai,t · V (xi,t)− C(st ,At).

.
Problem..

.

. ..

.

.

How to design a pricing mechanism, i.e., a sequence of prices {pt}T
t=1,

to maximize the social welfare when each vehicle aims to maximize its
own benefit.

Yunjian Xu (MIT&LANL) Los Alamos National Lab July 20, 2011 37 / 42



Equilibrium
.

.

. ..

.

.

Let ft denote the distribution on vehicles’ state.
Let ht = (s0, s1, . . . , st) denote the grid history up to stage t .
A strategy ν, which maps a grid history, ht , as well as the current
state of the vehicle, xi,t into an action ai,t .

.

.

. ..

.

.

Suppose all vehicles use a strategy ν. It leads to a
history-dependent distribution on vehicles’ state, i.e.,

Dν : ht → (f0, f1, ..., ft), t = 0, ...,T .

A strategy ν is said to be an equilibrium if it maximizes each
vehicle’s long-term expected payoff with respect to the distribution
it induces, i.e., ν(ht , x) maximizes the following expected payoff

a · (V (x)− pt) + E
[∑T

τ=t+1
ν(hτ , xi,τ )(V (xi,τ )− pτ )

]
.
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Equilibrium II

.

.

. ..

.

.

Suppose that the current price, pt , is a function of the current grid
state, st , and the aggregate demand At . If all vehicles use a strategy ν,
then the expected payoff

a · (V (x)− pt) + E
[∑T

τ=t+1
ν(hτ , xi,τ )(V (xi,τ )− pτ )

]
,

is a function of the distribution on vehicles’ state (ft , . . . , fT ), where the
expectation is over future grid states (st+1, . . . , sT ).
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Equilibrium III

.
An example
..

.

. ..

.

.

Suppose that the grid state remains unchanged.
Suppose that all vehicles arrive with a state (2,1). There are
totally four states, i.e., (2,1), (1,1), NULL and Completed.
Suppose that the strategy to charge only at state (1,1) leads to a
stationary distribution on vehicles’ state, and results in a stable
price p > 0.
The utility functions are given by: V (2,1) = p/2 and
V (1,1) = 1.5p.
The strategy is an equilibrium.
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The proposed pricing mechanism

.

.

. ..

.

.

Suppose that the cost function C(st ,At) is increasing in At , and
C(st ,A)− C(st ,A − 1) ≥ C(st ,B)− C(st ,B − 1) for any pair of
positive integers such that A > B.
Let C(st ,A) be an increasing, convex and continuously
differentiable function in A such that C(st ,A) = C(st ,A) for any
positive integer A.

We let pt = C
′
(st ,At).
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Conjecture
.

.

. ..

.

.

Suppose that all vehicles use a strategy µ. Given a history ht and a
distribution on vehicles’ state, ft , the social welfare achieved at stage t
is given by

Wt(ht , ft , µ) = −C(st ,At) +
∑

x
ft(x) · µ(ht , x)V (x),

where At =
∑

x ft(x) · µ(ht , x).

.
Conjecture
..

.

. ..

.

.

The pricing mechanism maximizes the social welfare at an equilibrium,
i.e., if ν is an equilibrium, then it maximizes the expected social welfare,

Wt(ht , ft , µ) + E
[∑T

τ=t+1
Wτ (hτ , fτ , µ)

]
,

among all possible strategies.
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