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Power Flow Problem
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Background (I)

➠ A classical problem of circuit theory is to find all branch currents and all

node voltages of an assigned circuit.

➠ Typical input data are generator voltages as well as the impedances of all

branches.

➠ If all impedances are constant, the resulting set of equations that

describe the circuit is linear.
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Example 1 (I)

➠ Classical circuit problem.
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Example 1 (II)

➠ Using the branch current method, one has:

0 =
v̄1 − v̄2

jx12
+

v̄1 − v̄3

jx13
− ī1 (1)

0 =
v̄2 − v̄1

jx12
+

v̄2 − v̄3

jx23
− ī2

0 =
v̄3 − v̄1

jx13
+

v̄3 − v̄2

jx23
− ī3
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Example 1 (III)

➠ In vector form:
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Example 1 (IV)

➠ where I3 is a 3 × 3 identity matrix and Ȳ is the so-called admittance

matrix:

Ȳ =









1/jx12 + 1/jx13 −1/jx12 −1/jx13

−1/jx12 1/jx12 + 1/jx23 −1/jx23

−1/jx13 −1/jx23 1/jx13 + 1/jx23









(3)
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Background (II)

➠ The power flow problem is conceptually the same problem as solving a

steady-state ac circuit.

➠ The only, though substantial, difference is the set of input data.

➠ Loads are expressed in terms of consumed active and reactive powers

(PQ load) and generators are defined in terms of constant voltage

magnitude and active power injection (PV generator ).

➠ Hence, the power flow problem is nonlinear.

Los Alamos, June 29, 2010 Power Flow Problem - 7



Continuous Newton’s Method for Power Flow Analysis 11

Universidad de Castilla - La Mancha

Example 2 (I)

➠ Classical power flow problem.

1 2

3

v̄1 v̄2

v̄3

jx̄12

jx̄13 jx̄23

s̄1 s̄2

s̄3
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Example 2 (II)

➠ The power flow problem is formulated in order to determine unknown

voltage magnitudes and angles.

0 =
v2v1

x12
sin(θ2 − θ1) − p2 (4)

0 =
v3v1

x13
sin(θ3 − θ1) +

v3v2

x23
sin(θ3 − θ2) − p3

0 =
v2
3

x13
+

v2
3

x23
−

v3v1

x13
cos(θ3 − θ1) −

v3v2

x23
cos(θ3 − θ2) − q3

where the unknowns are v3, θ3 and θ2.
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Rationales Behind Power Flow Problem Formulation

➠ Loads at high voltage level are modelled as constant PQ due to

under-load tap changers.

➠ Generators are modelled as PV due to turbine and voltage regulators.

➠ Transmission lines and transformers are generally modelled as lumped

π-circuits with constant parameters.

➠ Observe that one bus has to be the phase angle reference. Typically, one

generator is used as slack bus.

➠ The distributed slack bus model is more physical.
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General Formulation of the Power Flow Problem (I)

➠ The vector of currents injected at each node is:

ī = Ȳ v̄ (5)

which leads to write the power flow problem as the complex power

injections at buses:

s̄ = V̄ ī
∗

= V̄ Ȳ
∗

v̄∗ (6)

where V̄ = diag(v̄1, v̄2, . . . , v̄nb
) and nb is the number of network

buses.

Los Alamos, June 29, 2010 Power Flow Problem - 11



Continuous Newton’s Method for Power Flow Analysis 15

Universidad de Castilla - La Mancha

General Formulation of the Power Flow Problem (II)

➠ Rewriting (6):

0 = s̄ − V̄ Ȳ
∗

v̄∗ (7)

➠ Or, more in general:

0 = g(y) (8)

where y and data per bus type are:

Bus type Variables Data

Slack generator p, q v, θ

PV generator q, θ p, v

PQ load v, θ p, q
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Relevant Issues of the Power Flow Problem

➠ The origins of the formulation of the power flow problem and the solution

based on the Newton’s method date back to the late sixties.

➠ Since then, a huge variety of studies have been presented about the

solution of the power flow problem, addressing:

➛ Starting initial guess

➛ Computational efficiency

➛ Ill-conditioned cases

➛ Robustness

➛ Multiple solutions

➛ Unsolvable cases
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Taxonomy of the Power Flow Problem

➠ It is relevant to classify the power flow problems into the following

categories:

➛ Well-conditioned case

➛ Ill-conditioned case

➛ Bifurcation point

➛ Non-physical solution

➛ Unsolvable case
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Well-conditioned case

➠ The power flow solution exists and is reachable using a flat initial guess

(e.g., all load voltage magnitudes equal to 1 and all bus voltage angles

equal to 0) and a standard Newton’s method.

➠ This case is the most common situation.
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Ill-conditioned case

➠ The solution of the power flow problem does exist, but standard solvers

fail to get this solution starting from a flat initial guess.

➠ This situation is due to the fact that the region of attraction of the power

flow solution is narrow or does not contain the initial guess.

➠ In this case, the failure of standard power flow procedure is due to the

instability of the numerical method, not of the power flow equations.

➠ Robust power flow methods have proved to be efficacious for solving

ill-conditioned cases.
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Bifurcation Point

➠ The solution of the power flow exists but it is either a saddle-node

bifurcation or a limit-induced bifurcation.

➛ Saddle-node bifurcations are associated with the maximum loading

condition of a system. The solution cannot be obtained using standard

or robust power flow methods, since the power flow Jacobian matrix is

singular at the solution point.

➛ Limited-induced bifurcations are associated with a physical limit of the

system, such as the shortage of generator reactive power. The

solution point is typically a well-conditioned case and does not show

convergence issues.
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Non-physical Solution

➠ Solutions that cannot be accepted since some variable is out of its

technical limits.

➠ Typically these solution are characterized by very low voltage levels.

➠ These solutions are also known as: extraneous, false, lower, or unstable.
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Unsolvable Case

➠ The solution of the power flow problem does not exist.

➠ Typically, the issue is that the loading level of the network is too high.

➠ As in the case of the bifurcation points, a continuation method or an

optimal power flow problem allows defining the maximum loading level

that the system can supply.
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Existing Power Flow Solution Methods
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Solution Methods (I)

➠ Methods that do not require the computation of the Jacobian matrix of g:

➛ Jacobi’s method.

➛ Gauss-Seidel’s method.

➠ Methods that require the computation of the Jacobian matrix of g:

➛ Newton’s (or Newton-Raphson’s) method.

➛ Robust Newton’s methods.
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Solution Methods (II)

➠ Methods that simplify the Jacobian matrix of g:

➛ Inexact and dishonest Newton’s methods.

➛ Fast decoupled power flow.

➠ Methods that simplify g:

➛ DC power flow model.
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Newton-Raphson’s Method (I)

➠ The i-th iteration of the classical Newton’s method for (8) is as follows:

∆y(i) = −[g(i)
y

]−1g(i) (9)

y(i+1) = y(i) + ∆y(i)

where g(i) = g(y(i)), g
(i)
y = g

y
(y(i)), and g

y
= ∇T

y
g is the

Jacobian matrix of the power flow equations.
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Newton-Raphson’s Method (II)

➠ The geometrical interpretation of the Newton’s method is well-known. For

the actual value y(i), one computes the tangent of g(i) as:

τ (y) = g(i) + g(i)
y

(y − y(i)) (10)

➠ Imposing τ (y) = 0 yields the value y(i+1) defined in (9).
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Geometrical Interpretation of the Newton-Raphson’s Method

(a)
(b)

(c) (d)

y

yy

y

∠gy

∠gy

∠gy

∠gy

∠gy

∠gy

∠gy

g(y)

g(y)g(y)

g(y)
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Robust Newton’s Method (I)

➠ There are idiosyncratic cases for which the Newton’s technique fails to

converge.

➠ A variety of robust variations of the basic Newton’s method have been

proposed in the literature for solving ill-conditioned cases.

➠ The majority of these techniques mainly consist in modifying the first

equation of (9) as follows:

∆y(i) = −α[g(i)
y

]−1g(i) (11)

where α is a factor that improves the convergence properties of the

iterative process.
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Robust Newton’s Method (II)

➠ If α is the result of an optimization process, α is called optimal multiplier

(e.g., Iwamoto’s method).

➠ It is important not to confuse ill-conditioned cases with those that are

unsolvable since the solution does not exist.

➠ Robust solvers are useful in case of ill-conditioned systems but do not

generally work well for unsolvable cases.

➠ Unsolvable cases are better tackled using the continuation power flow

technique.
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Geometrical Interpretation of the Robust Newton’s Method

(a) (b)

y y
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Main Issue of the Newton’s Method

➠ One of the most relevant drawbacks of the Newton’s method is the need

of factorizing the full Jacobian matrix at each iteration.

➠ From the computational point of view, the factorization of a matrix is an

order N3 operation, i.e., the computational weight increases with the

cube of the size N of the matrix.

➠ The computational effort can be reduced to N1.5 if using sparse matrices

techniques, which allows saving a considerable time for large systems

(e.g., thousands of buses).

➠ However, the Jacobian matrix factorization remains the most critical issue

of the Newton’s method (about 85% of the total CPU time for networks

with thousands of buses).
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Inexact and Dishonest Newton’s Method

➠ Inexact methods aim to approximate the factorization of the Jacobian

matrix.

➠ A family of inexact methods are based on the Generalized Minimal

Residual (GMRES) method.

➠ The GMRES is a particular case of Krylov’s subspace. The main issue is

to properly pre-conditioning the Jacobian matrix.

➠ Dishonest methods compute the Jacobian matrix factorization only the

first one or two iterations and then use the previous factorization for the

remaining iterations.
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Geometrical Interpretation of the Dishonest Newton’s Method

(a) (b)

y
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Fast Decoupled Power Flow (FDPF)

➠ The FDPF is a particular case of dishonest Newton’s method.

➠ The Jacobian matrix is approximated so that it becomes block diagonal

and all non-zero elements are constant. Hence only one factorization is

needed.

➠ The FDPF requires much more iterations than the NR method but proved

to be more robust.
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Comparison of Power Flow Solution Methods (I)

Newton Jacobi Gauss-Seidel

Bus # Iter. # time [s] Iter. # time [s] Iter. # time [s]

14 4 0.0050 76 0.0217 56 0.0288

118 5 0.0287 580 0.505 388 2.738

1228 5 0.210 454 5.120 224 112.4

11856 4 3.15 340 399.0 173 9112
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Comparison of Power Flow Solution Methods (II)

GMRES Dishonest FDPF

Bus # Iter. # time [s] Iter. # time [s] Iter. # time [s]

14 4 0.4339 7 0.0040 6 0.0053

118 7 53.53 15 0.0183 6 0.0117

1228 n.a. n.a. 26 0.207 12 0.160

11856 n.a. n.a. 10 3.820 5 5.174
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Region of Attraction (I)

➠ A key issue of any iterative technique is the initial guess.

➠ The only way to know if a given initial guess is adequate for obtaining a

solution y0 of the power flow problem is to determine the region of

attraction of y0. At this regard, the initial guess can be of two types:

➛ The initial guess is inside the region of attraction of the solution y0

and the numerical method converges.

➛ The initial guess is outside the region of attraction of the solution y0.

By definition, a numerical method diverges or converges to a

non-physical solution if one starts with such initial guess.
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Example 3 (I)

➠ Consider the following simple 2-bus system.

1 2

z̄ = 0.01 + j0.1 pu

v̄1 = 1.0 + j0 pu s̄2 = 0.9 + j0.6 pu
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Example 3 (II)

➠ Region of attraction of the Newton’s method for a 2-bus system.
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Region of Attraction (II)

➠ Different methods have different region of attractions.

➠ Unfortunately defining the region of attraction is extremely costly.

➠ In practice it is virtually impossible to define the region of attraction for a

real-world system.

➠ Robust methods can be thought as a way of enlarging the region of

attraction.

Los Alamos, June 29, 2010 Existing Power Flow Solution Methods - 19



Continuous Newton’s Method for Power Flow Analysis 42

Universidad de Castilla - La Mancha

Continuous Newton’s Method
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Ordinary Differential Equations (ODE)

➠ Let us consider a set of autonomous ODE:

ẏ = f̃(y) (12)

The simplest method of numerical integrating (12) is the explicit Euler’s

method, as follows:

∆y(i) = ∆tf̃(y(i)) (13)

y(i+1) = y(i) + ∆y(i)

where ∆t is a given step length.
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Newton-Raphson’s Method (reprise)

➠ Let’s recall the i-th iteration of the classical Newton’s method:

∆y(i) = −[g(i)
y

]−1g(i) (14)

y(i+1) = y(i) + ∆y(i)

where g(i) = g(y(i)), g
(i)
y = g

y
(y(i)), and g

y
= ∇T

y
g is the

Jacobian matrix of the power flow equations.
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Analogy between Euler’s and Newton’s Methods

➠ The analogy between (14) and (13) is straightforward if one defines:

f̃(y) = −[g
y
]−1g(y) (15)

Equations (14) can thus be viewed as the ith step of the Euler’s forward

method where ∆t = 1.

➠ Furthermore, robust Newton’s methods are nothing but the ith step of the

Euler’s integration method where ∆t = α.

➠ In other words, the computation of the optimal multiplier α corresponds to

a variable step forward Euler’s method.
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Continuous Newton’s Method

➠ Equations (12) and (15) leads to:

ẏ = −[g
y
]−1g(y) (16)

which is known as continuous Newton’s method.

➠ The equilibrium point y0 of (16) is

0 = f̃(y0) = −[g
y
|0]

−1g(y0) (17)

Thus, assuming that g
y

is not singular, y0 is also the solution of the

power flow problem.
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Stability of the Continuous Newton’s Method (I)

➠ Differentiating (15) with respect to y leads to:

f̃
y

= ∇T
y
f̃(y) (18)

= −[g
y
]−1g

y
− (∇T

y
([g

y
]−1))g(y)

= −Iny
− (∇T

y
([g

y
]−1))g(y)

where Iny
is the identity matrix of order ny . Since the equilibrium point

y0 is a solution for g(y0) = 0, one has:

f̃
y
|0 = −Iny

(19)
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Stability of the Continuous Newton’s Method (II)

➠ Equation (19) implies that all eigenvalues of f̃
y

at the solution point are

equal to −1.

➠ (19) means that the solution of (16), if exists, is asymptotically stable.

➠ The reachability of this solution depends on the starting point

y(t0) = y(0), which has to be within the region of attraction or stability

region of the equilibrium point y0.

➠ The continuous Newton’s method is expected to show better ability to

converge than other methods previously discussed if the initial guess is

within the region of attraction.
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Example 4

➠ The previous result is straightforward for a scalar g(y), i.e. for y ∈ R and

g ∈ R, as follows:

ẏ = f̃(y) = −
g(y)

gy(y)
(20)

⇒ f̃y(y) = −
gy(y)

gy(y)
+

gyy(y)

g2
y(y)

g(y) (21)

= −1 +
gyy(y)

g2
y(y)

g(y)

thus f̃y(y0) = −1 if g(y0) = 0 and gy(y0) 6= 0.
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A General Framework for Power Flow Solvers

➠ It is well-known that the forward Euler’s method, even with variable time

step, can be numerically unstable.

➠ Given the analogy between the power flow equations and an ODE

system, any well-assessed numerical method can be used for integrating

(16).

➠ It is thus intriguing to use some efficient integration method for solving

(16).
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Runge-Kutta Formulas

➠ Since computing the Jacobian matrix of (16) is complex, explicit ODE

integration methods should be preferred.

➠ Runge-Kutta formulas are good candidates.

➠ For example the classic RK4 formula is as follows:

k1 = f(x(i)) (22)

k2 = f(x(i) + 0.5∆tk1)

k3 = f(x(i) + 0.5∆tk2)

k4 = f(x(i) + ∆tk3)

x(i+1) = x(i) + ∆t(k1 + 2k2 + 2k3 + k4)/6
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Example 5 (I)

➠ Let consider the 1254-bus model of the UCTE system.
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Example 5 (II)

➠ Comparison of methods for solving the power flow of the UCTE system.

# Iter. # Iter. # Iter.

Method ǫ = 10−3 ǫ = 10−4 ǫ = 10−5

Standard NR - - -

Fast Decoupled PF - - -

Iwamoto’s method 99 320 1021

Simple robust method 31 39 47

Runge-Kutta method 10 13 16

where ǫ is the required convergence error tolerance.
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Example 5 (III)

➠ Comparison of convergence errors obtained with different robust power

flow solution methods for the UCTE system.
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Example 5 (IV)

➠ Comparison of the computational burden of different solution techniques

for the UCTE system.

Method CPU time (s)

Iwamoto’s method 106.5

Simple robust method 3.5

Runge-Kutta method 3.4
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Conclusions
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Contributions

➠ This talk has presented a continuous version of the Newton’s method for

solving the power flow problem.

➠ The main contributions discussed in the talk are:

➛ A general framework for applying efficient numerical integration

techniques for solving ill-conditioned power flow cases.

➛ Proposal of a formal taxonomy of the existing numerical methods for

solving the power flow problem.
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Future Work

➠ Future work will concentrate on further developing the analogy between

the power flow problem, ODE systems and homotopy methods.

➠ The stability and region of attraction of the continuous Newton’s method

are promising fields of research.
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Thanks for your attention!
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Questions?
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