Long-term Planning of Generation, Transmission and Distribution Assets

Joydeep Mitra Electrical & Computer Engineering Michigan State University East Lansing, MI 48824 (517) 353-8528 mitraj@msu.edu

Outline of today's presentation

- Introduction
- Planning for a sustainable energy system—a top-down approach
 - Sustainable generation, delivery and utilization
 - Cyber-enabled system
- Planning approaches
 - Experience with distribution system expansion planning
 - Bulk power system expansion
 - Return of integrated system planning
- Summary of research and other experience
- Concluding remarks

MICHIGAN STATE

Mitra: education and experience

• Education

- Ph.D. in Electrical Engineering, 1997, Texas A&M University, College Station, TX
- B.Tech.(Hons.) in Electrical Engineering, 1989,
 Indian Institute of Technology, Kharagpur, India
- Experience
 - Nine years in academia
 - Assoc. Prof., Michigan State University, 2008-present
 - Assoc. Prof., New Mexico State University, 2003-08
 - Asst. Prof., North Dakota State University, 2000-03
 - Five years in industry and consulting

Research projects—past and ongoing

- Autonomous control of microgrids (NSF Collaborative, 2007-10)
- Protection of microgrids and smart distribution systems
- CAREER Award on microgrid architecture (NSF, 2002-07)
- Resource optimization in microgrids (SNL, 2005-07)
- Identification of modes of catastrophic failures of power systems
- Advanced transformer modeling (BPA, 2002-03)
- Distributed generation in demand management (OTP, 2001-03)
- Role of Induction Motors in Stability (OTP, 2001-02)
- Dynamic Rating of Transmission Components (OTP, 2001-02)

Other contributions

- Fundamental contributions to reliability analysis
 - A direct method for determination of failure frequency indices using state space decomposition
 - Method of pruning and simulation
 - State space decomposition with linearized flow representation
- Experimental and hardware development
 - Three-phase transformer modeling (BPA sponsored)
 - Synchronization hardware for off-the-shelf standby generators (US Patent 7,180,210)

Educational experience

- Nine years in academia
 - Taught 15 different lecture and laboratory courses
 - Advised 17 graduate students—6 current, 11 graduated
 - Mentoring 1 post-doctoral research associate
- Short Courses
 - Power system reliability
 - Power system fundamentals
 - Life extension of substations
- IEEE Tutorial
 - Electric delivery system reliability tutorial offered at three
 IEEE conferences earned TC recognition award
- IPU courses for regulators and policy makers

E N G I <mark>N E E R I N G</mark>

Service and outreach activities

- Student activities
 - Chair of IEEE-PES Student Meetings SC 2007-08
 - In six years (2003-08) as SC officer, I helped organize eight Student Programs, with a total participation of over 770 students (20% women, 15% minorities)
 - Eight poster contests with over 360 participants
- Other IEEE activities
 - Current chair of Reliability, Risk and Probability Applications SC
 - Participation in standards development
 - Involvement in several committees, SCs, WGs and TFs
- University service: served on numerous committees

Other leadership activities

- Associate Director, Electric Utility Management Program, NM State University, 2003-08
 - Industry liaison
 - Educational fund-raising
- Conferences organized
 - TCPC for Power System Analysis, Computing and Economics committee at IEEE-PES General Meeting 2009
 - Chair, North American Power Symposium 2007
 - Co-Chair, Distributed and Renewable Energy Symposium 2003
- Conference sessions organized/chaired
 - Organized and chaired/co-chaired two panel sessions
 - Chaired eight technical paper sessions

Contribution to technology roadmaps

- NSF-NIST National Workshop on Research Directions for Future Cyber-Physical Energy Systems, Baltimore, MD, June 3-4, 2009.
- "Smart Grids" breakout session facilitator at Great Lakes Alliance for Sustainable Energy Research Workshop, Chicago, IL, May 26, 2009.
- NSF Workshop on the Future Power Engineering Workforce, Washington, DC, November 29-30, 2007.
- Workshop on Power System Security, sponsored by Indian Ministry of Power, Kharagpur, India, January 13-14, 2006.
- NSF-EPRI Workshop on Understanding and Preventing Cascading Failures, Denver, CO, October 27-28, 2005.
- DOE Workshop on National Electric Delivery Technologies Roadmap, Washington, DC, July 8-9, 2003.
- NSF/EPRI/DOE Workshop on Future Research Directions for Complex Interactive Electric Networks, Washington, DC, November 16-17, 2000.

Energy in the 21st century and beyond

- The 20th century has seen significant advances in energy generation, delivery and utilization, but has also produced tremendous impact on the environment and natural resources.
- Significant changes must be made to how we generate, deliver and use energy so as to
 - establish sustainable utilization, and
 - restore environmental balance.
- Education must occur at all levels:
 - researchers;
 - workforce;
 - consumers.

Need to recompose energy portfolio

- Decrease fossil fuel consumption
 - 85% of today's energy supply comes from fossil fuels
 - Transportation and electric generation need to move away from fossil fuels
 - Fossil fuels are the predominant contributors to environmental pollution (COx, SOx, NOx, particulates)
 - Will also lead to energy independence
- Increase renewable generation
 - 7% of today's energy supply comes from renewable sources (hydroelectric, geothermal, wind, solar, biomass)
 - Renewable generation must increase significantly but responsibly
- Increase nuclear generation suitably
 - 8% of today's energy supply comes from nuclear power
 - Nuclear generation must increase so that there is adequate supply from steady sources

E N G I <mark>N E E R I N G</mark>

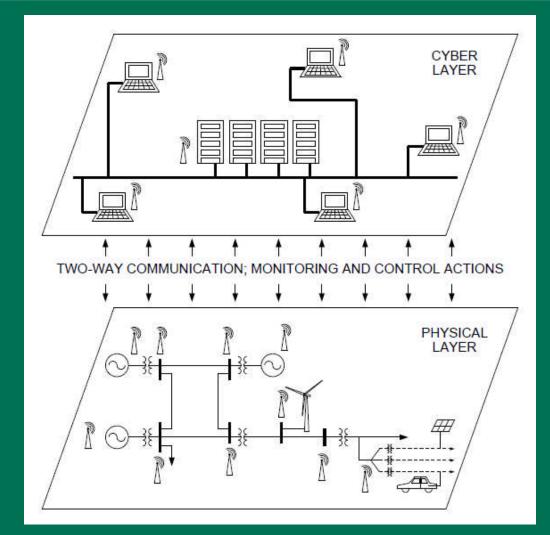
Planning for sustainable generation

- Technological enablers
 - Solar generation technologies (photovoltaic and solar thermal)
 - Wind generation and integration
 - Other generation technologies: geothermal, biomass/biofuels, tidal, kinetic, wave, ocean thermal
 - Storage technologies
- Old technology, new role: nuclear power
- Need for holistic analyses
 - Life-cycle and cost-benefit, including decommissioning
 - Environmental impact during manufacture, during useful life and after decommissioning

ENGINEERING

Sustainable and secure delivery

- Technological enablers
 - "Smart" transmission grids: synchrophasors, wide-area measurement and control, FACTS, dynamic rating, data management optimization
 - "Smart" distribution systems: smart meters and communication, distribution automation, microgrids, V2G interface
 - Advanced stability, control, security, protection, optimization
 - Market design and operation
- Re-emergence of integrated resource planning
 - Transmission additions and upgrades have become increasingly expensive and time consuming
 - Transmission expansion should not be decoupled from generation


Sustainable utilization

- Technological enablers
 - Energy efficient buildings with thermal storage
 - "Smart" homes and "smart" appliances
 - Demand response and load management programs
 - Energy efficient transportation: hybrid and electric vehicles
 - Storage and direct conversion technologies
- Growing need for conservation
- Demand profiles will change significantly
 - Composition of load is changing
 - Load factor is likely to change too

The "smart" or cyber-enabled system

Benefits:

- Enables active participation by consumers
- Optimizes asset utilization and efficient operation
- Anticipates and responds to system disturbances
- Accommodates all generation and storage options
- Provides power quality for the digital economy
- Enables new products, services and markets
 Challenges:
- Data management
- Interoperability
- Cybersecurity

MICHIGAN STATE

Grid resilience

- Transient and dynamic stability
- Reliability (service continuity)
- Security (resistance to disruption, from both inadvertent and malicious causes)
- Strategic and tactical countermeasures
 - Systemic vulnerabilities will have to be addressed through appropriate integrated resource planning
 - Tactical responses will have to be programmed into the "cyber" layer
 - Distributed energy resources (DER) will have a role as a backup system

Experience with distribution system expansion planning: Microgrid architecture

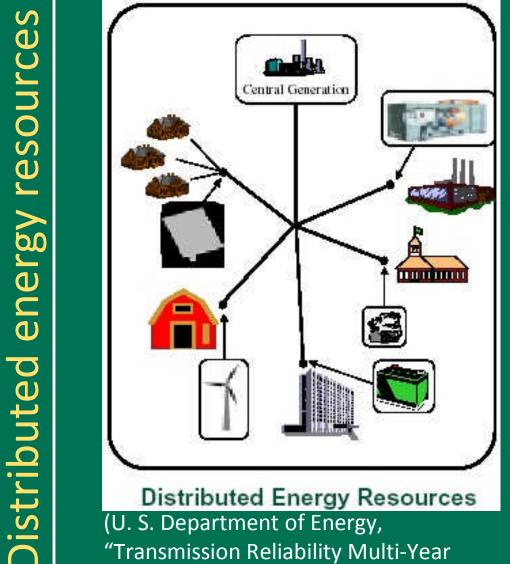
• Grand challenge:

MICHIGAN STATE

Transformation of today's distribution systems into the *modern*, *reliable*, *secure*, *robust*, *autonomous*, *self-organizing*, *self-healing*, *intelligent* power delivery systems of *tomorrow*.

• Based on DoE's National Electric Delivery Technologies Roadmap

What are Microgrids?


'Under this vision, integrated clusters of small (<200kW) DERs provide firm power with a guaranteed level of power quality through operation in either grid-connected or island modes.'

(U. S. Department of Energy, "Transmission Reliability Multi-Year Program Plan FY2001–2005," July 2001.)

MICHIGAN STATE

Program Plan FY2001–2005," July 2001.)

19

• Generating Devices

- Windmills
- PV and solar thermal
- Microturbines
- Fuel cells
- Biomass and biofuels
- Geothermal power
- Tidal and ocean thermal
- Reciprocating engines
- Storage Devices
 - Batteries
 - Ultracapacitors
 - SMES
 - Flywheels
- Combined heat and power
- Interruptible loads

Autonomous microgrid

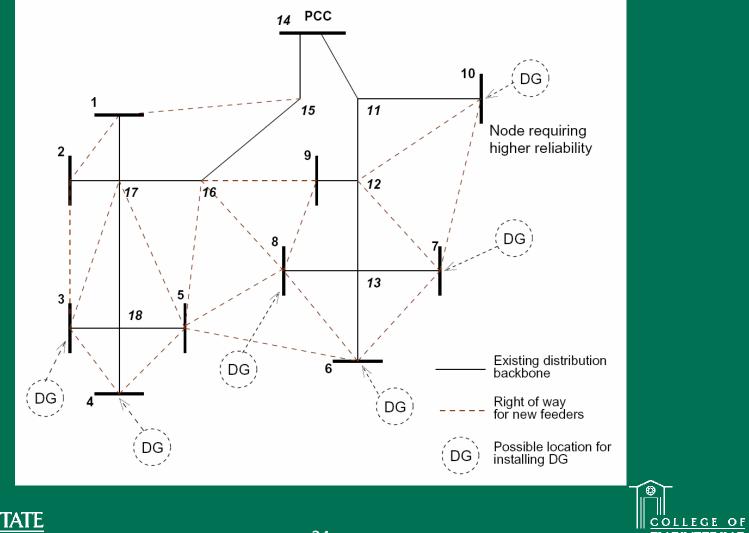
Two layers of microgrid architecture

- Reliability-centered optimal expansion strategies
 - Optimal network expansion
 - Optimal resource deployment
 - Integrated expansion problem
 - Supported by NSF and SNL
- Control and protection
 - Multi-agent systems (MAS) for autonomous control
 - Communication-assisted protection
 - Optimized distributed sensing strategies
 - Supported by NSF

Reliability-centered optimal system expansion: motivation

- Reliability (service continuity) and security (resistance to disruption) are major concerns driving microgrid development
- Reliability-differentiated services will be offered in the future
- It makes sense to use reliability as a criterion in planning for system expansion

Reliability-driven expansion


- Given:
 - A distribution system with an anticipated load growth
 - DG installation options: sizes of DG (distributed generation) clusters, possible locations, deployment costs
 - Network augmentation options: rights of way, cost of installing new feeders
- Determine:
 - Least cost deployment and network expansion
- Subject to:

MICHIGAN STATE

System-wide and locational reliability guarantees (EIR or Availability)

Study system (for augmentation)

MICHIGAN STATE

ENGINEERING

System data

Table 1: Cost of Links Along New Rights of Way; Fixed cost = 20% of unit-cost

ROW	Cost per	ROW	OW Cost per	
	unit-link		unit-link	
1-15	2.5125	5-6	2.6722	
1-2	1.2500	6-8	1.7766	
2-3	1.6875	6-7	1.8583	
3-4	1.2500	8-9	1.4631	
4-5	1.4142	9-16	1.7500	
5-16	2.2638	8-16	1.8583	
5-17	2.4622	7-12	1.8583	
3-17	2.3717	7-10	2.6984	
5-8	1.7366	10-12	2.2535	

/;	Table 2: Cost of Links Along Existing Rights of Way;
	Fixed $cost = 10\%$ of unit-cost

ROW	Cost per	ROW	Cost per
	unit-link		unit-link
14-15	1.0000	11-14	1.1473
15-16	1.9526	10-11	1.8750
16-17	1.2500	11-12	1.2500
1-17	1.0000	9-12	0.6250
2-17	0.7500	12-13	1.3750
17-18	2.2500	8-13	1.1250
3-18	0.7500	7-13	1.2500
4-18	1.0000	6-13	1.3750
5-18	1.0000		

Table 3: Load Data for Test System				
Bus	Load (MW)	Bus	Load (MW)	
1	0.5000	2	0.5000	
3	1.2000	4	1.2000	
5	0.7000	6	0.7500	
7	0.7500	8	0.8668	
9	0.8668	10	0.9167	

Table 4: Generation Data for Test System			
Cluster	Number of	Capacity (MW)	FOR
No.	units	of each unit	
1	7	0.50	0.10
2	6	0.50	0.05
3	7	0.50	0.10

25

<u>MICHIGAN STATE</u>

Modeling challenges

Simultaneously include in the optimization framework the dependencies between line characteristics and performance

- Dependencies in characteristics:
 ⇒ between capacity and impedance
 ⇒ between impedance and length
 - ⇒ between length and cost
 - ⇒ between capacity and cost
- Dependencies in operation:
 ⇒ KVL and KCL

Solution approach

Accommodation of dependencies in characteristics: *Unit link* concept Accommodation of KVL and KCL: Linear approximation of power dispatch

Unit link concept

A *unit-link* connecting a given pair of buses is a line of

- fixed capacity
- fixed cost per unit length
- fixed impedance per unit length
- length corresponding to the right of way between the buses

Unit-links between different bus pairs will have different lengths, impedances and costs, but same capacity.

A *link* between a given pair of buses can consist of one or more (an integral number of) unit-links connected in parallel between that bus pair. The cost of a link is equal to the total cost of the unit links that constitute the link plus a fixed cost for installing the link along the corresponding right of way.

Linear flow representation (Dispatch module)

0

LEGE OF

Loss of Load =
$$\operatorname{Min} \sum_{i=1}^{N_b} C_i$$

subject to:

$$\begin{array}{rcl}
\hat{B}\theta + G + C &= D \\
G &\leq G^{max} \\
C &\leq D \\
b\hat{A}\theta &\leq F_f^{max} \\
-b\hat{A}\theta &\leq F_r^{max} \\
G, C &\geq 0 \\
\theta & \text{unrestricted}
\end{array}$$

MICHIGAN STATE

Solution strategy 1: Particle Swarm Optimization

PSO imitates the behavior of a flock of birds (swarm of particles) in search of food (objective function).

Velocity vector:

$$\begin{split} v[\cdot] \leftarrow & v[\cdot] + \operatorname{rand}() \times c_1 \times (pbestx[\cdot] - presentx[\cdot]) \\ & + \operatorname{rand}() \times c_2 \times (pbestx[gbest] - presentx[\cdot]) \end{split}$$

Position vector:

Comments:

<u>MICHIGAN STATE</u>

- Collective intelligence of swarm helps identify objective
- Parameters need to be tweaked to achieve good performance (speed and convergence)

 $presentx[\cdot] \leftarrow presentx[\cdot] + v[\cdot]$

PSO implementation: modeling

- Search space is $(N_G + N_T)$ -dimensional; each point in this space corresponds to a configuration for system augmentation
- Search for a point in this space that minimizes expansion cost $(J=J_G+J_T)$ subject to systemwide and locational reliability criteria

Reliability corresponding to a particle

- The existing system is augmented by the coordinates of the particle
- The augmented system is evaluated using a contingency selection procedure
 - ⇒ All first order transmission and first and second order generation contingencies are considered
 - ⇒ For each contingency the dispatch module is solved and system and locational indices are determined

32

⇒ Each overall system or locational index is determined from the weighted sum

$$R_j = \sum_{i=1}^{N_{\rm cont}} P_i R_{ji}$$

PSO implementation: constraints

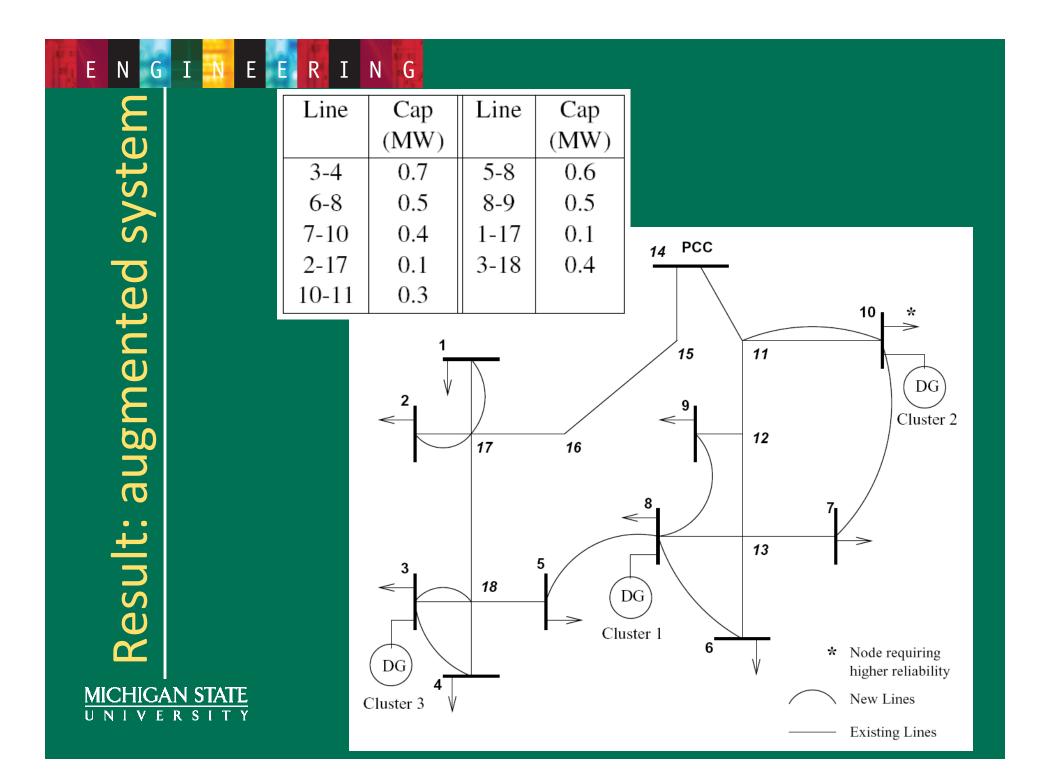
- Particles assume positions with non-negative coordinates
- Penalty for violating reliability stipulations: problem is modified to

Min
$$J = J_G + J_T + \sum_{i=1}^{N_C} \phi_i (x_2 | x_1)$$

where

MICHIGAN STATE

$$\phi_i(x_2|x_1) = k_i \times \left(\frac{R_{0i} - R_{2i}}{R_{1i} - R_{2i}}\right) \times |J_1 - J_2| \quad \text{if ith criterion is violated} \\ = 0 \qquad \qquad \text{otherwise}$$



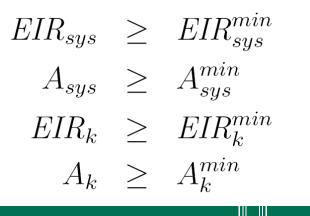
MICHIGAN STATE

Solution steps

- 1. Build search space, initialize particles in feasible region
- 2. For each particle, determine reliability indices and expansion cost
- 3. Using cost as objective (or "fitness") function (lower cost implies better fitness), determine the particle velocity vectors
- 4. Using the particle velocity vectors, update the particle position vectors
- Repeat steps 2 through 4 until the cost function converges (standard error less than tolerance)
- 6. Augment system by coordinates of solution point (group best at convergence)

Solution strategy 2: Dynamic Programming

Consider generator locations to be fixed; then


Objective function is network expansion cost, subject to system-wide and locational reliability criteria:

Inclusion of generators described later

MICHIGAN STATE

Min
$$J = \sum_{i=1}^{N_T} J_{0i} + J_i x_i$$

subject to:

COLLEGE OF

36

E N G I <mark>N</mark> E E R I N G

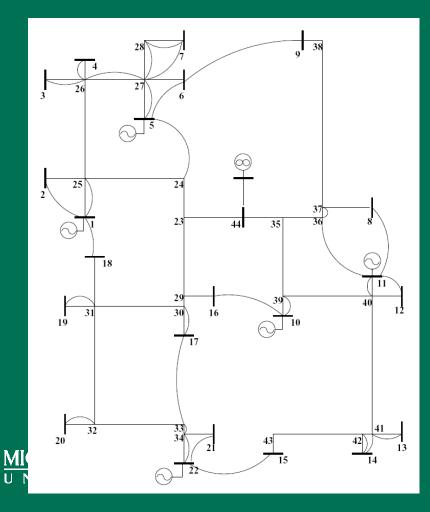
Solution method using DP

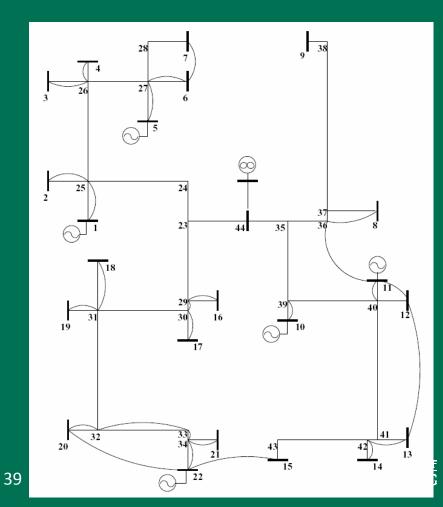
- Solved in a stage-wise manner using Dynamic Programming (DP).
 - In each stage the network is incremented by one *unit-link*.
 - DP stage: represents the number of *unit-links* utilized
 - DP state: reliability vector
 - DP decision: the *unit-link* to be added at each stage
- Reliability vector for each unit link addition is determined using contingency evaluation method As done for each particle, described before

ENGINEERING

<u>MICHIGAN STATE</u>

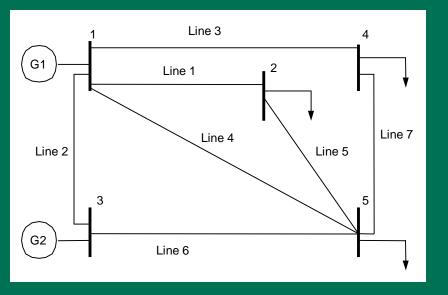
Challenges with DP method

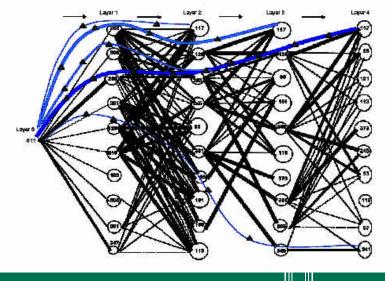

Overwhelming computational complexity


- At each stage, all configurations with same reliability were examined and only lowest cost configuration was retained, all others were discarded
- Algorithm was parallelized and distributed over a 128-node Beowulf cluster
- Solved in two phases because of parallelization

Comparison of PSO and DP

PSO Solution Min augmentation cost: 486 DP Solution Min augmentation cost: 460




Grid security research

- Problem statement: Identify likely event sequences that lead to catastrophic failures
- Challenges:

<u>MICHIGAN STATE</u>

- Model system dependencies
- Identify most likely even sequences
- Approach: layered genetic algorithm

<u>COLLEGE</u> ENGINEERI

40

Return of integrated resource planning

- Tomorrow's sustainable, resilient system can be accomplished by thoughtful and responsible integrated resource planning
- Expansion planning methods described before can be adapted to bulk system with suitable modifications
 - Select most resilient solution from multiple optima
 - Include determination of appropriate resource mix
 - Include ac flow and appropriate load models
 - High performance computing will play a key role

CHIGAN STA

Concluding remarks

- Creative approaches will be critical to the development of planning tools for the complex energy system of the future
- Multiple, and sometimes conflicting, objectives will contribute to the complexity
- Presence of variable resources will require geospatial modeling and weather data/forecasts

