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D-G Group Research Overview

Renewable Resources Integration

> Impact of wind integration on system dynamic performance
» Stochastic models of PV systems for quantification of reliability/energy-yield

Health Monitoring and Fault Diagnosis of Electrical Energy Systems

» Fault detection and isolation algorithms for FACTS devices
» Health monitoring of micro-grids and other small-footprint power systems

Reliability Models for Next Generation Electric Power Grids

> Impacts of coupling between the system cyber and physical layers
> Impacts of coupling between system dynamics and component stress

Coordination and Control of Distributed Energy Resources

» Distributed reactive power support for voltage control
» Distributed energy storage for frequency and peak-shaving control
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The Potential of Distributed Energy
Resources (DERsS)

» On the power grid, there exist many DERSs that can be potentially
used to provide ancillary services

» Power electronics grid interfaces commonly used in DERs can be
utilized to provide reactive power support
~ Voltage control in subtransmission and distribution
» Plug-in-hybrid vehicles (PHEV) can be utilized for providing active
power for up and down regulation

- E.n?]rgy peak-shaving during peak hours and load-leveling at
night




Control and Coordination of DERs

» Proper coordination and control of these DERs is key for enabling
their utilization for ancillary services

» One solution can be achieved through a centralized control strategy
where each DER is commanded from a central controller

~ It is necessary to overlay a communication network connecting
the central controller with each distributed resource
~ It requires knowledge of the distributed resources that are
available on the distribution side at any given time
» We propose an alternative approach that utilizes distributed
strategies for control and coordination of DERs
» These strategies offer several advantages, including the following

» More economical as they do not require communication
infrastructure between a centralized controller and the various
devices

~ They do not require complete knowledge of the distributed

resources available .
- Potentially more resilient to faults and/or unpredictable
behavioral patterns by the distributed resources
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Basic Setup

The DERs can be thought of as nodes in a network, where each
node can exchange information with neighboring nodes
Through an iterative process with neighboring nodes (presumable
nodes in close proximity)

- Each DER in the network will compute the amount of active or

reactive power that it needs to provide

Collectively, the local control decisions made by the resources
should have the same effect as the centralized control strategy (or, if
multiple solutions are possible, be one of the feasible solutions)
Such a solution could rely on inexpensive and simple communication
protocols, e.g., ZigBee technology
We discuss several algorithms to solve this coordination/cooperation
problem under various conditions
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Graph-Theoretic Notions

The exchange of information between nodes where resources are
located can be described by a directed graph G = {V, &}:

- V=A{L2,..., n} is the vertex set (each vertex corresponds to a node)

» & CVxVis the set of directed edges, where (j, i) € & if node j can receive

information from node i

The graph is undirected if and only if whenever (j, i) € &, then also
(i,)) € &, i.e., if node j can receive information from node i, then node
i can also receive information from node j

All nodes that can transmit information to node j are said to be
neighbors of node j and are represented by the set
Nj={ieV:(ie&l

The number of neighbors of j is called the in-degree of j and denoted
by D; = INjl

The number of nodes that have j as neighbor, i.e., j can transmit
information to these nodes, is called the out-degree of j and is
denoted by Z)jff

In undirected graphs, D; = Z)j+ for all nodes j
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Distributed Algorithms Formulation

Let 7r;[k] be the amount of active or reactive power demanded from
the distributed resource located in node j at the k round of
information exchange between nodes

The proposed distributed algorithms determine the amount of
resource that will be contributed by node j by performing linear
iterations of the form

mjlk + 11 = pylklmik] + > pilklxi{k], )
ieN;
where the pj;[k]'s are a set of (potentially time-varying) weights, and
njlk]’s are non-negative quantities
Each node updates its demanded amount to be a linear combination
of its own demanded amount and the demanded amount of its
neighbors
The choice of p;[k]’s will depend on the problem constraints
We provide algorithms when
» There is no limit on the amount of active or reactive power that each resource
can provide

» The maximum (or minimum) amount of active or reactive power each resource
can provide is limited
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The Basic Setup

There is a leading node that knows the total amount of active or reactive
power p, that needs to be provided by the remaining n nodes

This leader can communicate with / > 1 nodes, and initially sends a
command demanding p,/! units of active or reactive power from each of
them

Unless p, changes, the leader will not subsequently communicate with the
nodes

Let m;[k] be the active or reactive power demanded from node j at step &,
and define the corresponding active or reactive power demand vector as
nlk] = [mi[kl, molkl, ... mlkl, ...« k])

Define the collective active or reactive power demand as p[k] = 3}, m;[k]
The objective is to design a distributed iterative algorithm that, at step k,
updates the active or reactive power demand from node j based on

> Its own current active or reactive power demand r;[k]
» Current active or reactive power demanded from neighbors of j

such that after m steps the collective active or reactive power demand
equals the total active or reactive power demanded by the leader:

plm] = S, 7{m] = py
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Uneven Splitting Algorithm

The simplest solution, which results in constant weights p;;, is for each node
j to equally split its current value among itself and the nodes that have j as
neighbor

1
mlk+1] = D+7Tj[ ]WL;N:1 D+7T,[k] @)

where O the number of nodes that i can transmit information to (the
out-degree of node i)

Algorithm (2) does not necessarily split the total active or reactive power
demand p, evenly among all the nodes, but it ensures that
Skl = pas Yk =0

Provided the directed graph describing the exchanges between nodes has a
single recurrent class which necessarily makes it aperiodic by construction
due to the fact that - D+ # 0, the steady state solution provided by (2) is

unique
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Sketch of Convergence Proof

The splitting algorithm (2) can be rewritten in matrix form as
nlk + 1] = P.nr[k],
(0] = m, @)

where my = [m,[0], m[0],...,7;[0],...,7,[0]]" with 7;[0] = pg/lifiis a
neighbor of the leader node and 7;[0] = 0 otherwise

By construction, matrix P. is column stochastic and also primitive

The Perron-Frobenius theorem for non-negative matrices states that P. has
a unique eigenvalue with largest modulus at A, = 1

Let x be a right eigenvector of P. associated with 1, and let y be a left
eigenvector of P, associated with A, such that x'y = 1

Again, from the fact that P, is column stochastic, the entries of vector y must
be all equal

Without loss of generality, let y = [1,1,...,1]’, and since x’y = 1, the entries
of x must add up to one

Then the steady-state solution of (3) is given by

N
™ = xy'm = () ml0])x. (4)
j=1

Since Z,-Ail 7;[0] = ps and the entries of x are nonnegative and add up to one,
it follows that entries of 7** are nonnegative and add up to p,
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Uneven Splitting Example

[ (K] —ma[k] —ms[k] —ma[k])

0.3~

0.2-

0.1+

5 10 15 20
k
(a) Network topology. (b) Node demanded capacity evolution.

Figure: Four-node network implementing uneven splitting strategy.

» The leader initially splits p, = 1 in half and passes it to nodes 1 and 2.
» Each node updates its value as follows

milk + 1] = 1 (mi [k] + mo[k] + m3[k]),
nalk + 11 = L0 (K] + malk]) + Sralk],
malk + 11 = (i [k] + m3[k]),
ralk + 1] = L(wlk] + m[k]) + L K], ()

with 7, [0] = m,[0] = 1/2, and 73[0] = m4[0] = 0.
» The steady-state solution is given by 7% = [0.23, 0.35, 0.11, 0.31]
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Even Splitting Algorithm

A solution to reach even splitting can be easily obtained when

Zpﬁ:ipij:1fora||j:1,2,...,n
i=1 i=1

The simplest realization of such algorithm is obtained when the graph
describing the exchanges of information is undirected, which results in
O, =0 :=D;,¥j=1,....n
Define the maximum degree of the network as D = max{D;}

J

One way even splitting can be achieved is by having each node j update its
value as follows

| |
milk+1] = (1 - —Z ), [k] +Z AL (6)
zeM
where [Nj| = denotes the number of elements in the set N;

Even spllttlng can also be achieved if instead of D, we use any upper bound
D' >Din (6)
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Even Splitting Example

[ (K] —ma[k] —ms[k] —ma[k])
0.4r 1

0.3r

0.2

0.1r

0 5 10 15 20
k
(a) Network topology. (b) Node demanded capacity evolution.

Figure: Four-node network implementing even splitting strategy.

» Each node updates its value as follows
milk + 1] = $(mi [K] + 7y [K] + 73[k]),
molk + 1] = $ (i [k] + o [K]) + $7alk],
sl + 11 = dmi[k] + Lms[k),
malk + 1] = dmo[k] + 2 [k, (7)
with 7, [0] = m,[0] = 1/2, and 73[0] = 74[0] = 0.

» The steady-state solution is 7* = [0.25, 0.25, 0.25, 0.25]

> The key is that the corresponding transition matrix is doubly stochastic
17/31
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The Setup

We now address the case where nodes have limits on the amounts of active
or reactive power they can provide

Let 7, for j = 1,2,...,n, be the maximum active or reactive power that
node j can provide (its maximum capacity)

Define the corresponding maximum active or reactive power capacity vector
as " = [#]¥, 7, L, e

Let p[k] = Xi_, m;[k] be the collective active or reactive power capacity
demanded from the nodes at instant k, and p, be the collective active or
reactive power demand.

> We assume that pg < 3L, 7" =y
The objective is to design a distributed iterative algorithm that, at step %,
updates the active or reactive power demanded from node j based on

> Current active or reactive power demand 7;[k]
» Current active or reactive power demanded by neighbors of j

such that after m steps:
~ njlm] reaches a steady state value nj < nj’?"‘", vj
S I = pa <X
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Fair Splitting Algorithm

A simple solution to the constrained problem can be obtained if each node
could compute (or knows) the ratio p/x"*

Then, the total active or reactive power demand can be collectively provided
by having each node j provide

mj = B < e (8)

This can be achieved if the nodes run twice (with appropriate initial
conditions) the following algorithm

ﬂ'j[k + 1] = #ﬂ'j[k] + Z #ﬂ',[k] (9)
J ieN; i

Let 7[k] denote the solution to (9) achieved with initial conditions set to

initially demanded capacity

Let 7t[k] denote the solution to (9) achieved with initial conditions set to

maximum capacities

At each iteration step, each node j computes

mlkl = Zgme (10)
Then
hm ”/[k] = hm ALk ]ﬂm‘” = ﬁir'."‘“ =7 (11)

ﬂ[k] J Xma)c J
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Sketch of Convergence Proof

As before, the linear iteration in (9) can be rewritten in matrix form as
nlk + 1] = P.n[k], (12)
By construction, matrix P, is column stochastic and also primitive (assuming

the graph is strongly connected)
Since P, is column stochastic, it follows that

S Ak = pas S ALK = Xonars V. (13)

Since P, is primitive, Perron-Frobenius ensures that

.55

A= 1im irj[k] =« lim #jlkl =: axt}’, Vj, for some a > 0

Thus, ps = T, A =a le 7 = Qxmar, and therefore

a=LL (14)
Xmax
Then, the contribution 7[k] of each will asymptotically converge to the
desired value r;

7 [k] ax ﬁ‘;b max max pd max
nlk] = 11_’11010 % [k]ﬂj'" = Eﬂ'j =an = Wﬂj =7;. (15)

N
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Fair Splitting Example

[ (k] —ma[k] —ms[k] —ma[K]]

0.4

0.3r

0.2

0% 5 10 15 20
k
(a) Network topology. (b) Evolution of 7; in the algorithm second run.

Figure: Four-node network implementing even splitting strategy.

Take p, = 1 and 7™ = [0.4, 0.2, 0.4, 0.1] so that y"* = 1.1 > py
Each node runs twice (in parallel) the same algorithm used in the even
splitting example

> For the first run, initial conditions are #[0] = [0.5,0.5,0, 0]

» For the second run, initial conditions are #[0] = #** = [0.4, 0.2, 0.4, 0.1]
The solution of the first run is equivalent to the solution of the even splitting
algorithm example, i.e., each node computes p,/4 = 0.25
On the second run, each node computes ZJ‘.‘ZI nj’."“"/4 =0.275
The contributions are = = «[0.4, 0.2, 0.4, 0.1]", where a = 0.25/0.275
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Reactive Power Support

P +j .
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Distributed reactive
power resources

» Operational conditions require the voltage at bus s of the electrical network
to be maintained at a reference voltage V¢
>~ In order to achieve this requirement, we control the total reactive power
demand at bus s, which is given by Q,+Q¢, where
» Qs is the reactive power injected in bus s provided by the network, and
> O%is the reactive power injected in bus s provided by DERs
» By controlling Q¢, the total demand of reactive power at bus s can be
effectively controlled
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WECC 3-machine 6-bus system

Bus 1 Bus 4 Bus 2
Load 1
Bus 5 Bus 6
Load 2 Load 3
Bus 3

» We implement two control architectures:

» All load buses can provide reactive power through coordination of DERs
> Only bus 6 can provide reactive power through coordination of DERs

From

wWwmMNh =N

oo oA

cNoNoNeoNoNa] -

0.0720
0.1008
0.1610
0.1700
0.0850
0.0920

» For each of the architectures, we implement distributed coordination
algorithms with and without constraints on DER capacity

» For simplicity, we assume the same DER network with four nodes showed in

previous slides

» We compare the performance of control architectures and distributed
algorithms for a contingency in generator 2
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Base Case: No Reactive Power Support

N Bus Voltages
i i Bus# | P 0 7L O
= 1 1.5840 | 0.5388 0 0
gw, 2 0.8500 | 0.3458 0 0
E 3 0.7160 | 0.5500 0 0
= 4 0 0 1.00 | 0.35
oS5 5 0 0 1.25 | 0.50
osd 6 0 0 0.90 | 0.30
N Table: Pre-contingency power flow solution

Figure: Voltages before and after
contingency.

> Prior to contingency: Generator 5 is at maximum capacity

» After contingency:
» Generator 5 becomes a PQ bus, and Generator 1 picks up all the reactive power

demand
» Voltages on buses 5 and 6 fall outside +5% of the nominal value (1 p.u.)
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Voltage Control on All Load Buses

Bus Voltages

Bus Voltages

2 4 6 8 . 10 12 14 16 18 - 2 4
Time [5]

8 10 12 14 16 18 2
Time 5]

(a) Unconstrained capacity. (b) Constrained capacity.

» With no constraints on DERs (unrealistic), system voltage profile is
recovered in 10s

» With constrains on DERs reactive power, system voltage profile is recovered
to acceptable limits

» Voltags on all buses are within +5% of the nominal value (1 p.u.)
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Voltage Control on Load Bus 6

Bus Voltages Bus Voltages
B —Bus 1| B —Bus 1
b2 e
s —eisd
oued “hiad
—euss .
osd Busg 0o Bisq
2o Sos
& =)
%097 %uw
S osq — S o0 T
L L
0.95) 0.95r ‘
o94f = LEY =
2 a4 6 8 10 12 14 16 18 - 2 4 8 10 12 16 18 2
Time [s] Time [s]
(c) Unconstrained capacity. (d) Constrained capacity.

» Through sensitivity analysis, it can be shown that bus 6 voltage is the most
sensitive to loss of generator 2

» DER-based reactive power support is only available in this bus
> With no constraints on DERs

» Voltages on buses 3, 5, and 6 are very close to pre-contingency values
» Voltages on buses 2 and 4 are restored to values within +5% of the nominal
value (1 p.u.)

> With constraints on DERs
» All bus Voltages are restored to values within +5% of the nominal value (1 p.u.)
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Distributed Algorithm Performance

Coordination Coordination

Reactive Power [p.u]
§ 8 8§
]
N
2
Reactive Power [p.u]
S =) )
i 13 R

H

&

7 Er S5 S5 % 62 6% 65 68 T R ¥ T
ime [s] Time [s]

(e) Non-Adapative Fair Splitting Algorithm. (f) Adapative Fair Splitting Algorithm.

» The non-adaptive algorithm converges much faster than the adaptive
algorithm (not discussed in the presentation)
» Both algorithms converge fast enough so the effect on the system is not
noticeable
» The adaptive algorithm has advantages if the DER network topology changes
» For larger DER networks, convergence speed of the distributed algorithms
might play an important role
» Careful analysis will be needed to justify the algorithm chosen
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Summary and Path Ahead

We have presented distributed control algorithms that can be used to
determine (in a distributed fashion) the amount of active or reactive power
that needs to be provided by distributed active and reactive power resources

These strategies have the potential to enable assets already present in
distribution systems as active and reactive power support resources

We showed how these algorithms can be used to provide reactive power
support for voltage control

Ongoing work is investigating convergence speed issues in different
algorithms for the constrained case

Ongoing work is conducting case studies in larger networks, including
distribution networks

Further work will investigate the algorithms performance in the presence of
faults, e.g., broken communication links, and nodes not updating their value
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