Cyber-Security of Wide Area Protection Systems

Annarita Giani Electrical Engineering & Computer Sciences University of California at Berkeley

agiani@eecs.berkeley.edu

LANL October 23, 2010

50 Years logo

Outline

- Previous work
- Power Systems Background
- Phase Measurement Units
- State Estimation & PMU Data
- Our Approach to Integrity Attack Detection

Outline

Previous work

- Power Systems Background
- Phase Measurement Units
- State Estimation & PMU Data
- Our Approach to Integrity Attack Detection

My Background

- PhD Dartmouth 2007
 - Detection of attacks on cognitive channels
 - [G. Cybenko]
- Post-doc TRUST Center [2007-2009]
 - Trustworthy information systems
 - [S. Sastry]
- Post-doc Berkeley [2009-]
 - Renewable integration, Cyber-security in power systems
 - [K. Poolla]

Security Objectives

- Confidentiality: information disclosure only to authorized users
 - Eavesdropping, Phishing
 - Access Control, Authentication, Authorization, Encryption
- Integrity: trustworthiness of information resources
 - Replay, Man in the Middle, Data Injection, Data Jam, Data Corruption
 - Encryption, Redundancy
- Availability: Availability of data whenever need it
 - Denial-of-Service
 - Traffic Anomaly Detection
- Authorization
- Authentication
- Non Repudiation

Process Query System

PQS in computer security

Sensors and Models

1	DIB:s	Dartmouth ICMP-T3 Bcc: System
2	Snort, Dragon	Signature Matching IDS
3	IPtables	Linux Netfilter firewall, log based
4	Samba	SMB server - file access reporting
5	Flow sensor	Network analysis
6	ClamAV	Virus scanner
<u>^</u>	Tripwire	Host filesystem integrity checker
1	Noisy Internet Worm Propagation – fast scanning	
2	Email Virus Propagation – hosts aggressively send emails	
3	Low&Slow Stealthy Scans – of our entire network	
4	Unauthorized Insider Document Access – insider information theft	
5	Multistage Attack – several penetrations, inside our network	
6	DATA movement	
7	TIER 2 models	

Hierarchical PQS Architecture

PQS Applications

- Vehicle tracking
- Worm propagation detection
- Plume detection
- Dynamic Social Network Analysis
- Cyber Situational Awareness
- Fish Tracking
- Autonomic Computing
- Border and Perimeter Monitoring
- First Responder Sensor Network
- Protein Folding

Current Work Summary

- Testbed for Secure and Robust SCADA Systems (with Vanderbilt and CMU)
 [IEEE Real-Time and Embedded Technology and Applications Symposium2008]
- Optimal Contracts for Wind Power Producers in Electricity Markets [CDC 2010]
- Renewable integration and smart grid
- Integrity Attack Detection of PMU data [This talk]

Outline

- Previous work
- Power Systems Background
- Phase Measurement Units
- State Estimation & PMU Data
- Our Approach to Integrity Attack Detection

Context and Notation

- Considering AC synchronous power systems
- Assume quasi steady-state analysis

Voltages and currents are well approximated as

fixed frequency sinusoids with slowly changing phases

- time-domain: frequency-domain:
- signal phasor

$$v(t) = V \sin(\omega_o t + \phi)$$
$$\mathbb{V} = V \exp(j\phi)$$

Notation

M^*	complex-conjugate transpose
•	standard euclidean norm
σ^2	noise variance
\mathbb{V},\mathbb{I}	phasors
Y = G + jB	bus admittance matrix
G	bus conductance matrix
В	bus susceptance matrix
E	expectaton operator

Static State of a Power System

• What is it?

The set of voltage magnitudes and angles at all network buses

• Why is it important?

Bus voltages and angles are the key variables

These determine

- static flows on transmission lines
- locational marginal prices
- current stress state of system
- future generation that should be scheduled

Measurements

- Bus powers [real, reactive] are commonly measured
 - Used for settlement of contract, compensation, etc
- Bus voltages magnitudes are easy to measure
 - Used for voltage regulation, system protection, etc
- Bus voltage phases are much harder to sense
 - Power flows depend on the phase difference between buses
 - Need global clock to determine times of voltage maxima
 - So, voltage phases are estimated
- Dynamic state estimation
 - Not commonly used
 - Computationally prohibitive
- Static state estimation

Static State Estimation

• What is it?

Find the phase angles given:

measured real power P and reactive power Q at load buses measured real power P and voltage V at generator buses

Current practice

- Data available every 1-15 minutes thru SCADA system

Load flow equations

- Over-determined set of algebraic nonlinear equations
- Nonlinear programming to estimate states V, δ
- Takes 5-15 minutes depending on problem size
- Can have > 5000 buses

WAMS

- WAMS = wide area monitoring systems
- Integral component of power system operation today
 - Telemetry
 - Data storage
 - Alarming and status
- Application
 - Situational awareness
 - Alarming and status (early warning)
 - Root cause analysis of events
 - State estimation

Today: SCADA Data

- Supervisory control and data acquisition (SCADA) data since the 1960's
 - Voltage & Current Magnitudes
 - Frequency
 - Every 2-4 seconds
- Believed to be secure (not part of the commodity internet)
- Limitation
 - Low speed data acquisition
 - Steady state observability of the system

Outline

- Previous work
- Power Systems Background
- Phase Measurement Units
- State Estimation & PMU Data
- Our Approach to Integrity Attack Detection

Synchro Phasors

- Synchronized sampling with 1 microsecond accuracy using GPS
- Protocol: IEEE C37.118-2005 standard
- Cost: 2-3000\$ each

http://www.phasor-rtdms.com/phaserconcepts/phasor_adv_faq.html

Advantages of PMU Data

- PMUs collect location, time, frequency, current, voltage <u>and</u> <u>phase angle</u> (>40 Hz sampling)
- Why are they important?
 - Grid-scale renewable energy systems [ex: photovoltaic and wind]
 - Large unexpected variability
 - Can produce phase instability
 - Results in poor decision making [ex: scheduling]
 - Which can lead to big problems [ex: voltage instability, islanding, cascading failures]
- Directly provides the phase angles [from State Estimation to State Measurement]

PMU Architecture

- Measurement Layer
 - PMUs
- Data Collection Layer
 - Phasor Data Concentrator (PDC)
 - A hardware/software device
 - Performs precise time alignment of data from multiple PMUs
 - Usually centrally located
 - Archives, processes and display PMU data (optional)
- Communication Network
 - NASPInet

http://www.naspi.org/ North American SynchroPhasor Initiative (NASPI)

NASPInet

- High speed for fast data streaming
- Secure exchange of data
- The owner of a phasor gateway that publishes the data to naspinet has full control of its data distribution
- Pilot phase by 2014
- Fully operational by 2019

U.S. Department of Energy, the North American Electric Reliability Corporation, and North American electric utilities, vendors, consultants, federal and private researchers and academics.

NaspiNET Software Components

25

http://www.naspi.org/

PMU Deployment Today

34 Gigabytes of data collected Daily from 100 PMUs (~ 1 Terabyte per Month).

Currently 200+ PMUs Installed. Expected to exceed 800+ PMUs by 2013 (under SGIG Investments)

Currently 137 PMUs Installed

Phasor Measurement Units (PMU) in the Western Interconnection

PMU System Security

- Cyber-security is one of the main obstacles to widespread deployment of PMUs
- Availability & Confidentiality attacks are secondary
- Integrity attacks are most critical
 - Can initiate inappropriate generator scheduling
 - Can result in voltage collapse, and subsequent cascading failures
- Our initial approach

Consistency checking between cyber network [PMU data received] and physical network [load flow equations] using static state estimation tools

Taxonomy of cyber attacks

Potential Attack points:

Sensors, Phasor Data Concentrator (PDC), comm infrastructure (NASPInet)

Related Projects

- The Trustworthy Cyber Infrastructure for the Power Grid <u>http://www.iti.illinois.edu</u>
- Roadmap to Secure Control Systems, <u>http://www.controlsystemsroadmap.net</u>
- Control Systems Security Program <u>http://www.uscert.gov/control_systems/</u>
- National SCADA Testbed Program, <u>http://www.inl.gov/scada/</u>
- Smart Grid Recovery Act, <u>https://www.arrasmartgridcyber.net</u>

These use:

traditional cyber-security detection and protection methods

Our approach and broader objective: to bring the physics of load flow to cyber-security methods

Outline

- Previous work
- Power Systems Background
- Phase Measurement Units
- State Estimation & PMU Data
- Our Approach to Integrity Attack Detection

Static State Estimation with PMU Data

Recall: What is static state estimation?

Find the phase angles given:

measured real power P and reactive power Q at load buses measured real power P and voltage V at generator buses

- Ubiquitous placement of PMUs
 - Will eliminate need to do state estimation
 - But this is too expensive
 - Must live with PMU data at limited number of buses
- Recent results
 - incorporate PMU data
 - retain standard-form static estimation
 - Phadke et al [2006]

State Estimation Equations

Coupled algebraic nonlinear equations

Power Flow Constraint:	$\mathbb{I}=\mathbb{Y}\mathbb{V}$
Bus admittance matrix	\mathbb{Y}
Injected bus current phasor	\mathbb{I}
Bus voltage phasor	\mathbb{V}

Measurement equations:

At load bus:	$P_k + jQ_k = \mathbb{V}_k \mathbb{I}_k^* + e_k + jf_k$
At generator bus:	$P_k = Re\{\mathbb{V}_k \mathbb{I}_k^*\} + e_k$
	$V_k = \mathbb{V}_k + f_k$
At PMU bus:	$y_k = \angle \mathbb{V}_k + g_k$
SCADA data:	P_k, Q_k, V_k
PMU data:	y_k
IID noises:	e_k, f_k, g_k

State Estimation Problem

- Minimum variance of bus voltage and phase
- Estimate is $\hat{\mathbb{V}}$

minimize $E \sum_{k} \|\hat{\mathbb{V}}_{k} - \mathbb{V}_{k}\|^{2}$ subject to load flow equations measurement equations

exploit: $\sigma_g^2 \ll \sigma_e^2, \sigma_f^2$

"DC load flow"

- For better intuition
- Assume:

Lossless lines: Voltage support: Small angles: $Y \approx jB$ $\mathbb{V} \approx 1 \text{ per-unit}$ $\sin(\delta_k - \delta_l) \approx (\delta_k - \delta_l)$

Problem:

Estimate power angles δ using

- Real power data [at all buses, noisy, possibly stale]
- PMU data [at select buses, clean]

"DC load flow" eqns

Problem becomes weighted least-squares

DC load flow: $P = B\delta$ measurement eqn: $\begin{bmatrix} R \\ y \end{bmatrix} = \begin{bmatrix} P+e \\ C\delta+f \end{bmatrix} = \begin{bmatrix} B \\ C \end{bmatrix} \delta + \begin{bmatrix} e \\ f \end{bmatrix}$

C is a permutation matrix: selects buses at which we have PMU data

solution:
$$\begin{split} \hat{\delta} &= \left[B^*B + \gamma C^*C\right]^{-1} \left[B^*R + \gamma C^*y\right] \\ \hat{n} &= \left[\begin{array}{c} \hat{e} \\ \hat{f} \end{array}\right] = \Pi \left[\begin{array}{c} R \\ y \end{array}\right] \\ \\ \text{where } \gamma^2 &= \frac{\sigma_e^2}{\sigma_f^2}, \Pi = \text{standard projection matrix} \end{split}$$

Outline

- Previous work
- Power Systems Background
- Phase Measurement Units
- State Estimation & PMU Data
- Our Approach to Integrity Attack Detection

Integrity Attack Detection

 Basic Idea: Consistency checking between cyber network [PMU data] and physical network [load flow equations]

Assumptions:

PV data at generator buses are known secure PQ data at load buses are known secure at most one compromise in PMU data

Comments:

- Realistic because of rarity of coordinated attacks
- Methods can be extended to two or more simultaneous uncoordinated attacks
- Doesn't distinguish between faults and attacks

Problem Formulation

Given traditional static state estimation data set

- PV data at generator buses
- PQ data at load buses
- Assumed secure
- Updated asynchronously at slow time scales [5-15 minutes]
- Given data from p PMUs
 - Assume at most one PMU is compromised
 - Updated at fast time scales [60 Hz]
- Find
 - Which (if any) PMU data is compromised
- Solution strategy Hypothesis testing

Digression: LS Hypothesis Testing

Observation Model

 $\begin{array}{ll} \text{parameters:} & \delta \in \mathbb{R}^n \\ \text{noisy observations:} & y \in \mathbb{R}^m \\ \text{linear observation model:} & y = A\delta + n \\ \text{i.i.d. noise model} & E[n] = 0, \quad E[nn^*] = \sigma^2 I \end{array}$

- Fault/attack Hypothesis
 - \mathcal{H}_0 all observations are clean
 - \mathcal{H}_k observation y_k is compromised
- Problem: determine most likely hypothesis
- Easy under linear observation model

ML Approach

• For each hypothesis, calculate log-likelihood:

assume: hypothesis \mathcal{H}_k compute: $J_k = -\min ||n||^2$ subject to: load flow, observation model

Choose most-likely hypothesis:

$$k^{\mathsf{ML}} = \arg\max_k J_k$$

Solution

Problem formulation:

model:	$y = A\delta + n$
noise:	n is i.i.d. with variance σ^2
find:	which one (if any) observation y_k is compromised

• Theorem:

define	$N = I - A (A^* A)^{-1} A^*$
compute	for $k = 1 : m$
	$lpha=e_k^*Ny$, $eta=e_k^*Ne_k$, $J_k=lpha/eta$
	end
find	$k^o = \arg \max_k J_k$

then, the ML hypothesis is
$$egin{cases} \mathcal{H}_{k^o} & ext{if } J_{k^o} \geq \sigma^2 \ \mathcal{H}_0 & ext{else} \end{cases}$$

Application to PMU data

Observation model

DC load flow: $P = B\delta$ measurement eqn: $\begin{bmatrix} R \\ y \end{bmatrix} = \begin{bmatrix} P+e \\ C\delta+f \end{bmatrix} = \begin{bmatrix} B \\ C \end{bmatrix} \delta + \begin{bmatrix} e \\ f \end{bmatrix}$

where C is a permutation matrix that selects PMU buses

Normalization [to make noise i.i.d.]

$$\begin{bmatrix} R \\ \gamma y \end{bmatrix} = \begin{bmatrix} B \\ \gamma C \end{bmatrix} \delta + \begin{bmatrix} e \\ \gamma f \end{bmatrix} = A\delta + n$$

where $\gamma^2 = \frac{\sigma_e^2}{\sigma_f^2}$

PMU Integrity Attack Detection Algorithm

of buses measured real powers Rn# of PMU PMU data py $\sigma_e^2 \sigma_f^2$ k^{th} unit vector standard bus noise covariance e_k BPMU noise covariance bus susceptance matrix Cmatrix that selects PMU buses σ_e/σ_f γ

1. define
$$N = \begin{bmatrix} I_n & 0 \\ 0 & I_p \end{bmatrix} - \begin{bmatrix} B \\ \gamma C \end{bmatrix} (B^*B + \gamma^2 C^*C)^{-1} \begin{bmatrix} B^* & \gamma C^* \end{bmatrix}$$

2. compute for $k = n + 1 : n + p$
$$\alpha = e_k^* N z, \quad \beta = e_k^* N e_k, \quad J_k = \alpha/\beta, \quad z = \begin{bmatrix} R \\ \gamma y \end{bmatrix}$$

end

3. find
$$k^o = \arg \max_k J_k$$
4. assessif $J_{k^o} \ge \sigma_e^2$ PMU k^o is compromised
elseall PMU data are likely secure

Extensions

- Exploiting sparsity of bus susceptance matrix
 - Can be done using only matrix-vector products
- Extending from DC load flow to nonlinear load flow
 - This is difficult
- Explicitly accounting for stale bus data
 - Can use bus power variance for this

Open research

- Metrics of attack detectability
- Vigilance

How frequently must we conduct attack detection? At what fidelity?

- Distinguishing between faults and malicious attacks
- Security-aware PMU placement
 - Which buses? Maybe in pair ?
 - Competing objectives
 - WAMS applications vs. Integrity attack detectability
- Large scale simulation study

Conclusion

- Cyber security research for PMUs is critical and challenging
- Our approach:

consistency checking between

cyber network [PMU data] & physical network [load flow] using static state estimation tools

Questions, comments?

agiani@eecs.berkeley.edu poolla@berkeley.edu

Thanks