Improving Economic Dispatch through Transmission Switching:

New Opportunities for a Smart Grid

Kory Hedman and Stmuel Oren

University of Calitesnia, Berkeley

POWER INDUSTRY RESTRUCTURING

Competitive

Generation

Transmission
FERC
Regulated

State
Regulated

Distribution

Customers

Scale of Regional Transmission Organizations (Cover half the states and 70\% of load)

CAISO (1998)
Population: 30 Million
Peak Load: 45,500MW
Annual Total Energy: 236,450GWh Generation Capacity: 52,000MW Average Net Imports: 6,500MW (Peak 8,300MW)
Wholesale Average price: \$56.7/MWh
Annual Wholesale Market: $\$ 14$ Billion

PJM (1999)
Population: 51 million
Peak load: 144,644 MW
Annual Total Energy: 729,000GWh
Generating capacity: 164,905 MW
Transmission lines - 56,250 miles
Members/customers - 450+
Annual Wholesale Market: \$40 Billion

ERCOT (2001) (not under FERC)
Population: 18 Million (85\% of Texas)
Peak Load: 63,000MW
Annual Total Energy: 300,000GWh
Generation Capacity: 80,000MW
Average Net Imports: Non
Wholesale Average price: ~\$70/MWh
Ter Annual Wholesale Market: \$20 Billion

Market Mechanics at PJM

Day-Ahead Market closes

Day-ahead Market

- determines commitment profile that satisfies fixed demand, price sensitive demand bids, virtual bids and PJM Operating Reserve Objectives
- minimizes total production

Day-ahead Results
Posted \& Balancing Market Bid period opens

Balancing (RT) Market Bid period closes

Reserve Adequacy Assessment

- focus is reliability
- updated unit offers and availability
- Based on PJM load forecast
- minimizes startup and cost to run units at minimum

Day-ahead Market External Interfaces

Resource Dispatch Optimization Problems in Electric Power Systems

> Generation Unit Commitment
$>$ Optimal Power Flow (OPF) Problems

- Alternating Current Optimal Power Flow (ACOPF)
- Direct Current OPF (DCOPF) - Linearization of the ACOPF
$>$ Reliability (Contingency) Requirements - N-1 Standards
- N-1 DCOPF, Security Constrained ACOPF

Power Flow Optimization (every five minutes) and Locational Marginal Pricing (LMP)

> General Statement of OPF

- Objectivef:
- Vertical demand: MIN Cost $=\Sigma$ Generator Costs
- Elastic demand: MAX Net Benefits

$$
=\Sigma(\text { Consumer Value }- \text { Generator Cost) }
$$

- Decision variables X:
- Generation
- Accepted demand bids
- Operating reserves
- Real and reactive power flows
- Constraints
- Generator limits (including dynamic limits such as ramp rates)
- Demand (net supply = load L at each bus for P,Q)
- Load flow constraints (e.g., KCL, KVL)
- Transmission limits
- Reserve requirements
$>$ Price of energy (LMP) at bus i = Marginal cost of energy at bus
- Most readily calculated as dual variable to energy balance (KCL) constraint for the bus in an Optimal Power Flow (OPF)

LMP / Congestion Example

Marginal value of transmission $=\$ 10 / \mathrm{MWh}(=\$ 50-\$ 40)$
Total congestion revenue $=\$ 10 * 26=\$ 260 / \mathrm{hr}$
Total redispatch cost $=\$ 130 / \mathrm{hr}$
Congestion cost to consumers: $\left(40^{*} 106+50^{*} 64\right)-\left(45^{*} 170\right)=7440-7650=-\$ 210 / h r$

This image will be refreshed in $\mathbf{3}$ Minutes, $\mathbf{4}$ Seconds. Please hit crtl-F5 to manually refresh this page.

Midwest ISO Market data if based on Eastern Standard Time (EST) while PJM Market data is based on Eastern Prevailing Time.
 airurui PJM Interconnection. All rights reserved.

Dispatch is reoptimized every five minutes and LMP updated to reflect shadow prices on transmission constraints

PSERC

FE.HUB: \$32.91

Generation Resource Stack in WECC

3-Bus Example

$>$ Line A-B:
$-50 \leq \frac{1}{3} G e n_{-} A-\frac{1}{3} G e n_{-} B \leq 50$
\Rightarrow Line $\mathrm{B}-\mathrm{C}$:
$-80 \leq \frac{1}{3} G e n_{-} A+\frac{2}{3} G e n_{-} B \leq 80$
\Rightarrow Line A-C:
$-200 \leq \frac{2}{3}$ Gen $_{-} A+\frac{1}{3}$ Gen $_{-} B \leq 200$

Transmission Switching Example

> Original Optimal Cost: \$20,000 ($\mathrm{A}=180 \mathrm{Mw}, \mathrm{B}=30 \mathrm{Mw}, \mathrm{C}=40 \mathrm{MW}$)
\square Open Line A-B, Optimal Cost: \$15,000 (A=200мw, B=50мm)

Motivation

$>$ Transmission planning addresses long term problem and a broad range of contingencies so the grid is built with redundancies that may not be needed in every state of the system
$>$ Network redundancies motivated by reliability requirements may constrain generation dispatch create congestion and reduce economic efficiency
$>$ Transmission assets are currently seen as static in the short term and control of transmission assets for economic reasons is underutilized
$>$ Security constrained economic dispatch can be improved and congestion reduced through co-optimization of generation dispatch and the network active topology while ensuring reliability
$>$ With appropriate Smart Grid switching technology, some backup transmission can be kept offline (just in time $\mathrm{N}-1$)

Motivation (cont'd)

Objectives and Scope

$>$ Co-optimize transmission topology and generation dispatch
$>$ Efficiency improvements with no reliability degradation
$>$ Smart grid application by exploiting short term reconfiguration flexibility
$>$ Asses cost of achieving reliability through network redundancy (e.g. N-1 criterion)
$>$ Explore options and lay foundation for new reliability concepts (just in time N-1)
> Explore market implications of dynamic transmission switching and impact on transmission rights
> Proof of concept: IEEE 118, IEEE 73 (RTS 96), ISO-NE 5000 bus model

Relevant Literature

> "Corrective Switching"

- Changes the topology after the network optimization problem is complete to relieve constraints violations
- Feasibility, search problems
> [Mazi, Wollenberg, Hesse 1986]: Corrective control of power systems flows (line overloads)
> [Schnyder, Glavitsch 1990]: Security enhancement using an optimal switching power flow
> [Glavitsch 1993]: Power system security enhanced by post-contingency switching and rescheduling
> [Shao, Vittal 2006]: Corrective switching algorithm for relieving overloads and voltage violations

Literature Review cont'd

$>$ "After the fact" switching to reduce losses

- Does not incorporate transmission switching into the overall OPF problem
- Changes topology to reduce losses after dispatch solution is known
> [Bacher, Glavitsch 1988]: Loss reduction by network switching
> [Fliscounakis, Zaoui, et al. 2007]: Topology influence on loss reduction as a mixed integer linear program

Literature Review cont'd

> Optimal Switching to Relieve Congestion

- Similar MIP formulation
- Aims at relieving congestion rather than co-optimizing network topology and generation
> [Granelli, Montagna, et al. 2006]: Optimal network reconfiguration for congestion management by deterministic and genetic algorithms

OPF Nomenclature

$>$ Variables:
$P_{n m k}\left(Q_{n m k}\right)$: real (reactive) power flow through transmission line k connecting buses m and n
$P_{n g}$: Generator g supply at bus n
V_{n} : Voltage magnitude at bus n
θ_{n} : Bus voltage angle at bus n
z_{k} : Transmission line status (1 closed, 0 open)
> Parameters:
B_{k} : Susceptance of transmission line k
$P_{n d}$. Real power load at bus n

Power Flow Overview

> AC Line Flow Equations (Kirchhoff's laws):

$$
\begin{aligned}
& P_{n m k}=G_{k} V_{n} V_{m} \cos \left(\theta_{n}-\theta_{m}\right)+B_{k} V_{n} V_{m} \sin \left(\theta_{n}-\theta_{m}\right) \\
& Q_{n m k}=G_{k} V_{n} V_{m} \sin \left(\theta_{n}-\theta_{m}\right)-B_{k} V_{n} V_{m} \cos \left(\theta_{n}-\theta_{m}\right) .
\end{aligned}
$$

$>$ Non-convex constraints
$>$ Linearization of the ACOPF to get DCOPF
$>$ DCOPF used in Academia \& Industry
> DC Line Flow Equation:

$$
B_{k}\left(\theta_{n}-\theta_{m}\right)-P_{n m k}=0
$$

(Alternative representation uses PTDFs)

Optimal Transmission Switching with

 DCOPF$>Z_{k}$: Binary variable

- State of transmission line (0 open, 1 closed)
$>$ Update line min/max thermal constraints:
- Original: $\quad P_{k}^{\min } \leq P_{n m k} \leq P_{k}^{\max }$
- New:

$$
P_{k}^{\min } Z_{k} \leq P_{n m k} \leq P_{k}^{\max } Z_{k}
$$

> Update line flow constraints:

- Original: $B_{k}\left(\theta_{n}-\theta_{m}\right)-P_{n m k}=0$
- New:

$$
\begin{gathered}
B_{k}\left(\theta_{n}-\theta_{m}\right)-P_{n m k}+\left(1-z_{k}\right) M_{k} \geq 0 \\
B_{k}\left(\theta_{n}-\theta_{m}\right)-P_{n m k}-\left(1-z_{k}\right) M_{k} \leq 0
\end{gathered}
$$

Optimal Transmission Switching DCOPF

Minimize: $\mathrm{TC}=\sum_{g} c_{n g} P_{n g}$
S.t.:

Bus angle constraints
$\theta_{n}^{\min } \leq \theta_{n} \leq \theta_{n}^{\max }, \forall n$

Generator constraints

$$
0 \leq P_{n g} \leq F_{g}^{\max }, \forall g
$$

Node balance constraints
$\sum_{\forall k j=n} P_{i j k}-\sum_{\forall \forall d j=n} P_{i z k}+\sum_{\forall \varepsilon \mid s=n} P_{s g}-P_{n d}=0, \forall n$
Transmission constraints
$P_{k}^{\mathrm{minh}} z_{k} \leq P_{n m k} \leq P_{k}^{\mathrm{max}} z_{k}, \quad \forall k$
$B_{k}\left(\theta_{n}-\theta_{m}\right)-P_{n m k}+\left(1-z_{k}\right) M_{k} \geq 0, \quad \forall k$
$B_{k}\left(\theta_{n}-\theta_{m}\right)-P_{n m k}-\left(1-z_{k}\right) M_{k} \leq 0, \quad \forall k$
$z_{k} \in\{0,1\}, \quad \forall k \in K$

Results - Summary

> IEEE 118 Bus Model:

- DCOPF transmission switching solution with no contingencies saves 25% of total generation cost (10 lines switched off)
- Up to 16% savings with N-1 DCOPF transmission switching (for feasible solutions)
$>$ IEEE 73 (RTS 96) Bus Model
- Up to 8\% savings with N-1 DCOPF transmission switching (for feasible solutions)

Results - DCOPF - IEEE 118

$>$ Transmission switching solution saves 25% of total generation cost

Results - DCOPF - IEEE 118

> IEEE 118 opened lines for $J=10$
$>$ Note: this diagram has
additional gens than our model

Consortium for Electric Reliability Technology Solutions

Results - DCOPF - IEEE 118

Results - DCOPF - IEEE 118

> Results are \% of static network's DCOPF solution

Optimal Transmission Switching with N-1 DCOPF

Minimize: $\mathrm{TC}=\sum_{g} c_{n g 0} P_{n g 0}$
s.t.:

Bus angle constraints Generator constraints for each state

$$
\theta_{n 0}^{\min } \leq \theta_{n c} \leq \theta_{n 0}^{\max }, \forall n, c \quad 0 \leq P_{n g c} \leq P_{g 0}^{\max } N 1_{g c}, \forall g, c .
$$

Node balance constraints

$$
\begin{array}{ll}
\sum_{\forall k k=n} P_{i k c}-\sum_{\forall k j, j=n} P_{i k c}+\sum_{\forall g \mid s=n} P_{s g 0}-P_{n d}=0, & \forall n, c=0, \\
\sum_{\forall k j=n} P_{i j k c}-\sum_{\forall d, j=n} P_{i k c}+\sum_{\forall g \mid s=n} P_{s g c}-P_{n d}=0, & \text { generator contingency states } c
\end{array}
$$

Transmission constraints for each state
$P_{k c}^{\min } z_{k} N 1_{k c} \leq P_{n m k c} \leq P_{k c}^{\max } z_{k} N 1_{k c}, \quad \forall k, c$
$B_{k}\left(\theta_{n c}-\theta_{m c}\right)-P_{n m k c}+\left(2-z_{k}-N 1_{k c}\right) M_{k c} \geq 0, \quad \forall k, c$
$B_{k}\left(\theta_{n c}-\theta_{m c}\right)-P_{n m k c}-\left(2-z_{k}-N 1_{k c}\right) M_{k c c} \leq 0, \quad \forall k, c$
$z_{k} \in\{0,1\}, \forall k \in K \quad \quad N 1_{e c}=\left\{\begin{array}{c}0, \text { if } c=e \\ 1, \text { otherwise }\end{array}\right\}, \forall c>0, e$

N1 Binary Parameter

> Incorporation of $\mathrm{N}-1$ reliability constraints:
$>N 1_{e c}$: N -1 binary parameterspecifying what element e (transmission or generator) in the network is offline for state c

- $c=0$ steadystate operations
- $c>0$
contingency state

$$
\begin{align*}
& N 1_{e c}=\left\{\begin{array}{c}
0, \text { if } c=e \\
1, \text { otherwise }
\end{array}\right\}, \forall c>0, e \\
& \sum_{\forall e} M_{e c}=N-1, \forall c>0 \tag{14}\\
& \sum_{\forall c>0} M_{e c}=N-1, \forall e . \tag{15}
\end{align*}
$$

Optimal Transmission Switching with N-1 DCOPF (cont'd)

> Transmission contingencies:

- Thermal ratings are set at emergency ratings
- Generator dispatch is unchanged
> Generation contingencies:
- No ramp rate modeling of generators
- Assume possible full redispatch of online generators
- Thermal ratings are set at emergency ratings
$>$ Determine modified N-1 contingency lists for test cases

Results - N-1 DCOPF IEEE 118

PSERC

Results - N-1 DCOPF IEEE 118

> Results are \% of static network's N-1 DCOPF solution

Consortium for Electric Reliability Technology Solutions

Results - N-1 DCOPF - IEEE 73 (RTS 96)

> Results are \% of static network's N-1 DCOPF solution

Results - Summary

$>$ ISO-NE 5000 bus model
-5% to 13% savings of $\$ 600,000$ total cost for NEPOOL for one hour (feasible solutions)
$>$ Does not include reliability constraints

Consortium for Electric Reliability Technology Solutions

Results - DCOPF - ISONE

> ISONE - Summer Peak Model (5000 bus network)

Results - DCOPF - ISONE

$>$ Results are \% of static network's DCOPF solution
> ISONE - Summer Peak Model

Results - DCOPF - ISONE (cont'd)

>Results are \% of static network's DCOPF solution
> ISONE - Connecticut Import Study Model

Multi-Period Model with Reliability Constraints

$>$ Generation Unit Commitment Multi-Period Model

- Startup costs
- Shutdown costs
- Minimum up and down time constraints
- Facet defining valid inequalities
- No ramp rate constraints
$>$ Transmission Switching
$>$ N-1 Contingency Constraints

Generation Unit Commitment Nomenclature

$>$ Variables:
$>u_{g \dot{t}}$ Unit commitment variable (1 generator online, 0 generator offline)
$>v_{g \dot{t}}$ Startup variable (1 generator turned on in period $t, 0$ otherwise)
$>w_{g i t}$ Shutdown variable (1 generator turned off in period t, 0 otherwise)
$>$ Parameters:
$>S U_{g}$: Startup cost, generator g
$>S D_{g}$: Shutdown cost, generator g
$>U T_{g}$: Minimum up time, generator g
$>D T_{g}$: Minimum down time, generator g

Multi-Period Formulation

> Objective \& Power Flow Constraints:

$$
\begin{align*}
& \text { Minimize: } \sum_{t} \sum_{g}\left(c_{g} P_{n g 0 t}+S U_{g} v_{g t}+S D_{g} w_{g t}\right) \tag{1}\\
& \text { s.t. } \\
& \theta^{\min } \leq \theta_{n c t} \leq \theta^{\max }, \forall n, c, t \tag{2}\\
& \sum_{\forall k \mid i=n} P_{i j k c t}-\sum_{\forall k \mid j=n} P_{i j k c t}+\sum_{\forall g \mid s=n} P_{s g 0 t}-P_{n d t}=0, \\
& \forall n, c=0, \text { transmission contingency states } c, t \tag{3a}\\
& \sum_{\forall k \mid i=n} P_{i j k c t}-\sum_{\forall k \mid j=n} P_{i j k c t}+\sum_{\forall g \mid \mathrm{s}=n} P_{s g c t}-P_{n d t}=0, \\
& \forall n, \text { generator contingency states } c, t \tag{3b}\\
& P_{k c}^{\min } z_{k t} N 1_{k c} \leq P_{n m k c t} \leq P_{k c}^{\max } z_{k t} N 1_{k c}, \forall k, c, t \tag{4}\\
& B_{k}\left(\theta_{n c t}-\theta_{m c t}\right)-P_{n m k c t}+\left(2-z_{k t}-N 1_{k c}\right) M M_{k} \geq 0, \\
& \forall k, c, t \tag{5a}\\
& B_{k}\left(\theta_{n c t}-\theta_{m c t}\right)-P_{n m k c t}-\left(2-z_{k t}-N 1_{k c}\right) M M_{k} \leq 0, \\
& \forall k, c, t \tag{5b}
\end{align*}
$$

Multi-Period Formulation cont'd

> Generation Unit Commitment Constraints:

$$
\begin{align*}
& P_{g}^{\min } N 1_{g c} u_{g t} \leq P_{n g c t} \leq P_{g}^{\max } N 1_{g c} u_{g t}, \forall g, c, t \tag{6}\\
& v_{g, t}-w_{g, t}=u_{g, t}-u_{g, t-1}, \forall g, t \tag{7}\\
& \sum_{q=t-U T_{g}+1}^{t} v_{g, q} \leq u_{g, t}, \forall g, t \in\left\{U T_{g}, \ldots, T\right\} \tag{8}\\
& \sum_{q=t-D T_{g}+1}^{t} w_{g, q} \leq 1-u_{g \not t}, \forall g, t \in\left\{D T_{g}, \ldots, T\right\} \tag{9}\\
& 0 \leq v_{g, t} \leq 1, \forall g, t \tag{10}\\
& 0 \leq w_{g, t} \leq 1, \forall g, t \tag{11}\\
& u_{g, t} \in\{0,1\}, \forall g, t .
\end{align*}
$$

Results - 24HR Gen UC \& Optimal Transmission Switching N-1 DCOPF

$>$ Model: IEEE RTS-96 system
> Results show:

- Optimal network topology varies from hour to hour
- Changing the network topology can change the optimal generation unit commitment solution
- Total startup costs may be reduced
- Peaker units initially required with original topology were not required once transmission switching was incorporated into the problem
$>3.7 \%$ overall savings or over \$120,000 (24hr) for this medium sized IEEE test case - can translate into millions for large scale networks for entire year

Results - Computational Statistics

> IEEE 118 DCOPF \& N-1 DCOPF variables \& constraints:

IEEE 118	DCOPF		N-1 DCOPF	
	LP	MIP	LP	MIP
Total Variables:	323	509	63 k	63 k
Binary Variables:	0	186	0	186
Total Linear Constraints:	628	1000	126 k	202 k
Total Variables (Post Presolve):	315	492	60 k	61 k
Binary Variables (Post Presolve):	0	177	0	97
Linear Constraints (Post Presolve):	482	833	98 k	137 k

Computational Statistics cont'd

> ISONE (DCOPF)

- To solve for best 2 lines to open, optimality not reached after 50 hours
- Used heuristic of finding next best line to open

ISONE Summer Peak Model	LP	MIP
Total Variables:	12,237	18,889
Binary Variables:	0	6,652
Total Linear Constraints:	23,786	37,090
Upper or Lower Bound Constraints:	12,237	18,889
Total Variables (Post Presolve):	11,101	16,701
Binary Variables (Post Presolve):	0	5,600
Linear Constraints (Post Presolve):	17,063	27,441

Revenue Adequacy in Financial Transmission Rights Market

> FTRs: Hedging mechanism
> Market operator compensates FTR owners with congestion rent (surplus)
$>$ Revenue adequacy not guaranteed if topology changes [A/sac, Bright, et al. 2004]
> Following example illustrate potential congestion revenue shortfall due to tran.smission switching

Revenue Adequacy of FTR s: Example

Case 1

Revenue Adequacy of FTRs Cont'd

Without Switching Line A-B In (Case 1):

BUS:	Gen Pg:	LMP:	Gen Cost:	BRANCH:	Line Flow:	Congestion Rent:
A	75 MW	$\$ 50 / \mathrm{MWh}$	$\$ 3,750$	From A to B	50 MW	$\$ 2,500$
B	125 MW	$\$ 100 / \mathrm{MWh}$	$\$ 12,500$	From A to C	25 MW	$\$ 625$
C	0 MW	$\$ 75 / \mathrm{MWh}$	$\$ 0$	From B to C	-25 MW	$\$ 625$
Total Gen Cost:						$\$ 16,250$

With Switching Line A-B Out (Case 2):

BUS	Gen Pg:	LMP:	Gen Cost:	BRANCH:	Line Flow:	Congestion Rent:
A	100 MW	$\$ 50 / \mathrm{MWh}$	$\$ 5,000$		From A to B	0 MW
B	100 MW	$\$ 100 / \mathrm{MWh}$	$\$ 10,000$		From A to C	100 MW
C	0 MW	$\$ 100 / \mathrm{MWh}$	$\$ 0$		$\$ 5,000$	
	Total Gen Cost:				$\$ 15,000$	

Revenue Adequacy of FTRs Cont'd

Lines:	FTR Quantity:	FTR Payment Without Switching (Case 1)	FTR Payment With Switching (Case 2)
From A to B	50 MW	$\$ 2,500$ (LMP gap: \$50/MWh)	$\$ 2,500$ (LMP gap: \$50/MWh)
From A to C	100 MW	$\$ 2,500$ (LMP gap: $\$ 25 / \mathrm{MWh})$	$\$ 5,000$ (LMP gap: \$50/MWh)
From B to C	50 MW	$-\$ 1,250$ (LMP gap: $-\$ 25 / \mathrm{MWh})$	$\$ 0$ (LMP gap: \$0/MWh)
Total FTR Payments:		$\$ 3,750$	$\$ 7,500(>\$ 5,000)$

Total generation cost decreases but we can create FTR holdings that result in revenue inadequacy for the switching solution. We have revenue adequacy with the no switching solution (case 1) but we do not have it with the switching solution (case 2) even though it increases social welfare.

Further Research

$>$ Revenue adequacy and FTR settlement

- Incorporate revenue adequacy feasibility test within transmission switching formulation
- Do we need a compensation scheme to offset the impact on FTR settlements?
> Benders' decomposition
- Analyze various sub-problem formats
- Research techniques to improve solution time
- Combinatorial cuts
- Local branching
$>$ Use AC OPF for short term (e.g. hourly) switching problem
- MINLP very difficult
- Research heuristic techniques

Documentation and Publications

[1] K. W. Hedman, R. P. O'Neill, E. B. Fisher, S. S. Oren, "Optimal transmission switching - sensitivity analysis and extensions," IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1469-1479, Aug. 2008.
[2] K. W. Hedman, R. P. O'Neill, E. B. Fisher, S. S. Oren, "Optimal transmission switching with contingency analysis," /EEE Trans. Power Syst., vol. 24, no. 3, Aug. 2009.
[3] K. W. Hedman, R. P. O'Neill, S. S. Oren, "Analyzing valid inequalities of the generation unit commitment problem," in Proc. Power Syst. Conf. and Expo. (PSCE), March 2009.
[4] E. B. Fisher, K. W. Hedman, R. P. O'Neill, M. C. Ferris, S. S. Oren, "Optimal transmission switching in electric networks for improved economic operations," in INFRADAY Conference 2008.
[5] K. W. Hedman, M. C. Ferris, R. P. O’Neill, E. B. Fisher, S. S. Oren, "Cooptimization of generation unit commitment and transmission switching with N-1 reliability," IEEE Trans. Power Syst., submitted for publication.
[6] K. W. Hedman, R. P. O’Neill, E. B. Fisher, S. S. Oren, "Smart flexible just-intime transmission and flowgate bidding," IEEE Trans. Power Syst., submitted for publication.
[7] K. W. Hedman, R. P. O’Neill, S. S. Oren, "Ensuring revenue adequacy of FTRs with transmission switching," working paper.

QUESTIONS? Thank you!

http://www.ieor.berkeley. edul orenlindex.him

