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A Simple Networked System (Cyber-Physical System)

Physical: Spring-damper systems

A cyber-physical system if

Spring-damper
forces are replaced by artificial forces

Physical connections are replaced by
local sensing/communication network

Time-varying topologies, latencies, etc

Heterogeneous dynamics

Cooperative control:

distributed

stability and robustness

only cumulative information flow
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Power System as a Cyber-Physical System

Power systems as a cyber-physical system

Physical entities of controllable dynamics (generation units, DGs,
storage devices, etc)

Nonlinear algebraic constraints (load flow equations)

Wide-area monitoring versus local communication: varying
topologies and latencies

Variable operational conditions (loads, DGs, disturbances, etc)

Diverse economic interests

Core problems:

Control with partial information

Robustness under variations of topology, generation and loads.

Make aggregated DG generation dispatchable.

Optimize the system operation under different interests
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Optimal Control with a Specific Constraint of Information

Structure?

Controllable system:
ẋ = Ax + Bu

Desired performance index:

J∗ =
1

2

∫ ∞

0

(xTQ∗x + uTR∗u)dt.

Algebraic Riccati equation:

K ∗A+ ATK ∗ + Q∗ − K ∗B(R∗)−1BTK ∗ = 0

Optimal control:

u = −G∗x = −(R∗)−1BTK ∗x .

What happens if
u = −Gsx ,

where Gs has certain structure (i.e., certain elements must be zero)?

Special case: Gs = FC , where y = Cx .
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Constraint on Information Structure

Consider the system with x(0) = [x1(0) x2(0)]
T ,

A =

[

0 1
0 0

]

, B = I2×2, Q∗ = 2I2×2, R∗ = I2×2.

Suppose that the feedback information topology requires

Gs = Ks = diag{k1, k2}.

Standard (unstructured) optimal solution:

G ∗ = (R∗)−1BTK ∗ =

[

1.3409 0.4495
0.4495 1.6422

]

Structured optimization:

J∗p =
1

2
xT (0)





2+k21
2k1

2+k21
2k1(k1+k2)

2+k21
2k1(k1+k2)

2+k21
2k1k2(k1+k2)

+
2+k22
2k2



 x(0).

In general, the problem is NP-hard.
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Stability and Robustness under Switching
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Cooperative Control Design
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Networked Dynamical Systems

Networked dynamical systems: for j = 1, · · · , q,

żj = fj (zj , uj) + ∆fj(zj , uj), yj = hj(zj ).

Network uncertainties: binary connectivity matrix

S(t) =













1 s12(t) · · · s1q(t)

s21(t)
. . .

. . . s2q(t)
...

. . .
. . .

...
sq1(t) · · · sq(q−1)(t) 1













,

and latency matrix

Sτ (t) =













0 τ12(t) · · · τ1q(t)

τ21(t)
. . .

. . . τ2q(t)
...

. . .
. . .

...
τq1(t) · · · τq(q−1)(t) 0













.
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Cooperative Control Problem

Cooperative control:

uj(t) = Uj(zj(t), sj1(t)y1(t − τj1), · · · , sjq(t)yq(t − τjq)).

Key features: self and local feedback, pliable to network changes,
...
Closed-loop overall dynamics: for dil(t) ≥ 0,

ẋi (t) = Fi (di1(t)x1(t − τi1), di2(t)x2(t − τi2), · · · , xi (t), · · ·

din(t)xn(t − τin)), τij ∈ [0, r ],

Information flow: unpredictable connectivity, unknown latencies,
etc.
Cooperative stability: limt→∞ yj = c for all j .
Cooperative control theory: methods and tools to ensure
performance in terms of cumulative information flow!
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Linear Networked Systems and Their Cooperative Control

Linear Systems: yi = C ′
i zi for i = 1, · · · , q,

zi(k + 1) = A′
izi(k) + B ′

i vi (k), or żi = A′
izi + B ′

i vi .

Cooperative control:

vj(t) = −Kjjzj(t) +
∑

l 6=j

sjl(t)Kjl [yl (t − τjl)− yj(t)]

or its variations.
Cooperative stability: limt→∞ yj = c for all j .
Goal: Linear methods and design tools in terms of cumulative

information flow!
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Linear Design Procedure: Cooperative Control Canonical

Form (with stable internal dynamics)

ẋi = Aixi + Biui , yi = Cixi , ϕ̇i = gi(ϕi , xi),

Ai = (Jli − Ili×li )⊗ Im×m, Bi =

[

0
Im×m

]

, Ci =
[

Im×m 0
]

,

and Jk is the kth order Jordan block with eigenvalue 0.
Cooperative Control is:

ui(t) =

q
∑

j=0

Gij(t)[sij(t)yj ]
△
= Gi (t)y , i = 1, · · · , q,

where Gij(t) = Gij(t
s
k) for t ∈ [tsk , t

s
k+1),

Gij(t
s
k ) =

sij(t
s
k)

∑q
η=1 siη(t

s
k )
Kc , j = 1, · · · , q, ; Kc ∈ ℜm×m ≥ 0, Kc1m = 1m.
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The Overall Networked System

ẋ = [A+ BG(t)C ]x = [−IN×N + D(t)]x ,

x = [xT1 , · · · , xTq ]T , N = m

q
∑

i=1

li ,

A = diag{A1, · · · , Aq},C = diag{C1, · · · , Cq},B = diag{B1, · · · , Bq},

D(t) =







G 11(t) · · · G 1q(t)
...

...
...

G q1(t) · · · G qq(t)






,

G ii =

[

0 I(l1−1)×(l1−1) ⊗ Im×m

Gii 0

]

∈ ℜlim×lim, i = 1, · · · , q,

G ij =

[

0 0
Gij 0

]

∈ ℜlim×ljm, i = 1, · · · , q, j = 0, 1, · · · , q, i 6= j .
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Underlining Mathematics Problem: Solved

Closed-loop solution:

x(tsk+1) = e [−I+D(tsk)](t
s
k+1−tsk )x(tsk),

or
x(k + 1) = P(k)x(k),

where P(k) is a Metzler matrix. Choose Kij so that P(k) is row
stochastic.

Fundamental question: Is the multiplicative sequence convergent ?

lim
k→∞

P(k)P(k − 1) · · ·P(2)P(1) = 1cT

for some c ∈ ℜn.

Matrix theoretical approach: convergence in terms of cumulative

information flow over an infinite sequence of finite intervals.

Zhihua Qu Professor and Interim Chair of ECE, University of Central Florida at Los Alamos NL

Distributed Optimization, Control and Dynamic Game Algorithms



Necessary and Sufficient Condition on Cooperative Stability

Definition: Communication/sensing sequence {S(k) : k ∈ ℵ+} is
sequentially complete if an infinite multiplicative subsequence
extracted from

∧∞
k=1 S(k) is lower-triangularly complete.

Theorem: Sequence {P(k) : k ∈ ℵ+} is convergent as

lim
k→∞

k
∏

η=1

P(η) = 1c ,

if and only if {S(k) : k ∈ ℵ+} is sequentially complete.

Implications:
cooperative controllability
cooperative stability
designs of various behaviors.
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Application: 3Φ Inverter Modeling & Cooperative Control

Design

Figure: A typical 3-phase inverter

Dynamic equations:

VGabc
= L

diabc

dt
+ Vabc

Vabc = K ∗ Vcabc

where K — inverter PWM gain, and Vcabc — control input to the

inverter.
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DQ-Model of Inverters

Applying the park transformation yields:

di

dt
=

[

0 ω
−ω 0

]

i +
1

L
(KVC − VG )

where i — output current, Vc — input command, VG — the voltage at
inverter terminals,

i = [id iq]
T
, Vc = [Vcd Vcq]

T , VG = [VGd VGq]
T

State space representation:

di

dt
=

[

0 ω
−ω 0

]

i + B ′u′

u′ = [Vcd Vcq VGd VGq]

B ′ =

[

K 0 −1 0
0 K 0 −1

]
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DQ-Model Decoupling & Standard Inverter Block Diagram

Let
V = K ∗ Vc − VG + ωL[iq − iq]

T ,

where V = [Vd Vq]
T . Then,

dI

dt
=

1

L
V

KP

+
-

-
PWM Gain

K

id

GdV

ω L

Vcd +

-

1/L

ω

id

KP
+

-
PWM Gain

K

iq

GqV

ω L

Vcq
+

-

1/L

-ω

iq

dq

=>

PQ

Pout

Qout

Inverter

K
-1

K
-1

DecouplingControl

Vd

Vq

S

1

S

1

S

Ki

ref
dI

ref
qI

S

Ki
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Cooperative Control Design of 3Φ Inverters

By feedback linearization, we have that, for kc > 0 and letting
dij(t) = sij(t)/[

∑

l sil(t)],

ẏi = Ċixi + Ci ẋi = Ċixi + Ci(Axi + Bui)
△
= −kcyi + kc

∑

j

dij(t)yj .

Solution of ui :

ui = (CiB)
−1[−kcyi + kc

∑

j

dij(t)yj − Ċixi − CiAxi ]

=





LP i

kpVGi

0

0 − LQ i

kpVGi



 [−kcyi + kc
∑

j

dij(t)yj ]

−





(

− L
kpVGi

V̇Gi
+ L

kpVGi
P i
Ṗ i

)

idi −
ki
kp

∫

(ui1 − idi )dτ + idi
(

− L
kpVGi

V̇Gi
+ L

kpVGi
Q i

Q̇ i

)

iqi −
ki
kp

∫

(ui2 − iqi )dτ + iqi



 .
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Simplified Inverter Model: Cooperative Control of DGs

A simple model of the renewables is: i = 1, · · · ,NDG ,

PDGi
≤ PDGi

, PDGi
= VDGi

(t)Idi , İdi = vi1,

QDGi
≤ QDGi

, QDGi
= −VDGi

(t)Iqi , İqi = vi2.

Control objectives: fair utilization profiles,

yPi

△
=

PDGi

PDGi

→ αp, yQi

△
=

QDGi

QDGi

→ αq .

Cooperative control design: yP0 = αp being the virtual leader and kc > 0
being a cooperative control gain,

vi1 =
PDGi

VDGi



−
V̇DGi

Idi

PDGi

+
PDGi

ṖDGi

P
2

DGi

+ kc

NDG
∑

j=0

dijyPj
− kcyPi



 ,

under which

ẏPi
= kc



−yPi
+

NDG
∑

j=0

dijyPj



 .
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Smart Grids:
Self-Organizing Cooperative Control
Multi-Level Game-Based Optimization
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Problems Addressed

Transmission

Network

Transmission Supply 

Substation
Medium Voltage 

Substation

Energy Management 

System

Large-Scale 

Wind Farm

Large-Scale Solar 

Farm
Energy Storage System

Distribution 

Control Centre

Distribution 

Network

Small-scale 

Wind Farm

Small-scale 

Solar Farm

End Customer End Customer

Central Power Plant

Small Energy 

Storage

Distributed 

Controller

Distributed 

Controller

Distributed 

Controller

Distributed 

Controller

Medium-scale 

Solar Farm

Medium-scale 

Wind Farm

Power Flow

Signal Flow

Issues:

Difficult to dispatch and control DGs due to intermittent and small output

expensive to have information flow

difficult negotiation between distribution and transmission part, etc.

Solutions:

Self-organizing cooperative control of DGs for real power aggregation, storage and injection

Self-organizing cooperative control for reactive power compensation and voltage stability

Multi-level multi-entity optimization
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Generation and Transmission

Conventional generation: i = 1. · · · ,Ng ,

θ̇i = wi , Mi ẇi = Pmi
− Pgi ,

PGi
=

Ng
∑

i=1

ViVj [Gij cos δij + Bij sin δij ], δij = θi − θj .

Renewables (distributed generation): i = 1, · · · ,NDG ,

PDGi
= VDGi

(t)Idi , İdi = vi1, QDGi
= −VDGi

(t)Iqi , İqi = vi2.

Power flow equations of transmission network:

Pa
Gi

− Pa
Di

=

Nt
b

∑

j=1

ViVj [Gij cos δij + Bij sin δij ] ,

Qa
Gi

− Qa
Di

=

Nt
b

∑

j=1

ViVj [Gij sin δij − Bij cos δij ] ,

where Pa
Gi

equals to 0 or PGi
or Pa

DGi
or PGi

+ Pa
DGi
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Overall System Model

Distributed generation/storage and Var devices: i = 1, · · · ,NDG ,
{

PDGi
= VDGi

(t)Idi
İdi = vi1

{

QDGi
= −VDGi

(t)Iqi
İqi = vi2

Power flow equations:
{

gp(P1, · · · ,PNDG
,Xp) = 0

gq(Q1, · · · ,QNDG
,Xq) = 0
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Self-Organizing Distributed Control

Cooperative control objective: fair utilization profiles as

yPi

△
=

PDGi

PDGi

→ αp , yQi

△
=

QDGi

QDGi

→ αq ,

Cooperative control: yP0 = αp being the virtual leader and kc > 0 being a
cooperative control gain,

vi1 =
PDGi

VDGi

[

−
V̇DGi

Idi

PDGi

+
PDGi

ṖDGi

P
2
DGi

+ kc

NDG
∑

j=0

dijyPj
− kcyPi

]

.

Control objective for self-organizing microgrids: for each virtual leader,

ẏP0 = k
′
p[P

ref
tran − Ptran], ẏQ0 = k

′
q[V

ref
c − Vc ],

where Ptran is power flow (downstream or upsteam), and Vc is the critical bus
voltage. Low-level distributed optimization algorithm
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Self-Organizing Microgrids

OLTC
1:n

Main Tran.

15km

4km

10km

12.5km

DG DG

DG

DG DG

DG DG DG

SVC

CAP 

compensation

Group 1

Group 2

Group 3

Group 1'
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Power System with Self-Organizing Distributed Control

Closed-loop differential-algebraic system is:

ż0 = kp[P
ref
tran − Ptran(z1, · · · , zNDG

,Xp)]

żi = kc

[

−zi + di0z0 +

NDG
∑

j=1

dijzj

]

0 = gp(P1, · · · ,PNDG
,Xp),

and

ż
′
0 = kq[V

ref
c − Vc(z

′
1, · · · , z

′
NDG

,Xq)]

ż
′
i = kc

[

−z
′
i + di0z

′
0 +

NDG
∑

j=1

dijz
′
j

]

0 = gq(Q1, · · · ,QNDG
,Xq).

where z0 = αp , zi = PDGi
/PDGi

, z ′0 = αq , z
′
i = QDGi

/QDGi
.
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Basic Facts on Power System Operations

Fact 1: Ptran is an increasing function of PDGi
(and hence of αp)

Fact 2: Phase angles at the both sides of a transmission line of our concern are
relatively close, that is

| sin(δi − δj )| << | cos(δi − δj)|.
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Asymptotic Stability under Self-Organizing Distributed

Control

Theorem: Consider the system:

ż0 = kp[P
ref
tran − Ptran(z1, · · · , zNDG

,Xp)]

żi = kc

[

−zi + di0z0 +

NDG
∑

j=1

dijzj

]

0 = gp(P1, · · · ,PNDG
,Xp).

If

Gains are chosen such that kp/kc is small,

Facts 1 and 2 hold,

Communication among the DGs are cumulatively connected (sequentially
complete),

then, the system is asymptotically stable in the sense that zi → z0 → α∗
p and

Ptran → P ref
tran.
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Case Study 1: Radial Distribution Network
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Case Study 1: Load Variations in a Radial Distribution

Network

All loads experience 10% decrease at t = 0 and then a 20% increase at
t = 3.5s, while active power and reactive power generations of DGs are kept
the same. Communication is fixed as shown.

Active power outputs of DGs are adaptively adjusted while converging to the
fair utilization profile.
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Case Study 2: A Microgrid
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Case Study 2: A Microgrid

A modified version in IEEE 399-1997. 8 DGs are distributed along
5 feeders .

Connecting to the main grid

 Point of Common Coupling = 

PCC

0.151+j.296%

L1

Feeder1

L1

L2

L2

3.976+j5.127%

0.104+j0.135%0.732+j0.095%

DG1

1.2MVA

1MVAR

L3

3.564+j2.661%

L3

Feeder2

L4

L4

L5

L5

6.065+j10.15%

2.56+

j0.332%

0.423+

j0.154%

DG4

1.3MVA

L6

L6

3.564+j2.661%

DG5

0.5MVA

2.56+

j0.332%

Feeder3Feeder4

DG8

0.5MVA

DG2

2MVA

L31

Feeder21

1.2+j0.88%

DG3

1MVA

DG6

0.8MVA

L7

L7

DG7

0.7MVA

1.75+j1.3%

Critical Point

Feeder5

αp
ref

αq
ref
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Communication Topologies

S(t) = 0 t ∈ ((k − 1)Tc + 0
+
, kTc ], Tc =

1

fc

and for t ∈ [(k − 1)Tc , (k − 1)Tc + 0+):

SGlobalConnectivity(t) = [1],

or

Scase1(t) =























1 0 0 1 0 1 0 0
0 1 0 0 0 0 1 1
0 0 1 0 1 0 1 0
1 0 0 1 1 1 0 1
0 0 1 1 1 0 0 0
1 0 0 1 0 1 0 0
0 1 1 0 0 0 1 0
0 1 0 1 0 0 0 1























or

SneighboringConnectivity(t) =























1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1























.
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Performance of Cooperative Control versus

Communication Topology
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Performance of Cooperative Control versus

Communication Frequency

Response of DG4, given SGlobalConnectivity (t) and αref
p = 0.6:
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Case Study 3: IEEE 34-bus Distribution Network
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Case Study 3: IEEE 34-bus Distribution Network

16 PVs are added: Ptran — line 1, and the critical bus voltage (PV1),

 

Extern 
grid

Gas turbine 
generator

PV 1
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PV 4

PV 5

PV 6

PV 7

PV 8
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PV 14
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Voltage Fluctuations without Cooperative Control

When only PV #1 is active and a reactive compensator is added at the
location of gas turbine, voltage fluctuations with respect to the DG
penetration level are:

Tab le 1 V o ltag e D ro p  o f  Central B us  w ith D if f erent Co m p ens at ing  Cap ac ito rs

RCSC
VDCB

PLPVG

0MVar 0.6MVar 1.2MVar

20% 12.3% 4.2% 3.3%

40% 14.5% 7.3% 5.7%

Tab le 2 V o ltag e D ro p  o f  Central B us  w ith D if f erent S y nc hro no us  Co m p ens ato rs

RCSCC
VDCB

PLPVG

0MVar 0.6MVar 1.2MVar

20% 12.3% 6.6% 5.2%

40% 14.5% 10.0% 8.4%

RCSCC= Rated Capacity of Static Compensating Capacitor

RCSC=Rated Capacity of Synchronous Compensator

VDCB=Voltage Drop of Central Bus

PLPVG=Penetration Level of PV GeneratorZhihua Qu Professor and Interim Chair of ECE, University of Central Florida at Los Alamos NL
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Voltage Stability under Cooperative Control

For the PV penetration level changing from 0 to over 200%:

PV 0% 50% 100% 220%

1 0.912 0.947 0.978 1.046

2 0.912 0.947 0.978 1.046

3 0.950 0.969 0.986 1.023

4 0.924 0.955 0.983 1.043

5 0.919 0.950 0.979 1.039

6 0.912 0.947 0.978 1.046

7 0.912 0.947 0.978 1.046

8 0.912 0.946 0.978 1.045

9 0.912 0.946 0.977 1.044

10 0.950 0.969 0.966 1.021

11 0.951 0.969 0.986 1.021

12 0.966 0.976 0.985 1.002

13 0.916 0.949 0.978 1.042

14 0.913 0.946 0.978 1.044

15 0.912 0.946 0.978 1.044

16 0.912 0.946 0.978 1.044
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Robustness Against Line Fault and Communication

Interruptions

no interruption commu. intermittent constant PQ
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Multi-Level Optimization for Power Systems:
Relevant Optimization Problems on Power System Operation
Stackelberg Game
Proposed Game Algorithm
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Energy Management System: Optimal Power Flow (OPF)

min

Nt
b

∑

i=1

[a3i (PGi
)2 + a2iPGi

+ a1i + a0iP
a
DGi

],

subject to power flow equations and steady-state constraints:










V i ≤ Vi(t) ≤ V i ,

PGi
(t) ≤ PGi

(t) ≤ PGi
(t), Q

Gi
(t) ≤ QGi

(t) ≤ QGi
(t),

Pa
DGi

(t) ≤ Pa
DGi

(t) ≤ P
a

DGi
(t), Qa

DGi
(t) ≤ Qa

DGi
(t) ≤ Q

a

DGi
(t).

Thermal constraints: i = 1, · · · ,Nl ,

−T i ≤ Ti ≤ T i .

Dynamic security constraints: k = 1, · · · ,Nc ,

|θki (t)− θkj (t)| ≤ δ.

Zhihua Qu Professor and Interim Chair of ECE, University of Central Florida at Los Alamos NL

Distributed Optimization, Control and Dynamic Game Algorithms



Multi-Player Optimization: Nash v.s. Stackelberg

N—Nash solution, S1—Stackelberg solution with P1 as the leader, S2—Stackelberg

solution with P2 as the leader.
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Example of Matrix Game

Consider
min
u1,u2

{J1, J2},

where J1 = J1(u1, u2) and J2 = J2(u1, u2):

H
H
H
H
H

u1

u2 0.6 0.8 1 1.2 1.4

0.6 {4,5} {4,3} {2,3} {3,1} {5,9}
0.8 {5,10} {7,4} {3,3} {8,12} {22,24}
1 {7,8} {5,6} {2,2} {4,4} {10,11}
1.2 {5,9} {4,6} {8,5} {5,8} {1,2}
1.4 {1,18} {10,9} {5,4} {6,7} {10,15}

Nash: (u1, u2) = (1, 1) → {2, 2}, (0.6, 1.2) → {3, 1}, (1.2, 1.4) → {1, 2}.

Stackelberg:

{

(u1, u2) = (1.2, 1.4) if u1 is the leader
(u1, u2) = (0.6, 1.2) if u2 is the leader
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Optimization at Transmission Level

Jt(βi (k),PMi
(k)) = min

βi , PMi

Nt
b

∑

i=1

N
∑

l=k

[ai (l)PGi
(l) + βi (l)PMi

(l)],

where N t
b — bus number, k — index (up to N), and ai(l) = a(PGi

(l)) — cost
function.

“DC” power flow of transmission network: at the ith bus (i = 1, . . . ,N t
b)

P
a
Gi
(k)− PDi

(k) =

Nt
b

∑

j=1

Bijδij (k),

where Pa
Gi
(k) — aggregated generation (0, or PGi

(k), or PMi
(k), or

PGi
(k) + PMi

(k)), PDi
(k) — load, and δjj = 0.

Steady-state constraints:

PGi
(t) ≤ PGi

(t) ≤ PGi
(t), PMi

(t) ≤ PMi
(t) ≤ PMi

(t).

Thermal constraints: i = 1, · · · ,Nl ,

−T i ≤ Ti (k) ≤ T i .

“Optimal” costs of Jt(·) are found for βi (k) and PMi
(k).
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Optimization at Microgrid Gi

Jm(βi (k),PMi
(k)) = max

PMi

N
∑

l=k

βi (l)PMi
(l),

for given price βi (k) in the time intervals t ∈ [t0 + kT , t0 + (k + 1)T ) and subject to

Power injection into the main grid: Pa
DGi

(k) is the aggregated DG/storage power output,

PMi
(k) = P

a
DGi

(k) − P
Gi
total.load

(k) − P
Gi
total.loss

(k), P
a
DGi

(k) =







> 0 sending power
< 0 receiving power
= 0 balanced

,

where

P
a
DGi

(k) =
∑

j

[PDGi,j
(k) + ∆E

s
DGi,j

(k)/T ], E
s
DGi,j

(k) = E
s
DGi,j

(0) +

k−1
∑

l=0

∆E
s
DGi,j

(l),

where E s
DGi,j

(k) is the energy stored in the microgrid at the end of the kth interval.

αi (k) ∈ (−∞, 1] is the fair utilization ratio at stage k as, unless PDGi,j
(k) + E s

i,j (k − 1)/T = 0,

αi (k) =
Pa
DGi

(k)
∑

j [PDGi,j
(k) + E s

i,j
(k − 1)/T ]

.

Constraints:
0 ≤ ∆E

s
DGi,j

(l)/T ≤ P
s
DGi,j

, E
s
DGi,j

(k) < E
s
DGi,j

.
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Distributed Optimization and Self-Organizing Control

Transmission

Network

Global

Optimization

Stackelberg

Stategy

Distribution

Network

Distribution

Network

Distribution

Network

Distributed

Optimization

Stackelberg

Stategy

Cooperative 

Control of DG

Cooperative Control 

of FACTS

Cooperative Control of 

OLTC

Techniques involved: cooperative control, distributed optimization,
scalable game algorithms.
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Case Study 4: Application of Stackelberg Algorithm
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Simulation Setting: Stackelberg Game for Main Grid versus One
Microgrid
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Main Grid Load Profile
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Conventional Generation Cost (P.U)
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PV Generation Profiles
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Microgrid Load Profiles

5 different load profiles considered:

Loads on feeder 1: Industrial two shift workday
Loads on feeder 2: Commercial area
Loads on feeder 3: Active night life area
Loads on feeder 4 & 5: Small residential areas
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Case 1: Nash and Stackelberg Solutions

Setting: β(l) = 16[1 + β1(PG − P∗
G )/P

∗
G ], P

⋆
G = 2.35, |∆E(k)| ≤ 0.25, and

0 ≤ E(k) ≤ 1.

The Stackelberg and Nash solutions (with decision variables of β1 vs. ∆E):

No Game: Game: β1 ∈ Ωβ1 and ∆E(k) ∈ Ω∆E

β1 = 1 and E(k) = 0.5 Stackelberg Nash

J
(1−24)
t 84.0155 81.0872 81.0872

J
(1−24)
m 6.4682 9.9812 9.9812

where E(l) = E(0) +
∑l−1

k=0 ∆E(k)

Ωβ1 = {0.5, 0.75, 1.0, 1.25, 1.5},

Ω∆E = {∆E(k) ∈ {−0.25, −0.125, 0, 0.125, 0.25}

0 ≤ E(l) ≤ 1, and E(24) = E(0).}
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Case 2: Increased Reserve Capacity

Setting: P⋆
G = 2.35, |∆E(k)| ≤ 0.25, and 0 ≤ E(k) ≤ 1.5.

The Stackelberg and Nash solutions:

No Game: Game: β1 ∈ Ωβ1 and ∆E(k) ∈ Ω∆E

β1 = 1 and E(k) = 0.5 Stackelberg Nash

J
(1−24)
t 84.0155 78.5641 78.5641

J
(1−24)
m 6.4682 7.9906 7.9906

where E(l) = E(0) +
∑l−1

k=0 ∆E(k)

Ωβ1 = {0.5, 0.75, 1.0, 1.25, 1.5},

Ω∆E = {∆E(k) ∈ {−0.25, −0.125, 0, 0.125, 0.25},

0 ≤ E(l) ≤ 1.5, and E(24) = E(0).}
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Conclusions

Robust and Efficient Operation of Power Systems with DGs:

Cooeprative controls yield self-organizing microgrids (by utilizing
available communication and information flow)

The aggregated real power can be dispatched real-time:
Cooperative behaviors within microgrids by adaptively adjusting
local storages and real power outputs from the renewables.

Voltage stability is ensured: Cooperative behaviors within microgrids
by adaptively adjusting reactive power generation.

Robustness against line/network faults, communication
intermittency and latency is ensured.

Microgrids can be represented by virtual entities which are capable
of taking appropriate decisions.

The main grid and the microgrids can jointly and autonomously
optimize their operations by applying game-theoretical algorithms.

Thanks! Questions?
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