Modeling and Computational Enhancements for Efficient Transformation Wind, Rain and Fire into Electricity

Richard O'Neill Chief Economic Advisor
Federal Energy Regulation Commission richard.oneill@ferc.gov

March 9, 2010
Views expressed are not necessarily those of the Commission

Early fictions, frictions, paradigm changes and politics

300 BC Aristotle's elements
Air, Water, Fire, Earth, Aether
 'proved' voids impossible
taether fills all potential voids
Middle Ages Church adopts Aristotle's view
Punished for contrary views
Retarded the development of zero
1865 Maxwell publicly believed in aether but his equations did not have it
20th century: aether paradigm gradually disappears
Is aether reappearing as dark energy/matter?

Acceptance of Paradigm Shifts

"A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather becausé its opponents eventually die, and a new generation grows up that ," is familiar with it." Max Planck

"Ohhhhhhh . . . Look of that, Schuster ... Dogs are so cute when they try to comprahend quantum mechanicr."

Electricity fictions, frictions, paradigm changes and politics

$19^{\text {th }}$ century competition: Edison v. Westinahouse $20^{\text {th }}$ century: Sam Insull's deal
franchise 'unnatural' monopoly
cost-of-service rates
1927 PJM formed
1965 Blackout: Edward Teller
"power systems need sensors, communications,
computers, displays and controls"
End of $20^{\text {th }}$: Is there a natural monopoly?
1988 Joskow \& Schmalensee Markets for Power
1889 FERC just and reasonable market based rates
1996 Order 888 open assess/ISO rule monopoly paradigm starts to disappear gradually

Structural change

"natural monopoly" concept is no longer relevant to current technologies and scale of markets

17,000 generators with 994 GW of capacity
159,000 miles of high voltage transmission
Reliability rules require redundancy
Millions of interconnected end users
\Rightarrow Franchised monopoly shadow persists
Market power in non divested franchised areas
Transmission market power
ISO market design: Competitive game embedded in a cooperative game

End-use markets

 gois io geit you jajo isy ljifsVertical demand curve in ISO markets
Consumers receive very weak price signals See monthly average price monthly meter: No real time price
On a hot summer day
wholesale price $=\$ 1000 / \mathrm{MWh}$ Retail price < $\$ 100 / \mathrm{MWh}$
Solution: smart appliances
real time pricing, interval meters and
Demand-side non-convex bidding
Large two-sided market!!!!!!!!

What is at stake in electricity markets? roughly

	load	generation	revenues	price
	PetaWh	Gigo Watts	$\$ 10^{12} \mathrm{yy}$	$\$ / \mathrm{kwh}$
US	4	.	0.3	0.1
world	16	4	-2.0	

The efficiency/innovation target is measured in $\$ 10^{12} /$ year
1% savings is greater than $\$ 10^{10} / \mathrm{yr}$
(2) money cans is buy me love

Paradigm change Smarter Markets 20??

What will be smarter?
Generators, transmission, buildings and appliances communications, software and hardware markets and incentives
what is the 21st century market design?
Locationally and stochastically challenged:
Wind, solar, hydro
Fast response: batteries and demand Harmonize wind, solar, batteries and demand Greater flexibility more options
FERC strategic goal: Promote efficiency through better optimization software

Power Flow and Admittance

$$
\begin{aligned}
& G=\frac{R}{R^{2}+X^{2}} \\
& B=\frac{-X}{R^{2}+X^{2}}
\end{aligned}
$$

ACModel (physics)

Pik $=G k^{*} \mathrm{Vi}^{2}-G k^{*}\left(V i^{*} V j\right)^{*} \cos (\theta i-\theta j)-B k^{*}\left(V i^{*} V j\right)^{*} \sin (\theta i-\theta j)$

DC Model (market model approximation. Can we do better?)
Pik $=-\mathrm{Bk}^{*}(\Theta \mathrm{i}-\Theta \mathrm{j})$

Network analogies and their problems

analogy	owners	Commodity lconduit	Displace ment network	other issues	pricing
highways	public	unbundled	No	congestion	Gas tax and toll roads
water	public	bundled	yes	other uses	usage
Natural gas	private	unbundled	yes	storage and valves	Price caps and no withholding
Air traffic	public	unbundled	no	No pricing	Ticket tax
parks	public	unbundled	no	congestion	Income tax
telecom	private	mixed	No	Busy signal	Price caps
railroads	private	bundled	no	congestion	Loose price caps

Air traffic controller as control

 area operatorTrip from DC to LA
$1 / 3$ goes thru Toronto on Air Canada
$1 / 3$ goes thru Chicago on United $1 / 3$ goes thru Dallas on American trip time: milliseconds Who gets the money from the ticket?
Is your Mother-in-law fungible?

ISO Markets and Planning

Four main ISO Auctions Real-time: for efficient dispatch Day-ahead: for efficient unit scheduling Generation Capacity: to ensure generation adequacy and cover efficient recovery Transmission rights (FTRs): to hedge transmission congestion costs
Planning and investment
Competition and cooperation

All use approximations due to software limitations

Complete ISO market design Not quite there yet

Smarter markets
Full demand side participation with real-time prices
Smarter hardware, e. g., variable impedance
Better approximations, e. g., DC to AC
Flexible thermal constraints and transmission switching
smarter software with Petaflop computers
electric network optimization has roughly
10^{5} nodes
10^{5} transmission constraints
10^{4} binary variables
Potential dispatch costs savings: 10 to 30\%

Approach to AC modeling

A nonlinear optimizer will find a local optimum
How do we avoid local optima?

1. Solve the $D C$ unit commitment
with a first order AC approximation Real/reactive decoupling
2. Refresh the approximation
3. stop or go to 1

Model gets large

When the world is not convex market clearing can get funky

when the market is non-convex, linear prices do not necessarily clear the market
efficient solution settlements to do not address equities
Naïve Uplift Settlement
Make-whole payments
Charged to average load
\Rightarrow 'Sophisticated' Multi-part Settlement
Nonconvex equilibria
Cooperative game theory
Convex hull theory

balancing market plus a lookahead efficiently dispatch generation, load, transmission and ancillary
 services every 5 minutes Subject to explicit N-1 reliability constraints
Within the flexible limits of generators and transmission

PJM/MISO \ddagger MLJUUEE LMPS 2: 0ct 2009 9jこう A M

\Rightarrow scheduling and unit commitment market efficiently (from bids) schedule generation, load, transmission and ancillary services
Subject to explicit reliability constraints
\Rightarrow Within the flexible limits of generators and transmission

Eight days a week is not enough to show I care

MIP Paradigm shift:

\Rightarrow Pre-1999 Lagrangian Relaxation MIP can not solve in time window
LR solutions are usually primal infeasible
LR inhibits modeling
凹Simplified generators
凹No optimal switching
$\Rightarrow 1999$ unit commitment conference and book MIP provides new modeling capabilities
New capabilities may present computational issues Bixby demonstrates MIP improvements

Mixed Integer Program

I didn't know what I would find there.

maximize $c x$ subject to $A x=b$,

$$
\mid \leq x \leq u,
$$ some $x \in\{0,1\}$

Better modeling for
Start-up and shutdown
Transmission switching
Investment decisions
solution times improved by $>10^{7}$ in last 30 years 10 years becomes 10 minutes

Improvements in MIP (same hardware) one day unit commitment problem

year	Cplex version	Time in sec	B\&B nodes
1993	2.2	1646 (unsolved)	110792
1995	4.0	88.8	22549
1997	5.0	66.5	18488
1999	6.5	4.2	396
2001	7.1	1.7	91
2003	9.0	1.8	98
2005	10.0	1.1	72
2007	11.0	1.1	75

Improvements in MIP (same hardware) one week unit commitment problem

Year	Cplex version	Time in sec	B\&B nodes
1998	6.0	8000 (unsolved)	44900
1999	6.5	907	35683
2001	7.1	278	5308
2002	8.0	152	3575
2003	9.0	172	3928
2005	10.0	118	2090
2007	11.0	103	2220
	Eight days a week		
	Is not enough to show I care .		

MIP Paradigm shift:

ISO	previous approach	Date for MIP	Estimated annual savings
PJM	LR	2006	\$250 million
ISONE	LR/LP	Tbd	No estimate
SPP	LP	2013	No estimate
NYISO	LR/LP	Tbd	No estimate
MISO	LR	2008	No estimate
CAISO	LR	2009	$>\$ 25$ million

Combined Cycle Combustion Turbine

CT = combustion turbine ST = steam turbine

Unit	Startup Costs $\$$	Cost per MWh $\$$	Minimum Output MW	Maximum Output MW
CT1	4000	60	100	150
CT2	4000	75	100	150
CT3	4000	90	100	150
ST	0	0	130	210

Total and Marginal Costs for combined cycle combustion turbine CCCT

_- Total Cost \quad Marginal Cost

Linear Residual Demand and Local Optimal Solutions

Equilibrium Points - Local Optima

Open or close circuit breakers
Proof of concept savings using DCOPF IEEE 118 bus provided 25% savings N-1 for IEEE 118 \& RST 96 up to 16% savings ISO-NE network 15% savings or $\$.5$ billion/yr Potential
all solutions have optimality gaps so higher savings may be found
Currently takes too long to solve to optimality Suboptimal solutions are acceptable

Three bus example

Feasible sets for Gen A and Gen B with transmission switching
No switching [2]: cost =\$50×180+\$100×30+ $\$ 200 \times 40=\$ 20,000$ remove AB [8]: cos \dagger $=\$ 50 \times 200+\$ 100 \times 50=$ \$15,000

Feasible set with transmission switching: $\{0,1,7,5,6\}$

Kirchhoff's second law for AC transmission elements

Big M method with non-negative variables and full $\mathrm{N}-1$ reliability
$-B_{k} \theta_{k c t}-P_{k c t}^{*}-M_{k}\left(2-z_{k t}-N_{k c}\right) \leq 0$
$-B_{k} \theta_{k c t}^{+}-P_{k c t}-M_{k}\left(2-z_{k t}-M_{k c}\right) \leq 0$
$B_{k} \theta_{k c t}+P_{k c t} \leq 0$
$B_{k} \theta_{k c t}+P_{k c t} \leq 0$
$\theta_{k c t}, P_{k c t}, \theta_{k c t}^{+}, P_{k c t} \geq 0$
$z_{k t} \in\{0,1\}$

Enhanced wide-area planning models

enable a more efficient planning and cost allocation through a mixed-integer stochastic program.
Integration of more components of the planning process into a single modeling framework to improve planning efficiency.
Better models are required to
economically plan efficient transmission investments compute cost allocations
in an environment of competitive markets with locationally-constrained variable resources and criteria for contingencies and reserve capacity.

A Possible Planning Model

decide on a set of future scenarios assign probabilities to each scenario Take transmission proposals Solve a large-scale stochastic MIP. find the investments with the highest expected net benefits
Determine the beneficiaries Allocate costs \& rights

Five Year Strategic Plan

identify opportunities to enhance operational efficiency particularly RTOs and ISOs Promote operational efficiency in wholesale markets through the exploration and encouragement of the use of improved software and hardware that will optimize market operations
to deploy new modeling software and optimize their market operations.

Future ISO Software

Real-time:
AC Optimal Power Flow with <5 min dispatch, look ahead and N-1 reliability
Day-ahead:
N-1 ACOPF with unit commitment and transmission switching with <15 min scheduling
Investment/Planning:
extension of day-ahead market Greater detail and topology more time to solve

Computational Research Questions

Decomposition and Grid (parallel) computing
Real/reactive
Time
Good approximations
Linearizations
convex
Avoiding local optima
Nonlinear prices
Better tree trimming Better cuts Advance starting points

New hardware

1945, ENIAC 30 tons, 19,000 vaccum tubes, 1,500 relays, and 200 kilowatts 350 flops, 400 bytes

IBM Supercomputer Jump
32 processors 1.7 GHz and 128 Gbytes. 8.9 teraflops
5 terabyte memory

Harness "perennial gale of creative destruction" Schumpeter

New software

"Everything should be made as simple as possible ... but not simpler." Einstein

The magical mystery tour is waiting to take you away, waiting to take you away.

