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A Simple Networked System (Cyber-Physical System)

Physical: Spring-damper systems

A cyber-physical system if

H— m Spring-damper
forces are replaced by artificial forces

m Physical connections are replaced by
local sensing/communication network

m Time-varying topologies, latencies, etc

m Heterogeneous dynamics

Cooperative control:
m distributed

m stability and robustness g
[}
5 m only cumulative information flow @UCF
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Power System as a Cyber-Physical System

Power systems as a cyber-physical system

m Physical entities of controllable dynamics (generation units, DGs,
storage devices, etc)

m Nonlinear algebraic constraints (load flow equations)

m Wide-area monitoring versus local communication: varying
topologies and latencies

m Variable operational conditions (loads, DGs, disturbances, etc)

m Diverse economic interests

Core problems:
m Control with partial information
m Robustness under variations of topology, generation and loads.

m Make aggregated DG generation dispatchable.

[} . . . . .
p m Optimize the system operation under different interests &UCF
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Optimal Control with a Specific Constraint of Information

Structure?
Controllable system:
X = Ax + Bu
Desired performance index:
1 o0
J* = 5/ (XTQ*X—i- uTR*u)dt.
0

=}
F
DA

Algebraic Riccati equation:
KA+ ATK* + Q* — K*B(R*)'BTK* =
Optimal control:
u=—-G*x=—(R*)'BTK*x.

What happens if
u= —Gsx,

where G has certain structure (i.e., certain elements must be zero )& UCF
. -
Special case: Gs = FC, where y = Cx.
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Constraint on Information Structure
Consider the system with x(0) = [x1(0) x2(0)] ",

0 1 «
A:[O 0}7 B = by, QF=2hys, R*=hx>.

Suppose that the feedback information topology requires
GS = KS = diag{kl, k2}
Standard (unstructured) optimal solution:

1.3409 0.4495 }

* \—1pT*x
G"=(R)TBK _[0.4495 1.6422

Structured optimization:

1 2+k? 2+K2
* _ — T 2k 2k1(k1+k2)
Jp = 5x(0) 2+K2 2+ k2 22 | X(0):
2k1(k1+k2) 2k1k2(k1+k2) 2ko @UCF
[}
.2 In general, the problem is NP-hard. =
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Stability and Robustness under Switching
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Cooperative Control Design

. &SuUCF
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Networked Dynamical Systems
Networked dynamical systems: for j =1,---,q,
zj = fi(z, uj) + Afi(z, 7)), y; = hi(z).

Network uncertainties: binary connectivity matrix

1 sia(t) e s1q(t)
S(t) = su(t) - $24(t) ,
salt) - sqen() 1
and latency matrix
0 T12(t) e T1q(t)
S.(t) = i(t) Taq(t)

: ) ()0 &ucr
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Cooperative Control Problem

Cooperative control:

uj(t) = Uj(z(t), i1 (O)ya(t = 7j2), -+ s Sa()ya(t = 7jq)).

Key features: self and local feedback, pliable to network changes,

Closed-loop overall dynamics: for dj(t) > 0,

X;(t) = ./r,'(d,'l(t)Xl(t — 7’,‘1), d; (t)X2(t — 7','2), ce ,X,'(t), v
din(t)xn(t — 7in)), T € [0, 7],
Information flow: unpredictable connectivity, unknown latencies,

etc.
Cooperative stability: lim:_ y; = ¢ for all j.

Cooperative control theory: methods and tools to ensure g
=} . . . .
= performance in terms of cumulative information flow! @UCF
A
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Linear Networked Systems and Their Cooperative Control

Linear Systems: y; = C/zj for i =1,--- ,q,
Z,'(k + ]_) = A;Z,(k) + BI{V,'(/(), or zj= A:-Z,' + BI{V,'.

Cooperative control:

vi(t) = —Kizi(t)+ Y si(O)Kulyi(t — ) — y;(t)]
I#£]

or its variations.

Cooperative stability: lim;_,, y; = c for all j.

Goal: Linear methods and design tools in terms of cumulative
information flow!

: &Suck
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Linear Design Procedure: Cooperative Control Canonical
Form (with stable internal dynamics)

xi = Aixi + Biui,  yi = Cixi, @i = gilpi, xi),

0
Ai = (J/i - I/i></i) ® Imxm, Bi= |: / ] , G= [ Imxm O ] )

mxXm

and Ji is the kth order Jordan block with eigenvalue 0.
Cooperative Control is:

(1) = Z Gij(t)[sii(t)y;] = Gi(t)y, i=1,---,q,
=0

£
—~~

ty) for t € [t} t7 1),

itk )
GU(ti):qu#Kc’ J:]-; e chngme(),

Klg—=1,,.
; n=1 5i71(t;) & UCF
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The Overall Networked System

x = [A+ BG(t)C]x = [~Inxn + D(t)]x,

q
X:[X1T7 Tty X(;I—]T7 N:le,-,
i=1
A:diag{Ala ) Aq},C:diag{Cl, ) Cq}aB:diag{Bla ) Bq}a
Gu(t) -+ Gugt)
D(t) = : : : :
Ga(t) Gq(t)

= 0 /(/1_1)><(/1_1) ® Imxm mxhm : __
= |: 0 G % 9 I = 1) 7q’

EU:[G(') O]E%I;mxljm7 i=1,---,q,j=0,1,---,q, i@UCF
-
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Underlining Mathematics Problem: Solved
Closed-loop solution:
x(t511) = el DN =8 x (£7),

x(k +1) = P(k)x(k),

where P(k) is a Metzler matrix. Choose Kj; so that P(k) is row
stochastic.

Fundamental question: Is the multiplicative sequence convergent 7
Jim P(k)P(k —1)--- P2)P(1) = 1c”
—00

for some ¢ € R".

Matrix theoretical approach: convergence in terms of cumulative

[m]

& uUcF

& > information flow over an infinite sequence of finite intervals.
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Necessary and Sufficient Condition on Cooperative Stability

Definition: Communication/sensing sequence {S(k) : k € Rt} is
sequentially complete if an infinite multiplicative subsequence
extracted from A2, S(k) is lower-triangularly complete.

Theorem: Sequence {P(k) : k € Rt} is convergent as
k
lim P(n) = 1c,

k—00
n=1

if and only if {S(k) : k € Rt} is sequentially complete.

Implications:
cooperative controllability

cooperative stability Q
[} . . -
p designs of various behaviors. @UCF
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Application: 3% Inverter Modeling & Cooperative Control
Design

5 i,
Va L .
1 ncBus Inverter Y Ip
T Bridge Vb L 7
A
Ve

Figure: A typical 3-phase inverter

Dynamic equations:

dis
VGabc =L ;tc + Vabc
Vobe = K V,,,

o. where K — inverter PWM gain, and V., — control input to the &UCF
-

= . t
Ha @ INverter.
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DQ-Model of Inverters

Applying the park transformation yields:

di 0 w|. 1
where i — output current, V. — input command, Vs — the voltage at

inverter terminals,

i=lig igl"s Ve=1[Vea Vegl”s Ve=[Ves Veql”

State space representation:
d 10 w
dt  |-w 0
U=[Va Vg Ve Ve

, [k 0 -1 o0
B_[OK 0 —1]

]i—i—B’u’

&S uUCF
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DQ-Model Decoupling & Standard Inverter Block Diagram

Let
. T
V=Kxs«V.—-Ve+wllipz, —ig",
where V =[Vy V,]T. Then,
dl 1
dt L
Control Y Decoupling Inverter

( X L X

l Va Ve in L —
>0 K K i — P.

.....
S‘G
ra

. Vi °F Veq . iq —> Quut
O < S

: - )

\ g

5 & UCF
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Cooperative Control Design of 3® Inverters

By feedback linearization, we have that, for k. > 0 and letting

dij(t) = s;(t)/[22 s(t)],

yi = Cixi + Cix; = Cx,+C(Ax,+Bu,)
A
= —keyi+ ke Y dy(t)y;.
J
Solution of u;:
up = (CB) l[ keyi + ke Zdy CX, C;AX;]
J
LP; 0
o Ve,
= | % g |t ke ) di()y)]
ke V; J

,-) g, — ,’:—p S (ui, — )dT + iy,

P
o L AT ki
; (7 kPVG,’ VG" + kaGiai Q’) Iqi B k_” f(ulz dT + Iq &UCF
DA
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Simplified Inverter Model: Cooperative Control of DGs

A simple model of the renewablesis: i =1,---, Npg,
Poe, < Ppe, Ppe = Ve (t)la, g, = vi,
QDG,' S aDG,-) QDG,‘ - _VDG,'(t)Iq,'7 Iq,' = V2.
Control objectives: fair utilization profiles,
2 Ppg, s Qpg,
Yp = = — Qp, Y@ = = — Qg
Ppg; Qpe

Cooperative control design: yp, = a, being the virtual leader and k. > 0
being a cooperative control gain,

J— . —_ NDG
Pog | Vbela | Ppe Pog

— + — +k dl“ P'_k Pi| >
Voo | Pog | plg g

Vit =

under which
Npg
yp, = ke | —yp + E dePJ . Q
5 J=0 S UCF
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Smart Grids:
Self-Organizing Cooperative Control
Multi-Level Game-Based Optimization

. &SuUCF
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Problems Addressed

Large-Scale Solar Modiumscale  Mediumescale End Customer  End Customer
Farm

Solar Farm Wind Farm ﬁ
\ Smallscae Disrbution
, Substation >

ol P i <> Ehjiatte !

) Wind Farm
\

O

AN |
N

Wind Farm

——> Power Flow

> Signal Flow Encrgy Management Disiitution
Contrl Centre

Issues:
m Difficult to dispatch and control DGs due to intermittent and small output
m expensive to have information flow

m difficult negotiation between distribution and transmission part, etc.
Solutions:

m  Self-organizing cooperative control of DGs for real power aggregation, storage and injection

m  Self-organizing cooperative control for reactive power compensation and voltage stability

T

=]

- m  Multi-level multi-entity optimization @ UCF
DA
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Generation and Transmission

Conventional generation: i = 1.--- , Ng,
0i = wi, Miw; = Ppn, — Pg,
Ng

Pg, = Z V,VJ[GU COS(S,'J' + Bjjsin 5U]7 5,J =0;— (9].

i=1
Renewables (distributed generation): i

=1,---,Npg,
Poc = Vog, (), o = vir, Qpe = — Ve, (t)lg;,
Power flow equations of transmission network:
Ny
P — Pp. = Z V;V;[Gjjcos §j; + Bjjsin ;] ,
j=1
Ny
o Qé,-*QB,-:Z\/i\/j[GUSin5U—BUc055,-J-],
sz@ Jj=1

Zhihua Qu

ICIi = Vj2.

& uUcF
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Overall System Model

Distributed generation/storage and Var devices: i =1,---

{ Ppe, = Vpe (t)lg, {

lo, = via lg; = vi2
Power flow equations:
gp(Pla"' 7PNDc;7XP) =0
gq(Qla T QNDG7Xq) =0
i LI L2 L3 L4 LS
grid B

aNDGy

_QDG,' = 7VDGi(t)Iqi

@} ey

i"\/! iPVZ g}"\ﬂ g’\ﬂl
B

= Ya, A YA “ Ya .'.l
2.

Zhihua Qu
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Self-Organizing Distributed Control

Cooperative control objective: fair utilization profiles as

v 2 Ppg, Sap & Qpg,
P = = Py Q=
Ppg, Qpe;

— g,

Cooperative control: yp, = a, being the virtual leader and k. > 0 being a
cooperative control gain,
Npg

Poc | Vocls PocP
vip = 2 [— D61y JDO DGy g, ZdeP keyp;

Vb, Ppg, ﬁz
Control objective for self-organizing mlcrogrlds: for each virtual leader,
Po = k,L’)[Ptrre‘afn - Ptran], }-/QO = k(/?[vcref — VC]7

where Pty is power flow (downstream or upsteam), and V. is the critical bus
voltage. Low-level distributed optimization algorithm

B‘e_f +1
l -

man  _

—3 K, >3 ~
& s

|

1

: LT ; B R &ucCF
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Self-Organizing Microgrids

Main Tran.

a
=

264
Zhihua Qu

Group 1

15km

?DG] |
L Lyl cap

| |
|} — _|1_ _ _ _F; _-'i v 21'1pcnsat10n

&S uUCF
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Power System with Self-Organizing Distributed Control

Closed-loop differential-algebraic system is:

kP[Ptrre‘afn - Ptran(zly e 7ZN957XP)]

Z =
Npe

zi = ke _Zi+dIOZO+ZdUZj:|
j=1

0 = gP(Plv’” 7PN067XP)7

and

o= kgVE = Vel Zhpes Xo)]
Npe

7 = ke |-z +doz+ ) diz
j=1

0 = gq(Q17"'7QNDG7X‘7)'

where z0 = ap, zi = Ppg, /Ppc,, 20 = aq, Zz/ = Qo / Qpg;-

: &Suck
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Basic Facts on Power System Operations

Fact 1: Pyan is an increasing function of Ppg, (and hence of «)

External
grid Py,

-0 s
T e o I im i

a
rc

L1 L2 L3 L4

=
wn

a Vi - Ve

e e e e

Fact 2: Phase angles at the both sides of a transmission line of our concern are
relatively close, that is

o Isin(8i — &;)] << |cos(6; — §))]. @UCF

=
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Asymptotic Stability under Self-Organizing Distributed
Control

Theorem: Consider the system:

Z0 = kp[Ptrreafn — Ptran(217 e 7ZNDG7XP)]
Npg

Zi = ke |—z+ diozo + Z dijz
j=1

0 = gp(Pl,"' 7PNDG7XP)'

m Gains are chosen such that k,/kc is small,
m Facts 1 and 2 hold,

m Communication among the DGs are cumulatively connected (sequentially
complete),

then, the system is asymptotically stable in the sense that zz — 2z — «a;, and

o P P &Sucrk
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Case Study 1: Radial Distribution Network

. &SuUCF
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Case Study 1: Load Variations in a Radial Distribution
Network

All loads experience 10% decrease at t = 0 and then a 20% increase at
t = 3.5s, while active power and reactive power generations of DGs are kept
the same. Communication is fixed as shown.

e e (| B SEL (a
[p.u.] | | | | |
10— e — - —
1 | [T i
onf gt
External 5 4 '/
Ml G LI 213 L4 LS D‘O——J-..‘if ~,__T_il‘_=____i___l
| | | e
- ¥ PVI:
T T T T T o s | o b s i e Y pa: -1
| | | P\3: |
PVI PVZ VS = 000} —M e} Y Cp—|
§_ | | | —-— P\ |
av 7 L ! I I I
Ei & © ©E v e, 700 080 260 440 619 [s] 7.99

o Active power outputs of DGs are adaptively adjusted while converging to@ UCF
-

& ' fair utilization profile.
DA
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Case Study 2: A Microgrid

. &SuUCF
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Case Study 2: A Microgrid

A modified version in IEEE 399-1997. 8 DGs are distributed along
5 feeders .

Connecting to the main grid

0.151+].296%

Point of Common Coupling =
Feeder5 Feederd Feeder3

Feeder2 Feedert

€T
T 1MVAR

3.564+]2.661%

6.065+{10.15% 3.564+2.661%

3.976+4j5.127%
1.754{1.3%

j0.154% 0.104+j0.135%
L7
Critical Point
&
[}
5 & UCF
QA
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Communication Topologies

S())=0 te ((k—1)Tc+0", kT],
and for t € [(k — 1)T¢, (k —1)Tc +0™):

SGlobalConnectivity(t) = [1],

or

-

To=—

10 0 1 0 1 0 O
o 1 0 0 0 0 1 1
0o o0 1 o0 1 0 1 O0
1 0 0 1 1 1 0 1
Sasl(=1 9 o 1 1 1 0 0 o0
1 0 o0 1 0 1 0 0
0 1 1 o 0 o 1 0
0 1 0 1 0O 0 O 1
or
11 0 0 O 0 0 O
11 1 0 0 0 0 O
0o 1 1 1 0 0 0 O
0o 0 1 1 1 0 0 O
SneighboringConnectivity(!) = | o o9 o 1 1 1 0 0
0 0 0 0 1 1 1 O
0o 0 0 0 o0 1 1 1
00 0 0 0 0 1 1 g
. & UCF
=
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Performance of Cooperative Control versus
Communication Topology

DG4 active power utilization ratio (a) with different connection topologies Critical point voltage regulation with different connection topologies
7 T T T T 1 T T T T
0.995
06 S
0.99
3
o 05 = 0985
5 g
S =
€04 3 0.98
g S 0975
5
£ oaf 2
g 2 097
s
> 0.965
0.96
0.1 Casel connectivity H Casel connectivity
Neighboring connectivity 0955 Neighboring connectivity {
Full i Full connectivity
0 095
0 2 4 6 8 10 0 2 4 6 8 10
time time

: &Suck
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Performance of Cooperative Control versus
Communication Frequency

Response of DG4, given SgiopaiConnectivity (t) and alrff = 0.6:

Active power utilization ratio (a) with different communication rates Critical point voltage regulation with different communication rates
07 T T T T 1 T T T T
0.995
06
0.99
05 £ 0985
= 5
€ 2
S o4l 5 0%
€ 2
5 S 0975
S 03 o
8 2
£ g o
5
0.2t 1 > 0.965
0.96
01 —— 10Hz communication |{ —— 10Hz communication
5Hz communication 0.955 5Hz communication
——20Hz i —— 20Hz
0 095
0 2 4 6 8 10 0 2 4 6 8 10
time time
G
. & UCF
- -
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Case Study 3: IEEE 34-bus Distribution Network

. &SuUCF
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Case Study 3: IEEE 34-bus Distribution Network

16 PVs are added: Pia, — line 1, and the critical bus voltage (PV1),

E@ | | hEifJ“

PV6

&S uUCF

o @ ® ®
PV 11 PV 10
=
264
Zhihua Qu Professor and Interim Chair of ECE, University of Central Florida at Los Alamos NL

Distributed Optimization, Control and Dynamic Game Algorithms



Voltage Fluctuations without Cooperative Control

When only PV #1 is active and a reactive compensator is added at the
location of gas turbine, voltage fluctuations with respect to the DG
penetration level are:

Table 1 Voltage Drop of Central Bus with Different Compensating Capacitors

. RCSCC
vbes OMVar 0.6MVar 1.2MVar
PLPVG
20% 12.3% 6.6% 52%
40% 14.5% 10.0% 8.4%

Table 2 Voltage Drop of Central Bus with Different Synchronous Compensators

- RCSC
vbes OMVar 0.6MVar 1.2MVar
PLPVG
20% 12.3% 4.2% 33%
40% 14.5% 7.3% 57%
G
o RCSCC= Rated Capacity of Static Compensating Capacitor g%
- RCSC=Rated Capacity of Synchronous Compensator S UCI
DA VDCB=Voltage Drop of Central Bus
Zhihua Qu Professor and Interim Chair of ECE, University of Central Florida at Los Alamos NL
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Voltage Stability under Cooperative Control

For the PV penetration level changing from 0 to over 200%:

PV 0%  50% 100% 220%
1 0.912 0.947 0.978 1.046
2 0.912 0.947 0.978 1.046
3 0.950 0.969 0.986 1.023
4 0.924 0.955 0.983 1.043
5 0.919 0.950 0.979 1.039
6 0.912 0.947 0.978 1.046
7 0.912 0.947 0.978 1.046
8 0.912 0.946 0.978 1.045
9 0.912 0.946 0.977 1.044
10 0.950 0.969 0.966 1.021
11 0.951 0.969 0.986 1.021
12 0.966 0.976 0.985 1.002
13 0.916 0.949 0.978 1.042
14 0.913 0.946 0.978 1.044
15 0912 0.946 0.978 1.044 :
; 16 0.912 0.946 0.978 1.044 @UCF
264 1
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Robustness Against Line Fault and Communication
Interruptions

no interruption — — —-commu. intermittent——:—. —. constant PQ ‘

Q?1015
a1

.05

-1
v, :
1,06 fo=

0.95f--
0.9
@
1.0005
1
0.9885 Q'%
[}
o U | S UCF
0.999
DA 010 20 30 & 0 10 20 30 e
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Multi-Level Optimization for Power Systems:
Relevant Optimization Problems on Power System Operation
Stackelberg Game
Proposed Game Algorithm

. &SuUCF

=
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Energy Management System: Optimal Power Flow (OPF)

Ny
min > “[a3i(Pg,)? + a2iPg, + a1i + a0iPhg,):

i=1

subject to power flow equations and steady-state constraints:

Mi S \/I(t) S Vl'a
BG;(t) < PG/(t) < 'DG/(t)v QGi(t) < QG/(t) < QGi(t)7
-~a ]
Phe,(t) < Ppg.(t) < Ppg,(t),  Qpe () < Qpg(t) < Qpg, (1)

Thermal constraints: i =1,--- , N,,
~T,<T; <T;
Dynamic security constraints: k =1,--- | N,
k k < p
o 0F(t) — 0 (£)] < 5. &SuUCF
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Multi-Player Optimization: Nash v.s. Stackelberg

D2
uy 4
J2 0
B D1
s, S1 / >
Uissho s —
I S S
Uin N T2
|
1 |
o
i L
U2n
Ugs; Uzs, uz

N—Nash solution, S;—Stackelberg solution with P1 as the leader, Sg—StackeI@

[} . .
- solution with P2 as the leader. S
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Example of Matrix Game

Consider
min{Ji, -},
u,

where J; = Ji(u1, 12) and Jo = Jo(uy, wo):

uy

06 | {45] | {43} | 123} | (31} | {5.9]
08 | {510} | {7.4} | {33} | {8.12} | {22.24}
1 {78} | {56} | {22} | {44} | {10,11}
12 | {59} | {46} | {85} | {58} | {12}
14 | {118} | {109} | {54} | {6,7} | {10,15}

Nash: (ur, ) = (1,1) = {2,2}, (0.6,1.2) — {3,1}, (1.2,1.4) — {1,2}.

Stackelberg: { (u1, 1) = (1.2,1.4) if uy is the leader

(u1, 1) =(0.6,1.2) if 1> is the leader g
> & UCF
=
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Optimization at Transmission Level

(B K). P (K)) = min 5SSl 0Pa 0 + P O
UM =1 1=k
where Nj — bus number, k — index (up to N), and ai(/) = a(Pg,(/)) — cost
function.
m “DC” power flow of transmission network: at the ith bus (i = 1,..., N})

PE, (k) Z Bioij(k

where PZ (k) — aggregated generation (O, or Pg,(k), or Pu.(k), or
P(;i(k) —+ PMi(k)), PD,.(k) — load, and (51',' =0.
m Steady-state constraints:

EG,-(t) < PGi(t) < PGi(t)7 Py (t) < PMi(t) < ﬁMi(t)'

m Thermal constraints: i =1,--- | N,
T, < Ti(k) < T Q
a
& “Optimal” costs of J;(-) are found for Bi(k) and P, (k). Sﬁ UCF
DA
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Optimization at Microgrid G;

Im(Bi(k), Py, (K)) = maxz Bi(NPum; (1),

Pu; =%
for given price 8;(k) in the time intervals t € [ty + kT, ty + (k + 1) T) and subject to
m Power injection into the main grid: P} (k) is the aggregated DG/storage power output,
i

G G > 0  sending power
. . . 2 L
P (k) = Ppg, (k) = Pigtar toad(K) = Protar ioss(K): - Ppg; (k) = <0 receiving power

=0 balanced
where
k—1
PDG (k) = Z[PDG +AEDG (k)/T], EEG’,. (k)*EDG 0)+ZAEDG (/),
7 1=0

where EISDG,-J(k) is the energy stored in the microgrid at the end of the kth interval.

m (k) € (—oo, 1] is the fair utilization ratio at stage k as, unless PDC,‘ /.(k) +E; (k —1)/T =0,

Phc, (k)
jlPog, (k) + (k= 1)/T]°

m  Constraints: @
o _ _
° 0< A ()/T < Phe, ,+ Ebg,,(K) < Ebg, - S UCF
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Distributed Optimization and Self-Organizing Control

Transmission
Network

Global
Optimization

Stackelberg
Stategy

Distribution
Network

Distribution Distribution
Network Network

Distributed
Optimization

Stackelberg
Stategy

Cooperative
Control of DG

Cooperative Control|
of FACTS

Cooperative Control of|
OLTC

Techniques involved: cooperative control, distributed optimization,
scalable game algorithms.

. &SuUCF

=
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Case Study 4: Application of Stackelberg Algorithm

. &SuUCF

=
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Simulation Setting: Stackelberg Game for Main Grid versus One
Microgrid

. &SuUCF

=
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Main Grid Load Profile

4.5 T T T

T

Power base = 10MVA

Main grid load(P.U)

; 0 5 1‘0 1‘5 26 UCF
DA Time(Hour)
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Conventional Generation Cost (P.U)

f =235PU
o

Prce(p.U)

&S uUCF

=}
F
DA
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PV Generation Profiles

Base Power = 10MVA - = Real
Predicted

o 007
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006
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< e
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Microgrid Load Profiles

5 different load profiles considered:

m Loads on feeder 1: Industrial two shift workday
m Loads on feeder 2: Commercial area

m Loads on feeder 3: Active night life area

m Loads on feeder 4 & 5: Small residential areas

L2CommerciaP.L)
7

N N
5 ¥ UCF
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Case 1: Nash and Stackelberg Solutions

Setting: B(/) = 16[1 + B1(Pc — Pg)/Pg], P& =235, |AE(k)| < 0.25, and
0< E(k)<1

The Stackelberg and Nash solutions (with decision variables of ;1 vs. AE):

No Game: Game: (1 € Qp, and AE(k) € Qae
pf1 =1 and E(k) = 0.5 | Stackelberg Nash
Ja=20 84.0155 81.0872 81.0872
S0 6.4682 9.9812 9.9812

where E(I) = E(0) + Yi_t AE(k)
5 = {05, 0.75, 1.0, 1.25, 1.5},

Qar = {AE(k) € {—0.25, —0.125, 0, 0.125, 0.25}
0< E(/) <1, and E(24) = E(0).}

. &ucr
=
264
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Case 2: Increased Reserve Capacity

Setting: Pg = 2.35, |AE(k)| <0.25, and 0 < E(k) < 1.5.

The Stackelberg and Nash solutions:

No Game: Game: (1 € Qp, and AE(k) € Qar
B1 =1 and E(k) =0.5 | Stackelberg Nash
S0 84.0155 78.5641 78.5641
J5 6.4682 7.9906 7.9906
where E(I) = E(0) + 3",_s AE(k)

a
=

264
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5 ={0.5, 0.75, 1.0, 1.25, 1.5},

Qae = {AE(k) € {—0.25,

—0.125, 0, 0.125, 0.25},

0 < E(/) <15, and E(24) =

E(0).}

& uUcF
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Conclusions

Robust and Efficient Operation of Power Systems with DGs:

m Cooeprative controls yield self-organizing microgrids (by utilizing
available communication and information flow)

m The aggregated real power can be dispatched real-time:
Cooperative behaviors within microgrids by adaptively adjusting
local storages and real power outputs from the renewables.

m Voltage stability is ensured: Cooperative behaviors within microgrids
by adaptively adjusting reactive power generation.

m Robustness against line/network faults, communication
intermittency and latency is ensured.

m Microgrids can be represented by virtual entities which are capable
of taking appropriate decisions.

m The main grid and the microgrids can jointly and autonomously
optimize their operations by applying game-theoretical algorithms.

° g’UCF
sac [hanks! Questions?
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