Modeling and Computational Enhancements for Efficient Transformation Wind, Rain and Fire into Electricity

Richard O'Neill Chief Economic Advisor Federal Energy Regulation Commission richard.oneill@ferc.gov

Los Alamos National Lab March 9, 2010 Views expressed are not necessarily those of the Commission

Early fictions, frictions, paradigm changes and politics

300 BC Aristotle's elements **Air**, Water, Fire, Earth, Aether **t**'proved' voids impossible taether fills all potential voids Middle Ages Church adopts Aristotle's view Punished for contrary views **Pretarded the development of zero** 1865 Maxwell (Did he have a silver hammer?) **†** publicly believed in aether but this equations did not have it ¹20th century: aether paradigm gradually disappears **T**Is aether reappearing as dark energy/matter?

Acceptance of Paradigm Shifts

"A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it." Max Planck

The magical mystery tour is waiting to take you away, waiting to take you away.

"Ohhhhhh . . . Look at that, Schuster . . . Dags are so cute when they try to comprehend quantum mechanics."

Electricity fictions, frictions, paradigm changes and politics

19th century competition: Edison v. Westinghouse 8 20th century: Sam Insull's deal franchise 'unnatural' monopoly ^b cost-of-service rates 8 1927 PJM formed 8 1965 Blackout: Edward Teller * "power systems need sensors, communications, computers, displays and controls" ⁶ End of 20th: Is there a natural monopoly? 8 1988 Joskow & Schmalensee Markets for Power 1889 FERC just and reasonable market based rates 8 1996 Order 888 open assess/ISO rule * monopoly paradigm starts to disappear gradually

Structural change

"natural monopoly" concept is no longer relevant to current technologies and scale of markets 17,000 generators with 994 GW of capacity 159,000 miles of high voltage transmission Reliability rules require redundancy Millions of interconnected end users Franchised monopoly shadow persists Market power in non divested franchised areas Transmission market power ISO market design: Competitive game embedded in a cooperative game

What is at stake in electricity markets? roughly

	load	generation	revenues	price
	PetaWh	Giga Watts	\$10 ¹² /yr	\$/kwh
US	4	1	0.3	0.1
world	16	4	~2.0	

The efficiency/innovation target is measured in \$10¹²/year
 \$1% savings is greater than \$10¹⁰/yr
 money can't buy me love

Paradigm change Smarter Markets 20??

⇒What will be smarter? *Generators*, transmission, buildings and appliances communications, software and hardware markets and incentives ⇒what is the 21st century market design? Continuity and stochastically challenged: Wind, solar, hydro **Fast response: batteries and demand** Harmonize wind, solar, batteries and demand Greater flexibility more options ⇒FERC strategic goal: Promote efficiency through better optimization software

Electric Network Markets

Network analogies and their problems

<u>analogy</u>	<u>owners</u>	<u>Commodity</u> /conduit	<u>Displace</u> <u>ment</u> <u>network</u>	<u>other</u> <u>issues</u>	<u>pricing</u>
highways	public	unbundled	No	congestion	Gas tax and toll roads
water	public	bundled	yes	other uses	usage
Natural gas	private	unbundled	yes	storage and valves	Price caps and no withholding
Air traffic	public	unbundled	no	No pricing	Ticket tax
parks	public	unbundled	no	congestion	Income tax
telecom	private	mixed	No	Busy signal	Price caps
railroads March 19, 20	private	bundled	no	congestion	Loose price caps

Air traffic controller as control area operator

? Trip from DC to LA ? 1/3 goes thru Toronto on Air Canada ? 1/3 goes thru Chicago on United ? 1/3 goes thru Dallas on American **?** trip time: milliseconds ? Who gets the money from the ticket? **?** Is your Mother-in-law fungible?

ISO Markets and Planning

Four main ISO Auctions

- Real-time: for efficient dispatch
- Day-ahead: for efficient unit scheduling
- Generation Capacity: to ensure generation adequacy and cover efficient recovery
- Transmission rights (FTRs): to hedge (transmission congestion costs
- Planning and investment
 - Competition and cooperation
- All use approximations due to software limitations

Complete ISO market design Not quite there yet

Smarter markets

- Full demand side participation with real-time prices
- Smarter hardware, e. g., variable impedance
- Better approximations, e. g., DC to AC
- Flexible thermal constraints and transmission switching
- smarter software with Petaflop computers
- electric network optimization has roughly
 - ☞10⁵ nodes
 - 10⁵ transmission constraints
 - ☞10⁴ binary variables
- ⇒Potential dispatch costs savings: 10 to 30%

Approach to AC modeling

- A nonlinear optimizer will find a local optimum
- How do we avoid local optima?
- \Rightarrow 1. Solve the DC unit commitment
 - with a first order AC approximation
 - Real/reactive decoupling
- ⇒2. Refresh the approximation
- \Rightarrow 3. stop or go to 1
- →Model gets large

When the world is not convex market clearing can get funky

when the market is non-convex, linear prices do not necessarily clear the market

efficient solution settlements to do not address
equities

Naïve Uplift Settlement

Make-whole payments

Charged to average load

'Sophisticated' Multi-part Settlement

- Nonconvex equilibria
- Cooperative game theory
- Convex hull theory

- balancing market plus a lookahead
- efficiently dispatch generation, load, transmission and ancillary services every 5 minutes
- Subject to explicit N-1 reliability constraints
- Within the flexible limits of generators and transmission

PJM/MISO 5 minute LMPs 21 Oct 2009 9:55 AM

Woke up, got out of bed, ..

 scheduling and unit commitment market
 efficiently (from bids) schedule generation, load, transmission and ancillary services
 Subject to explicit reliability constraints
 Within the flexible limits of generators and transmission

Eight days a week is not enough to show I care

MIP Paradigm shift: Let me tell you how it will be

Pre-1999 Lagrangian Relaxation MIP can not solve in time window Control Con CR inhibits modeling ⊠Simplified generators ⊠No optimal switching ⇒1999 unit commitment conference and book MIP provides new modeling capabilities New capabilities may present computational issues Bixby demonstrates MIP improvements

Mixed Integer Program I didn't know what I would find there

maximize CX subject to Ax = b, $| \leq x \leq u$ some $x \in \{0,1\}$ Better modeling for Start-up and shutdown Transmission switching **Investment decisions** solution times improved by > 10⁷ in last 30 years 10 years becomes 10 minutes

Improvements in MIP (same hardware) one day unit commitment problem

year	Cplex version	Time in sec	B&B nodes
1993	2.2	1646 (unsolved)	110792
1995	4.0	8.88	22549
1997	5.0	66.5	18488
1999	6.5	4.2	396
2001	7.1	1.7	91
2003	9.0	1.8	98
2005	10.0	1.1	72
2007	11.0	1.1	75

And though the holes were rather small They had to count them all

Improvements in MIP (same hardware) one week unit commitment problem

Year	Cplex version	Time in sec	B&B nodes
1998	6.0	8000 (unsolved)	44900
1999	6.5	907	35683
2001	7.1	278	5308
2002	8.0	152	3575
2003	9.0	172	3928
2005	10.0	118	2090
2007	11.0	103	2220
	Eight days a wee Is not enough to		
	13 nor enough it	23	

MIP Paradigm shift: Let me tell you how it will be

ISO	previous approach	Date for MIP	Estimated annual savings
РЈМ	LR	2006	\$250 million
ISONE	LR/LP	Tbd	No estimate
SPP	LP	2013	No estimate
NYISO	LR/LP	Tbd	No estimate
MISO	LR	2008	No estimate
CAISO	LR	2009	>\$25 million

Combined Cycle Combustion Turbine

CT = combustion turbine ST = steam turbine

Unit	Startup Costs \$	Cost per MWh \$	Minimum Output MW	Maximum Output MW
CT1	4000	60	100	150
CT2	4000	75	100	150
СТ3	4000	90	100	150
ST	0	0	130	210

Total and Marginal Costs for combined cycle combustion turbine CCCT

Linear Residual Demand and Local Optimal Solutions

Equilibrium Points - Local Optima

Fransmission switching

⇒Open or close circuit breakers Proof of concept savings using DCOPF TEEE 118 bus provided 25% savings N-1 for IEEE 118 & RST 96 up to 16% savings ISO-NE network 15% savings or \$.5 billion/yr ⇒Potential Tail solutions have optimality gaps so higher savings may be found Currently takes too long to solve to optimality

Suboptimal solutions are acceptable

Gen C Price: Gen B Price: \$100/MWh \$200/MWH 80MW в Three bus 7 Load C: 250MW example 50MW 200MW \Rightarrow Feasible sets for Gen A and Gen B with Gen A Price: \$50/MWh transmission Original feasible set: Gen B $\{0, 1, 2, 3\}$ switching 120MW Feasible set with Line A-B open: →No switching [2]: cost $\{0, 4, 5, 6\}$ =\$50×180+\$100×30+ 80MW 5 $$200 \times 40 = $20,000$ 50MW Line A-B ⇒remove AB [8]: cost 30MW =\$50×200+\$100×50 = Line B-C \$15,000

150MW 180MW 200MW Feasible set with transmission switching: {0, 1, 7, 5, 6}

Gen A

Kirchhoff's second law for AC transmission elements

Big M method with non-negative variables and full N-1 reliability

 $-B_k \Theta_{kct} - P_{kct} - M_k (2 - z_{kt} - M_{kc}) \le 0$ $-B_k \Theta_{kct}^* - P_{kct}^* - M_k (2 - z_{kt} - M_{kc}) \le 0$ $B_k \Theta_{kct} + P_{kct} \leq 0$ $B_k \Theta^+_{kct} + P_{kct} \leq 0$ Θ_{kct} , P_{kct}^{+} , Θ_{kct}^{+} , $P_{kct}^{-} \ge 0$ $Z_{kt} \in \{0, 1\}$

Enhanced wide-area planning models

enable a more efficient planning and cost allocation through a mixed-integer stochastic program. Integration of more components of the planning process into a single modeling framework to improve planning efficiency. Better models are required to economically plan efficient transmission investments compute cost allocations in an environment of competitive markets with locationally-constrained variable resources and criteria for contingencies and reserve capacity.³¹

A Possible Planning Model

- decide on a set of future scenarios
- assign probabilities to each scenario
- Take transmission proposals
- ⇒ Solve a large-scale stochastic MIP.
- find the investments with the highest expected net benefits
- Determine the beneficiaries
- → Allocate costs & rights

Five Year Strategic Plan

- identify opportunities to enhance operational efficiency particularly RTOs and ISOs Promote operational efficiency in wholesale markets through the exploration and encouragement of the use of improved software and hardware that will optimize market operations
- to deploy new modeling software and optimize their market operations.

Future ISO Software

⇒Real-time:

AC Optimal Power Flow with <5 min dispatch, look ahead and N-1 reliability

⇒Day-ahead:

 N-1 ACOPF with unit commitment and transmission switching with <15 min scheduling
 Investment/Planning:

extension of day-ahead market
Greater detail and topology
more time to solve

Computational Research Questions

Decomposition and Grid (parallel) computing

- Real/reactive
- Time
- Good approximations
 Tinearizations
 - Convex
- Avoiding local optima
- ⇒Nonlinear prices
- ⇒Better tree trimming
- ⇒Better cuts
- Advance starting points

If you really like it you can have the rights It could make a million for you overnight

New hardware

1945, **ENIAC** 30 tons, 19,000 vaccum tubes, 1,500 relays, and 200 kilowatts 350 flops, 400 bytes

IBM Supercomputer Jump 32 processors 1.7 GHz and 128 Gbytes. 8.9 teraflops 5 terabyte memory

Harness "perennial gale of creative destruction" Schumpeter

"Everything should be made as simple as possible ... but not simpler." Einstein

The magical mystery tour is waiting to take you away, waiting to take you away.