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Scale of Regional Transmission Organizations
(Cover half the states and 70% of load )

CAISO (1998)
Population: 30 Million
Peak Load: 45,500MW
Annual Total Energy: 236,450GWh
Generation Capacity: 52,000MW
Average Net Imports: 6,500MW 
(Peak 8,300MW)

Wholesale Average price: $56.7/MWh
Annual Wholesale Market: $14 Billion

PJM (1999)
Population: 51 million
Peak load:  144,644 MW
Annual Total Energy: 729,000GWh 
Generating capacity: 164,905 MW 
Transmission lines - 56,250 miles
Members/customers - 450+ 
Annual Wholesale Market: $40 Billion

ERCOT (2001) (not under FERC) 
Population: 18 Million (85% of Texas)
Peak Load: 63,000MW
Annual Total Energy: 300,000GWh
Generation Capacity: 80,000MW
Average Net Imports: Non
Wholesale Average price: ~$70/MWh
Annual Wholesale Market: $20 Billion
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Market Mechanics at PJM
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Day-ahead Market External Interfaces
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Resource  Dispatch Optimization
Problems in Electric  Power Systems

Generation Unit Commitment
Optimal Power Flow (OPF) Problems

– Alternating Current Optimal Power Flow (ACOPF)
– Direct Current OPF (DCOPF) – Linearization of the 

ACOPF
Reliability (Contingency) Requirements – N-1 

Standards
– N-1 DCOPF, Security Constrained ACOPF
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Power Flow Optimization (every five minutes) and 
Locational Marginal Pricing (LMP) 

 General Statement of OPF
– Objective f:

• Vertical demand: MIN  Cost = Σ Generator Costs
• Elastic demand: MAX Net Benefits 

= Σ (Consumer Value - Generator Cost)
– Decision variables X:

• Generation 
• Accepted demand bids
• Operating reserves
• Real and reactive power flows

– Constraints
• Generator limits (including dynamic limits such as ramp rates)
• Demand (net supply = load L at each bus for P,Q)
• Load flow constraints (e.g., KCL, KVL)
• Transmission limits
• Reserve requirements

 Price of energy (LMP) at bus i = Marginal cost of energy at bus
– Most readily calculated as dual variable to energy balance (KCL) constraint for the bus in 

an Optimal Power Flow (OPF)



PSERC

LMP / Congestion Example
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Marginal value of transmission = $10/MWh (=$50 – $40)
Total congestion revenue = $10*26 = $260/hr
Total redispatch cost = $130/hr
Congestion cost to consumers: (40*106+50*64) – (45*170) = 7440 – 7650 = –$210/hr
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Locational Real Time Marginal Prices at PJM and MISO
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Dispatch is reoptimized every five minutes and LMP updated to 
reflect shadow prices on transmission constraints
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3-Bus Example

 Line A-B:

 Line B-C:
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50_
3
1_

3
150 ≤−≤− BGenAGen

80_
3
2_

3
180 ≤+≤− BGenAGen

200_
3
1_

3
2200 ≤+≤− BGenAGen



PSERC

13

Transmission Switching 
Example 

 Original Optimal Cost: $20,000 (A=180MW,B=30MW, C=40MW) 

 Open Line A-B, Optimal Cost: $15,000 (A=200MW, B=50MW)

120MW

80MW

Original Feasible Set

150MW 180MW 200MW

Gen B

Gen A

30MW

Feasible set with 
Line A-B switched off

50MW
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Motivation
 Transmission planning addresses long term problem and a broad 

range of contingencies so the grid is built with redundancies that 
may not be needed in every state of the system

 Network redundancies motivated by reliability requirements may 
constrain generation dispatch create congestion and reduce 
economic efficiency

 Transmission assets are currently seen as static in the short term 
and control of transmission assets for economic reasons is 
underutilized 

 Security constrained economic dispatch can be improved and 
congestion reduced through co-optimization of generation 
dispatch and the network active topology while ensuring reliability

 With appropriate Smart Grid switching technology, some backup 
transmission can be kept offline (just in time N-1)
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Motivation (cont’d)
 Currently operators change transmission assets’ states on 

ad-hoc basis (e.g. PJM)
 National Directives:

– FERC Order 890
• Improve the economic operations of the electric transmission grid

– Energy Policy Act of 2005
• SEC.1223.a.5 of the US Energy Policy Act of 2005
• “encourage… deployment of advanced transmission technologies” 
• “optimized transmission line configuration”

– Energy Independence and Security Act of 2007
• Title 13, Smart Grid:
• “increased use of … controls technology to improve reliability, stability, and 

efficiency of the grid”
• “dynamic optimization of grid operations and resources”
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Objectives and Scope
 Co-optimize transmission topology and generation 

dispatch
 Efficiency improvements with no reliability degradation
 Smart grid application by exploiting short term 

reconfiguration flexibility
 Asses cost of achieving reliability through network 

redundancy (e.g. N-1 criterion) 
 Explore options and lay foundation for new reliability 

concepts (just in time N-1)
 Explore market implications of dynamic transmission 

switching and impact on transmission rights 
 Proof of concept: IEEE 118, IEEE 73 (RTS 96), ISO-NE 

5000 bus model



PSERCRelevant Literature
 “Corrective Switching” 

– Changes the topology after the network optimization problem is 
complete to relieve constraints violations

– Feasibility, search problems
 [Mazi, Wollenberg, Hesse 1986]: Corrective control of 

power systems flows (line overloads)
 [Schnyder, Glavitsch 1990]: Security enhancement 

using an optimal switching power flow 
 [Glavitsch 1993]: Power system security enhanced by 

post-contingency switching and rescheduling 
 [Shao, Vittal 2006]: Corrective switching algorithm for 

relieving overloads and voltage violations



PSERCLiterature Review cont’d
 “After the fact” switching to reduce losses

– Does not incorporate transmission switching into the overall 
OPF problem

– Changes topology to reduce losses after dispatch solution is 
known

 [Bacher, Glavitsch 1988]: Loss reduction by network 
switching 

 [Fliscounakis, Zaoui, et al. 2007]: Topology influence on 
loss reduction as a mixed integer linear program
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Literature Review cont’d
 Optimal Switching to Relieve Congestion

– Similar MIP formulation
– Aims at relieving congestion rather than co-optimizing network 

topology and generation
 [Granelli, Montagna, et al. 2006]: Optimal network reconfiguration 

for congestion management by deterministic and genetic 
algorithms
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OPF Nomenclature

 Variables:
Pnmk (Qnmk): real (reactive) power flow through 

transmission line k connecting buses m and n
Png: Generator g supply at bus n
Vn: Voltage magnitude at bus n
θn: Bus voltage angle at bus n
zk: Transmission line status (1 closed, 0 open)
 Parameters:
Bk: Susceptance of transmission line k
Pnd: Real power load at bus n
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Power Flow Overview

 AC Line Flow Equations (Kirchhoff’s laws):

 Non-convex constraints
 Linearization of the ACOPF to get DCOPF
 DCOPF used in Academia & Industry
 DC Line Flow Equation:

 (Alternative representation uses PTDFs)

0)( =−− nmkmnk PB θθ

)sin()cos( mnmnkmnmnknmk VVBVVGP θθθθ −+−=

).cos()sin( mnmnkmnmnknmk VVBVVGQ θθθθ −−−=
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22Optimal Transmission Switching with 
DCOPF

Zk: Binary variable 
– State of transmission line (0 open, 1 closed)

Update line min/max thermal constraints:
– Original:
– New:

Update line flow constraints:
– Original:
– New:

maxmin
knmkk PPP ≤≤

kknmkkk zPPzP maxmin ≤≤

0)1()( ≥−+−− kknmkmnk MzPB θθ
0)1()( ≤−−−− kknmkmnk MzPB θθ

0)( =−− nmkmnk PB θθ
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Optimal Transmission Switching 
DCOPF
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Results - Summary
 IEEE 118 Bus Model:

– DCOPF transmission switching solution with 
no contingencies saves 25% of total 
generation cost (10 lines switched off) 

– Up to 16% savings with N-1 DCOPF 
transmission switching (for feasible solutions)

 IEEE 73 (RTS 96) Bus Model 
– Up to 8% savings with N-1 DCOPF 

transmission switching (for feasible solutions)
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Results – DCOPF – IEEE 118
 Transmission switching solution saves 25% of total 

generation cost

J
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Results – DCOPF – IEEE 118
 IEEE 118 

opened
lines for 
J=10

 Note: this 
diagram 
has 
additional 
gens than 
our model 
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Results – DCOPF – IEEE 118
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Results – DCOPF – IEEE 118
 Results are % of static network’s DCOPF solution
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Optimal Transmission Switching with 
N-1 DCOPF



PSERCN1 Binary Parameter
 Incorporation of N-1 reliability constraints:
 N1ec: N-1 binary parameter specifying what element e

(transmission or generator) in the network is offline for state c

 c=0 steady-
state 
operations

 c>0 
contingency 
state
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31Optimal Transmission Switching 
with N-1 DCOPF (cont’d)

Transmission contingencies:
– Thermal ratings are set at emergency ratings
– Generator dispatch is unchanged

Generation contingencies:
– No ramp rate modeling of generators
– Assume possible full redispatch of online generators 
– Thermal ratings are set at emergency ratings

Determine modified N-1 contingency lists for test 
cases
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IEEE 118
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33Results – N-1 DCOPF 
IEEE 118

 Results are % of static network’s N-1 DCOPF solution
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(RTS 96)

 Results are % of static network’s N-1 DCOPF solution
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Results - Summary

ISO-NE 5000 bus model
– 5% to 13% savings of 

$600,000 total cost for 
NEPOOL for one hour 
(feasible solutions)

Does not include 
reliability constraints
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Results – DCOPF – ISONE
 ISONE – Summer Peak Model (5000 bus network)
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Results – DCOPF – ISONE
 Results are % of static network’s DCOPF solution
 ISONE – Summer Peak Model
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Results – DCOPF – ISONE (cont’d)
 Results are % of static network’s DCOPF solution
 ISONE – Connecticut Import Study Model
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Multi-Period Model with Reliability 
Constraints

Generation Unit Commitment Multi-Period 
Model
– Startup costs
– Shutdown costs
– Minimum up and down time constraints

• Facet defining valid inequalities
– No ramp rate constraints

Transmission Switching
N-1 Contingency Constraints
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Generation Unit Commitment 
Nomenclature

 Variables:
 ugt: Unit commitment variable (1 generator online, 0 

generator offline)
 vgt: Startup variable (1 generator turned on in period t, 0 

otherwise)
 wgt: Shutdown variable (1 generator turned off in period 

t, 0 otherwise)
 Parameters:
 SUg: Startup cost, generator g
 SDg: Shutdown cost, generator g
 UTg: Minimum up time, generator g
 DTg: Minimum down time, generator g
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Multi-Period Formulation

 Objective & 
Power Flow 
Constraints:



PSERCMulti-Period Formulation cont’d
 Generation Unit Commitment Constraints:
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Results – 24HR Gen UC & Optimal 
Transmission Switching N-1 DCOPF

 Model: IEEE RTS-96 system
 Results show:

– Optimal network topology varies from hour to hour
– Changing the network topology can change the optimal 

generation unit commitment solution 
– Total startup costs may be reduced
– Peaker units initially required with original topology were not 

required once transmission switching was incorporated into 
the problem

 3.7% overall savings or over $120,000 (24hr) for this 
medium sized IEEE test case – can translate into millions 
for large scale networks for entire year
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Statistics

 IEEE 118 DCOPF & N-1 DCOPF variables & 
constraints:



PSERCComputational Statistics cont’d
 ISONE (DCOPF)

– To solve for best 2 lines to open, optimality not 
reached after 50 hours

– Used heuristic of finding next best line to open 
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Revenue Adequacy in Financial 
Transmission Rights Market

 FTRs: Hedging mechanism
 Market operator compensates FTR owners with 

congestion rent (surplus)
 Revenue adequacy not guaranteed if topology changes 

[Alsac, Bright, et al. 2004]
 Following example illustrate  potential  congestion 

revenue shortfall  due to tran.smission switching
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Revenue Adequacy of FTR s: 
Example
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Revenue Adequacy of FTRs Cont’d

BUS: Gen Pg: LMP: Gen Cost: BRANCH: Line Flow: Congestion Rent:

A 75MW $50/MWh $3,750 From A to B 50MW $2,500

B 125MW $100/MWh $12,500 From A to C 25MW $625

C 0MW $75/MWh $0 From B to C -25MW $625

Total Gen Cost: $16,250 Total Congestion Rent: $3750

Without Switching Line A-B In (Case 1):

With Switching Line A-B Out (Case 2):
BUS Gen Pg: LMP: Gen Cost: BRANCH: Line Flow: Congestion Rent:

A 100MW $50/MWh $5,000 From A to B 0MW $0
B 100MW $100/MWh $10,000 From A to C 100MW $5,000
C 0MW $100/MWh $0 From B to C -100MW $0

Total Gen Cost: $15,000 Total Congestion Rent: $5,000
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Lines: FTR 
Quantity:

FTR Payment Without 
Switching (Case 1)

FTR Payment With 
Switching  (Case 2)

From A to B 50MW $2,500 (LMP gap: $50/MWh) $2,500 (LMP gap: $50/MWh)

From A to C 100MW $2,500 (LMP gap: $25/MWh) $5,000 (LMP gap: $50/MWh)

From B to C 50MW -$1,250 (LMP gap: -$25/MWh) $0 (LMP gap: $0/MWh)

Total FTR Payments: $3,750 $7,500 (>$5,000)

Total generation cost decreases but we can create FTR holdings 
that result in revenue inadequacy for the switching solution.
We have revenue adequacy with the no switching solution (case 1) 
but we do not have it with the switching solution (case 2) even 
though it increases social welfare. 

Revenue Adequacy of FTRs Cont’d
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Further Research
 Revenue adequacy and FTR settlement

– Incorporate revenue adequacy feasibility test within transmission 
switching formulation

– Do we need a compensation scheme to offset the impact on 
FTR settlements?

 Benders’ decomposition
– Analyze various sub-problem formats
– Research techniques to improve solution time

• Combinatorial cuts
• Local branching

 Use AC OPF for short term (e.g. hourly) switching 
problem
– MINLP very difficult
– Research heuristic techniques
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