Cyber-Security of Wide Area Protection Systems

Anarita Giani
Electrical Engineering & Computer Sciences
University of California at Berkeley
agiani@eecs.berkeley.edu

LANL
October 23, 2010
50 Years Ago
Outline

- Previous work
- Power Systems Background
- Phase Measurement Units
- State Estimation & PMU Data
- Our Approach to Integrity Attack Detection
Outline

- Previous work
- Power Systems Background
- Phase Measurement Units
- State Estimation & PMU Data
- Our Approach to Integrity Attack Detection
My Background

- **PhD Dartmouth 2007**
 - Detection of attacks on cognitive channels
 - [G. Cybenko]

- **Post-doc TRUST Center [2007-2009]**
 - Trustworthy information systems
 - [S. Sastry]

- **Post-doc Berkeley [2009-]**
 - Renewable integration, *Cyber-security in power systems*
 - [K. Poolla]
Security Objectives

- **Confidentiality**: information disclosure only to authorized users
 - Eavesdropping, Phishing
 - Access Control, Authentication, Authorization, Encryption
- **Integrity**: trustworthiness of information resources
 - Replay, Man in the Middle, Data Injection, Data Jam, Data Corruption
 - Encryption, Redundancy
- **Availability**: Availability of data whenever need it
 - Denial-of-Service
 - Traffic Anomaly Detection
- **Authorization**
- **Authentication**
- **Non Repudiation**
Process Query System

Observable events coming from sensors

PQS ENGINE

Models

Model M_1
Model M_2
...
Model M_K

Likelihood L_1
Likelihood L_2
...
Likelihood L_k

RESULT: Model likelihoods

Tracking Algorithms
PQS in computer security

Internet

BRIDGE

DMZ

Observations

Models

PQS ENGINE

WS

WinXP

LINUX

WWW

Mail

DIB:s

BGP

IPTables

Snort

Tripwire

SaMBa

Now...

Security Analysts look at the data and make hypotheses.

Experience

Education

Expertise

Expensive

Worm

Exfiltration

Phishing
Sensors and Models

1. DIB:s Dartmouth ICMP-T3 Bcc: System
2. Snort, Dragon Signature Matching IDS
3. IPtables Linux Netfilter firewall, log based
4. Samba SMB server - file access reporting
5. Flow sensor Network analysis
6. ClamAV Virus scanner
7. Tripwire Host filesystem integrity checker

1. Noisy Internet Worm Propagation – fast scanning
2. Email Virus Propagation – hosts aggressively send emails
3. Low&Slow Stealthy Scans – of our entire network
5. Multistage Attack – several penetrations, inside our network
6. DATA movement
7. TIER 2 models
PQS Applications

- Vehicle tracking
- Worm propagation detection
- Plume detection
- Dynamic Social Network Analysis
- Cyber Situational Awareness
- Fish Tracking
- Autonomic Computing
- Border and Perimeter Monitoring
- First Responder Sensor Network
- Protein Folding
Current Work Summary

- **Testbed for Secure and Robust SCADA Systems**
 (with Vanderbilt and CMU)
 [IEEE Real-Time and Embedded Technology and Applications Symposium 2008]

- **Optimal Contracts for Wind Power Producers in Electricity Markets**
 [CDC 2010]

- **Renewable integration and smart grid**

- **Integrity Attack Detection of PMU data** [This talk]
Outline

- Previous work
- **Power Systems Background**
- Phase Measurement Units
- State Estimation & PMU Data
- Our Approach to Integrity Attack Detection
Context and Notation

- Considering AC synchronous power systems
- Assume quasi steady-state analysis
 - Voltages and currents are well approximated as fixed frequency sinusoids with slowly changing phases
 - time-domain: signal \(v(t) = V \sin(\omega_0 t + \phi) \)
 - frequency-domain: phasor \(\mathbb{V} = V \exp(j\phi) \)

- Notation
 - \(M^* \): complex-conjugate transpose
 - \(\| \cdot \| \): standard euclidean norm
 - \(\sigma^2 \): noise variance
 - \(\mathbb{V}, \mathbb{I} \): phasors
 - \(Y = G + jB \): bus admittance matrix
 - \(G \): bus conductance matrix
 - \(B \): bus susceptance matrix
 - \(E \): expectation operator
Static State of a Power System

- **What is it?**
 The set of *voltage magnitudes and angles* at all network buses

- **Why is it important?**
 Bus voltages and angles are the key variables
 These determine
 - static flows on transmission lines
 - locational marginal prices
 - current stress state of system
 - future generation that should be scheduled
Measurements

- **Bus powers** [real, reactive] are commonly measured
 - Used for settlement of contract, compensation, etc

- **Bus voltages magnitudes** are easy to measure
 - Used for voltage regulation, system protection, etc

- **Bus voltage phases** are much harder to sense
 - Power flows depend on the phase difference between buses
 - Need global clock to determine times of voltage maxima
 - So, voltage phases are estimated

- **Dynamic state estimation**
 - Not commonly used
 - Computationally prohibitive

- **Static state estimation**
Static State Estimation

- **What is it?**
 - Find the phase angles given:
 - measured real power P and reactive power Q at load buses
 - measured real power P and voltage V at generator buses

- **Current practice**
 - Data available every 1-15 minutes thru SCADA system

- **Load flow equations**
 - Over-determined set of algebraic nonlinear equations
 - Nonlinear programming to estimate states V, δ
 - Takes 5-15 minutes depending on problem size
 - Can have > 5000 buses
WAMS

- **WAMS** = wide area monitoring systems
- Integral component of power system operation today
 - Telemetry
 - Data storage
 - Alarming and status
- **Application**
 - Situational awareness
 - Alarming and status (early warning)
 - Root cause analysis of events
 - State estimation
Today: SCADA Data

- Supervisory control and data acquisition (SCADA) data since the 1960’s
 - Voltage & Current Magnitudes
 - Frequency
 - Every 2-4 seconds
- Believed to be secure (not part of the commodity internet)
- **Limitation**
 - Low speed data acquisition
 - Steady state observability of the system
Outline

- Previous work
- Power Systems Background
- **Phase Measurement Units**
- State Estimation & PMU Data
- Our Approach to Integrity Attack Detection
Synchro Phasors

- Synchronized sampling with 1 microsecond accuracy using GPS
- Cost: 2-3000$ each

http://www.phasor-rtdms.com/phaserconcepts/phasor_adv_faq.html
Advantages of PMU Data

- PMUs collect location, time, frequency, current, voltage **and** phase angle (>40 Hz sampling)

- **Why are they important?**
 - Grid-scale renewable energy systems [ex: photovoltaic and wind]
 - Large unexpected variability
 - Can produce phase instability
 - Results in poor decision making [ex: scheduling]
 - Which can lead to big problems [ex: voltage instability, islanding, cascading failures]

- Directly provides the phase angles [from State Estimation to State Measurement]
PMU Architecture

- **Measurement Layer**
 - PMUs

- **Data Collection Layer**
 - Phasor Data Concentrator (PDC)
 - A hardware/software device
 - Performs precise time alignment of data from multiple PMUs
 - Usually centrally located
 - Archives, processes and display PMU data (optional)

- **Communication Network**
 - NASPInet

http://www.naspi.org/
North American SynchroPhasor Initiative (NASPI)
NASPI\textregisterednet

- High speed for fast data streaming
- Secure exchange of data
- The owner of a phasor gateway that publishes the data to naspinet has full control of its data distribution
- Pilot phase by 2014
- Fully operational by 2019
NaspiNET Software Components

http://www.naspi.org/
PMU Deployment Today

Currently 200+ PMUs Installed. Expected to exceed 800+ PMUs by 2013 (under SGIG Investments)

Currently 137 PMUs Installed

34 Gigabytes of data collected Daily from 100 PMUs (~ 1 Terabyte per Month).
PMU System Security

- Cyber-security is one of the main obstacles to widespread deployment of PMUs
- Availability & Confidentiality attacks are secondary
- Integrity attacks are most critical
 - Can initiate inappropriate generator scheduling
 - Can result in voltage collapse, and subsequent cascading failures
- Our initial approach
 Consistency checking between cyber network [PMU data received] and physical network [load flow equations] using static state estimation tools
Taxonomy of cyber attacks

Potential Attack points:
Sensors, Phasor Data Concentrator (PDC), comm infrastructure (NASPInet)

Related Projects

- The Trustworthy Cyber Infrastructure for the Power Grid
 http://www.iti.illinois.edu
- Roadmap to Secure Control Systems,
 http://www.controlsystemsroadmap.net
- Control Systems Security Program
 http://www.uscert.gov/control_systems/
- Smart Grid Recovery Act, https://www.arrasmartgridcyber.net

These use: traditional cyber-security detection and protection methods

Our approach and broader objective: to bring the physics of load flow to cyber-security methods
Outline

- Previous work
- Power Systems Background
- Phase Measurement Units
- **State Estimation & PMU Data**
- Our Approach to Integrity Attack Detection
Static State Estimation with PMU Data

- **Recall: What is static state estimation?**

 Find the phase angles given:
 - measured real power P and reactive power Q at load buses
 - measured real power P and voltage V at generator buses

- **Ubiquitous placement of PMUs**

 - Will eliminate need to do state estimation
 - But this is too expensive
 - Must live with PMU data at limited number of buses

- **Recent results**

 - incorporate PMU data
 - retain standard-form static estimation
 - Phadke et al [2006]
State Estimation Equations

- **Coupled algebraic nonlinear equations**

 Power Flow Constraint:
 \[\mathbb{I} = \mathbb{Y} \mathbb{V} \]

 - Bus admittance matrix: \(\mathbb{Y} \)
 - Injected bus current phasor: \(\mathbb{I} \)
 - Bus voltage phasor: \(\mathbb{V} \)

 Measurement equations:
 - At load bus:
 \[P_k + jQ_k = V_k I_k^* + e_k + jf_k \]
 - At generator bus:
 \[P_k = \text{Re}\{V_k I_k^*\} + e_k \]
 \[V_k = |V_k| + f_k \]
 - At PMU bus:
 \[y_k = \angle V_k + g_k \]

 SCADA data:
 \(P_k, Q_k, V_k \)

 PMU data:
 \(y_k \)

 IID noises:
 \(e_k, f_k, g_k \)
State Estimation Problem

- Minimum variance of bus voltage and phase
- Estimate is \hat{V}

\[
\begin{align*}
\text{minimize} & \quad E \sum_k \| \hat{V}_k - V_k \|^2 \\
\text{subject to} & \quad \text{load flow equations} \\
& \quad \text{measurement equations} \\
\text{exploit:} & \quad \sigma^2_q \ll \sigma^2_e, \sigma^2_f
\end{align*}
\]
“DC load flow”

- For better intuition
- Assume:
 - Lossless lines: \(Y \approx jB \)
 - Voltage support: \(V \approx 1 \) per-unit
 - Small angles: \(\sin(\delta_k - \delta_l) \approx (\delta_k - \delta_l) \)

- Problem:
 Estimate power angles \(\delta \) using
 - Real power data [at all buses, noisy, possibly stale]
 - PMU data [at select buses, clean]
“DC load flow” eqns

- Problem becomes weighted least-squares

DC load flow:
\[P = B\delta \]

Measurement eqn:
\[
\begin{bmatrix}
R \\
y
\end{bmatrix} =
\begin{bmatrix}
P + \epsilon \\
C\delta + f
\end{bmatrix} =
\begin{bmatrix}
B \\
C
\end{bmatrix} \delta +
\begin{bmatrix}
\epsilon \\
f
\end{bmatrix}
\]

- \(C \) is a permutation matrix:
 selects buses at which we have PMU data

Solution:
\[
\hat{\delta} = \left[B^*B + \gamma C^*C \right]^{-1} \left[B^*R + \gamma C^*y \right]
\]

\[
\hat{n} = \begin{bmatrix}
\hat{\epsilon} \\
\hat{f}
\end{bmatrix} = \Pi \begin{bmatrix}
R \\
y
\end{bmatrix}
\]

where \(\gamma^2 = \frac{\sigma^2_e}{\sigma^2_f} \), \(\Pi \) = standard projection matrix
Outline

- Previous work
- Power Systems Background
- Phase Measurement Units
- State Estimation & PMU Data
- Our Approach to Integrity Attack Detection
Integrity Attack Detection

- **Basic Idea:** Consistency checking between cyber network [PMU data] and physical network [load flow equations]

- **Assumptions:**

 - PV data at generator buses are known secure
 - PQ data at load buses are known secure
 - at most one compromise in PMU data

- **Comments:**

 - Realistic because of rarity of coordinated attacks
 - Methods can be extended to two or more simultaneous uncoordinated attacks
 - Doesn’t distinguish between faults and attacks
Problem Formulation

- **Given traditional static state estimation data set**
 - PV data at generator buses
 - PQ data at load buses
 - Assumed secure
 - Updated asynchronously at slow time scales [5-15 minutes]

- **Given data from p PMUs**
 - Assume at most one PMU is compromised
 - Updated at fast time scales [60 Hz]

- **Find**
 - Which (if any) PMU data is compromised

- **Solution strategy – Hypothesis testing**
Digression: LS Hypothesis Testing

- **Observation Model**

 parameters: \(\delta \in \mathbb{R}^n \)

 noisy observations: \(y \in \mathbb{R}^m \)

 linear observation model: \(y = A\delta + n \)

 i.i.d. noise model: \(E[n] = 0, \quad E[nn^*] = \sigma^2 I \)

- **Fault/attack Hypothesis**

 \(\mathcal{H}_0 \) all observations are clean

 \(\mathcal{H}_k \) observation \(y_k \) is compromised

- **Problem:** determine most likely hypothesis

- **Easy under linear observation model**
ML Approach

- For each hypothesis, calculate log-likelihood:

 assume: hypothesis \mathcal{H}_k

 compute: $J_k = -\min ||n||^2$

 subject to: load flow, observation model

- Choose most-likely hypothesis:

 $k^{ML} = \arg\max_k J_k$
Solution

Problem formulation:

model: \(y = A\delta + n \)

noise: \(n \) is i.i.d. with variance \(\sigma^2 \)

find: which one (if any) observation \(y_k \) is compromised

Theorem:

define \(N = I - A (A^* A)^{-1} A^* \)

compute for \(k = 1 : m \)

\[\alpha = e_k^* N y, \quad \beta = e_k^* N e_k, \quad J_k = \alpha / \beta \]

end

find \(k^o = \arg \max_k J_k \)

then, the ML hypothesis is \(\{ H_{k^o} \text{ if } J_{k^o} \geq \sigma^2, \quad H_0 \text{ else} \} \)
Application to PMU data

- **Observation model**

 DC load flow: \(P = B\delta \)

 measurement eqn: \[
 \begin{bmatrix}
 R \\
 y
 \end{bmatrix} =\]
 \[
 \begin{bmatrix}
 P + e \\
 C\delta + f
 \end{bmatrix} = \begin{bmatrix}
 B \\
 C
 \end{bmatrix} \delta + \begin{bmatrix}
 e \\
 f
 \end{bmatrix}
 \]

 where \(C \) is a permutation matrix that selects PMU buses

- **Normalization [to make noise i.i.d.]**

 \[
 \begin{bmatrix}
 R \\
 \gamma y
 \end{bmatrix} = \begin{bmatrix}
 B \\
 \gamma C
 \end{bmatrix} \delta + \begin{bmatrix}
 e \\
 \gamma f
 \end{bmatrix} = A\delta + n
 \]

 where \(\gamma^2 = \frac{\sigma^2_e}{\sigma^2_f} \)
PMU Integrity Attack Detection Algorithm

\[n \quad \# \text{ of buses} \quad R \quad \text{measured real powers} \]
\[p \quad \# \text{ of PMU} \quad y \quad \text{PMU data} \]
\[\sigma_e^2 \quad \text{standard bus noise covariance} \quad e_k \quad k^{\text{th}} \text{ unit vector} \]
\[\sigma_f^2 \quad \text{PMU noise covariance} \quad B \quad \text{bus susceptance matrix} \]
\[\gamma \quad \sigma_e / \sigma_f \quad C \quad \text{matrix that selects PMU buses} \]

1. define
 \[N = \begin{bmatrix} I_n & 0 \\ 0 & I_p \end{bmatrix} - \begin{bmatrix} B \\ \gamma C \end{bmatrix} \left(B^*B + \gamma^2 C^*C \right)^{-1} \begin{bmatrix} B^* \\ \gamma C^* \end{bmatrix} \]

2. compute
 \[\text{for } k = n + 1 : n + p \]
 \[\alpha = e_k^*Nz, \quad \beta = e_k^*Ne_k, \quad J_k = \alpha / \beta, \quad z = \begin{bmatrix} R \\ \gamma y \end{bmatrix} \]
 end

3. find
 \[k^o = \arg \max_k J_k \]

4. assess
 if \(J_{k^o} \geq \sigma_e^2 \) PMU \(k^o \) is compromised
 else all PMU data are likely secure
Extensions

- Exploiting sparsity of bus susceptance matrix
 - Can be done using only matrix-vector products
- Extending from DC load flow to nonlinear load flow
 - This is difficult
- Explicitly accounting for stale bus data
 - Can use bus power variance for this
Open research

- Metrics of attack detectability
- Vigilance
 How frequently must we conduct attack detection? At what fidelity?
- Distinguishing between faults and malicious attacks
- Security-aware PMU placement
 - Which buses? Maybe in pair?
 - Competing objectives
 - WAMS applications vs. Integrity attack detectability
- Large scale simulation study
Conclusion

- Cyber security research for PMUs is critical and challenging
- Our approach:
 consistency checking between
cyber network [PMU data] & physical network [load flow]
using static state estimation tools
- Questions, comments?

agiani@eecs.berkeley.edu
poolla@berkeley.edu

Thanks