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Mobile sensing for solving societal challenges

Fusion of mobile pollution
data with models, for air
pollution monitoring

source: DHS/NASA

source: Seto UC Berkeley



Mobile sensing for solving societal challenges

Participatory sensing for traffic flow monitoring:
fusion of fixed and mobile data into traffic models
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Mobile sensing for solving societal challenges

UC Berkeley

Impact of desalination on water
ecosystems: how can we assess it?

World's Iargest desalt plant GPEﬁEd
Siraj Wiahab | Arab News

JUBAIL: Custodian of the Two Holy
Mosgues King Abdullah yesterday
launched massive development
projects worth SR54 billion inthe R ke—_
Eastern Province's newest industrial
zone called Jubail-ll. The new city is 5§

Sea-surface salinity (psu)

(after Sigman et al., 2004)
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Inverse modeling problems

Assume that any evolution trajectory of a system can be
represented as a point in a (high dimensional) vector space V

Measurement of the state at time t=3

V

Measurement of the state at time t=1



Inverse modeling problems

The measurement data corresponds to a set of “possible state
trajectories” D of the system  (i.e. trajectories that are compatible
with the measurement data)

D is not a single point because of:

- Measurement uncertainty
- Missing measurements




Inverse modeling problems

The model yields a set of “possible model trajectories” M (i. e.
trajectories that are compatible with the model)

M is not a single point since:

- The evolution trajectory depends upon the initial condition
- The model parameters may be uncertain

M

(model)




Case 1. compatibility between data and model

If both sets intersect, there exist state trajectories whic h are both
compatible with the model and the data




Case 2: incompatibility between data and model

If both sets do not intersect, there are no state trajectorie s which
are both compatible with the model and the data. Two problems
might still be of interest

[Evensen 07]
[Wu, Litrico, Bayen 08]



Case 2.a: incompatibility between data and model

Data reconciliation problem : finding the trajectory satisfying the
model closest to the data

Solution to the “data reconciliation”
problem

[Evensen 07]
[Wu, Litrico, Bayen 08]



Case 2.b: incompatibility between data and model

Data assimilation problem : finding the trajectory satisfying the
data closest to be a solution of the model

(model)

Solution to the “data
assimilation” problem

[Evensen 07]
[Wu, Litrico, Bayen 08]



Introductory example

Consider the measurement of a battery’s voltage x over (disc rete)
time. If n discrete measurements are considered, the evolut lon
trajectory space VisR T

For n=3, the state trajectory is defined by (X  ;,X,,X3)

X4 (voltage at time t=3)

X, (voltage at time t=2)

X, (voltage at time t=1)



Introductory example

Consider the simple discrete time linear model: x ;= X,

M (model)

X5 (voltage at time t=3) f------

X, (voltage at time t=2)

X, (voltage at time t=1)



Case 1: compatible data

There can exist more than one solution to the
problem

Voltage (X ;)

1 2 3 discrete time (i)



Case 2: incompatible data

There exist no solution to the problem

Voltage (X ;)

3 discrete time (i)



Case 2.a: data reconciliation

Voltage (X ;)

3 discrete time (i)



Case 2.b: data assimilation

Voltage (X ;)

3 discrete time (i)
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Context of this work: Mobile Millennium project

Mobile Millennium project: estimating traffic
conditions on highways and secondary
roads using multiple sources of data:

Dedicated infrastructure:

- Transponders (FasTrak)
- Speed radars

- Magnetometers

- Loop detectors

- Traffic cameras

http://traffic.berkeley.edu



Context of this work: Mobile Millennium project

Mobile Millennium project: estimating traffic
conditions on highways and secondary
roads using multiple sources of data:

Participatory sensing

- Phones

- Taxi location information
- Aftermarket devices

- Fleet location information

http://traffic.berkeley.edu



UC Berkeley

Context of this work: Mobile Millennium project

Taxi data, 2009-08-[01-20]
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Architecture of the Mobile Millennium system
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Real time traffic information system:
- more than 2 million data points a day (from the fi ~ xed infrastructure)
- more than 500 000 data points a day (from mobile s  ensing)
- more than 200 GB of data (cumulated)
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Problem description: state definition

System: highway section

The state of the system is described by the Moskowi  tz function M(t,x).

- We attribute consecutive labels n to the vehicles entering a
stretch of highway

- The Moskowitz function is a continuous function sat Isfying
M(t,x)=n
6 vehicle label
— 5 4 A
L 3 5

position

[Newell 93], [Daganzo 03,06]



Model: Hamilton-Jacobi PDE

The Moskowitz function satisfies the following Hamilton-J acobi
(HJ) partial differential equation (PDE), which can be deri  ved
from the Lighthill-wWhitham -Richards (LWR) PDE

OM(t, x) | JIMN(t, x)
T ~ 0
ot or

The function g iIs a parameter of the HJ PDE known as “flux
function” ——————

1000 2000

Source: PeMS

Flow w(p) (veh/h)

0 50 100
Density p (veh/mile)
[Lighthill, Whitham 55], [Richards 56], [Newell 93], [Daganzo 03,06]



Data (boundary conditions)

M(t,z)

To solve the PDE, one usually needs &

« Initial condition (satellite, camera)

« Upstream boundary condition (loop detector, radar)
«  Downstream boundary condition (loop detector, radar )

They are not always known, but we can use in additi

 Internal condition 1 (cellphone, taxi, fleet, after
* Internal condition 2 (cellphone, taxi, fleet, after

on.

market device)
market device)
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Model solution procedure

Input:

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

Output:

data (with error bounds), model parameter

Define the proper mathematical solution to the PDE
using control theory

Express the boundary conditions by piecewise
affine (PWA) functions

Express the solutions to the HJ PDE as semi-
analytic functions

Derive the model compatibility conditions as a
set of inequality constraints

Solve the problem numerically (LP, QP, GP)

possible traffic states compatible with the model a nd
the data

[Claudel, Bayen, IEEE TAC 09 a,b] [Claudel, Bayen, SIAM SICON 10 (in review)]




STEP 1: Mathematical solution procedure

Control theoretic definition of the solution to the HJ PDE

Controlled dynamical system:

{:L"(t) c F(x(t))

x(0) = xo
T'(t) = —1
F:= < 2/(t) = u(t)
y'(t) = —*(ult))

= sup  [p-u+¢(p)]
peDom(v)

[Aubin 91], [Cardaliaguet, Quincampoix, Saint Pierre 99], [Aubin, Bayen, Saint-Pierre 08]



STEP 1. Mathematical solution procedure

Control theoretic definition of the solution to the HJ PDE

Capture basin of a target:

Capture
basin

Set of initial points for
which there exists at
least one solution of the
dynamical system
reaching the target in
finite time

.
ey
Y
Y

Target (representing a o
¢ boundary condition) € = Epi(c)

[Aubin 91], [Cardaliaguet, Quincampoix, Saint Pierre 99], [Aubin, Bayen, Saint-Pierre 08]



STEP 1. Mathematical solution procedure

Control theoretic definition of the solution to the HJ PDE

Tangential property:

Capture

basi\n‘ The lower envelope of the

capture basin solves the
Hamilton-Jacobi PDE in the
Barron -Jensen/ Frankowska
sense

Target

Solution to the HJ PDE
[Crandall, Evans, Lions 84], [Aubin 91], [Aubin, Bay  en Saint-Pierre 08]



STEP 1. Mathematical solution procedure

Control theoretic definition of the solution to the HJ PDE

Data (from sensors)
Capture

basin ‘
\ Boundary conditions

3

Solve the HJ PDE with
these boundary conditions

3

Solution to the HJ PDE may
(or may not) satisfy all the
prescribed boundary
conditions

Target

Solution to the HJ PDE
[Crandall, Evans, Lions 84], [Aubin 91], [Aubin, Bay  en Saint-Pierre 08]



STEP 1: Mathematical solution procedure

Control theoretic definition of the solution to the HJ PDE

Capture
basin

N\

A set of boundary
conditions is compatible
with the model

There exists a solution to
the HJ PDE satisfying all
the boundary conditions

¢ 0 Target

[Aubin 91], [Aubin, Bayen, Saint-Pierre 08], [Claude |, Bayen, IEEE TAC 09 a]



STEP 2: express the data as PWA functions

The data generated by mobile phones or fixed detectors corre sponds
to a set of piecewise affine initial, boundary or internal co nditions

% Loop detectors

h=

)

o

Qo

/ Aftermarket device

Video or
satellite

Cellphone

time

[Claudel, Bayen, ACC 10 (accepted)], [Claudel, Baye n, SIAM SICON 10 (in review)]



STEP 3: develop a fast semi-analytical scheme

Standard schemes:
- Lax-Friedrichs
- Dynamic programming
- Level set methods

For piecewise affine initial,
boundary and internal
boundary conditions, the
solution to the HJ PDE is
the minimum of closed-
form expression functions

Advantages:
- Exact
- Faster

[Claudel, Bayen, IEEE TAC 09 bj

Example: solution the HJ PDE associated
with an affine internal condition

pe{1.2}

up(vi, q) € =0 (pp(vi, 1)),

i:g +E-'|! [f—gg ::l—-.t: if
up (vg.ge )+

~+00 it

Uy '::'“-5: 1) ?é —U
Uy (V3. q) = —1y

j}?[tt 'T'. .“-E 1 gI:I = {

My, (t,z) =
([ (8 wlpalvn @)t —6) + (zp — z)prlvp, i) + By
if o 4+ vt —d;) <z ]
and T1(t,x, v, q1) € t—3.5+1,t—3,5
(12)  Wlpalvr,g))(t —81) + (x1 — x)p2(vi, g1) +
if = 4+ vt —d;) =T .
and Ta(t, =z, vy, q1) € t—EH_l,t—E;

hy + (t —&p )" (T‘_f)

N _ t—ag _
if op4+wv(t—4;) <z and Ti(t,z, v, q1) =t — &
or if zp+w(t—2a;) 2 and Ta(t,z, v, q1) 2t —8;
(iv)  gp(dpp1 —ap) +hy +(t —dpp1)” (Iﬁw Ei:tﬂ_r)
if o +u(t—4;) <z and Ty(t, =z, v, q1) <t — 844

& (49d)

| or if x4 v(t—38;) > x and Ta(t, o, v, g1) <t —dp4q



STEP 3: develop a fast semi-analytical scheme

_ Example: solution the HJ PDE associated
Intermediate with an affine internal condition

computation pe{l,2}

if u, (v, q) # —
if uy(v,q) = —

Coefficients of the affine
Internal condition

[Claudel, Bayen, IEEE TAC 09 b]



STEP 4: compatibility conditions as convex inequalities

Problem : how can we check quickly if a set of coefficients (of
PWA boundary conditions) satisfies the model?

Loop detectors

PWA data
Aftermarket device

Speed radar

position

’M

Video or
satellite

Cellphone

time

Coefficients of the PWA boundary conditions

[Claudel Bayen, SIAM SICON 10 (in review)]



STEP 4: compatibility conditions as convex inequalities

Depends on the boundary =
condition coefficients

Viel

Checking that there exists a
solution to the Hamilton-Jacobi
PDE amounts to checking that a
set of convex inequalities is
satisfied

Explicit solutions to the HJ PDE
(depend on boundary condition
coefficients and model parameter)

[Claudel, Bayen, IEEE TAC 09 a,b]



STEP 4: compatibility conditions as convex inequalities

The inequalities defining the compatibility with the model are
convex in terms of the parameters of the PWA conditions

Coefficients of the PWA boundary conditions

[Claudel Bayen, SIAM SICON 10 (in review)]



STEP 5: implementation using convex programming

The set of parameters of the PWA conditions that are compatib le
with the data is also convex (with usual error models)

D

Coefficients of the PWA
boundary conditions

[Claudel Bayen, SIAM SICON 10 (in review)]



STEP 5: implementation using convex programming

Data assimilation and reconciliation problems: finding th e
minimum distance between M and D

Coefficients of the PWA
boundary conditions

[Claudel Bayen, SIAM SICON 10 (in review)]



STEP 5: implementation using convex programming

Bounds on PWA condition parameters (traffic parameters) x i

Coefficients of the PWA
boundary conditions

[Claudel Bayen, SIAM SICON 10 (in review)]
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Model parameter uncertainty

The model parameter  is usually uncertain. Nothing
guarantees that real data solves the model exactly.

M ()
e

Real value of the parameters
of the PWA conditions

1000 2000

Coefficients of the PWA boundary conditions

Flow w(p) (veh/h)

0 50 100
[Claudel, Bayen, Allerton CCC 2009] Density p (veh/mile)



Model parameter uncertainty

The real value of the parameters is guaranteed to satisfy the
HJ PDE, for a class of parameters g

M (yy)

Real value of the parameters
of the PWA conditions

\|’certificate |

1000 2000

Coefficients of the PWA boundary conditions

Flow w(p) (veh/h)

0 50 100
[Claudel, Bayen, Allerton CCC 2009] Density p (veh/mile)



Model parameter uncertainty

The real value of the parameters is guaranteed to satisfy the
HJ PDE, for a class of parameters g

M (yy)

D

Guaranteed bounds
on traffic parameters

Coefficients of the PWA boundary conditions

[Claudel, Bayen, Allerton CCC 2009]
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Fault detection In sensor infrastructure

PeMS loop detector network:

- 1200 sensors in the San Francisco Bay Area
- poor reliability (70% availability in average)
- detecting sensor failures is a big problem

Raw Data - 400498 (ML) Lane 3
Segment Type: VD5, Segment Name: 400498
05/04 /2009 04:00:00 to 05/04/2009 10:00:59

speed (mph)

04:00 05:00 0&:00 07:00 0800 09:00 10:00

[Claudel, Bayen, Allerton CCC 2009]



Fault detection In sensor infrastructure

PeMS loop detector network:

- 1200 sensors in the San Francisco Bay Area
- poor reliability (70% availability in average)
- detecting sensor failures is a big problem

Speed (mph)
15,060 Lane Points (75% Observed)
Segment Type: VDS, Segment Mame: 400808 .
04,/20/2009 00: 00:00 to 05/04/2009 23:59:59 (Days=Mo, Tu,We, Th,Fr) Status: gOOd!

&0 T T T T T T T T T T T T T T T T T T T
50

40

30

speed (mph)

Faal EXPORT TEAT | P EXPL. T to AL
#* s
20
Mame ¥D5|Type |Lane|Status/Recy'd|O:
10 Ashby 400308|Mainline 1|Good 1,507
Ave
: : : : : : : : : : . Azhby 400503|Mainline Z|Good 1,507
0 1 | 1 1 1 1 1 1 1 1 ! Ave
00:00 02:00 04:00 06:00 ©0B:00 10:00 12:00 14:00 16:00 1800 20:00 22:00 Ashby  400808|Mainline 3|Good 1,507
Ave
Ashby 400303|Mainling 4|iZoad 1,507
Minimum — Mean Maxirmum hve
. Ashby 400808[Mainline 5|Good 1,507
fime

[Claudel, Bayen, Allerton CCC 2009]



Fault detection In sensor Iinfrastructure

Model-based fault detection

Checking (on multiple sensors) that model, data
and sensor specifications (maximal error level)
are consistent

M

Coefficients of the PWA boundary conditions

[Claudel, Bayen, Allerton CCC 2009]




Fault detection In sensor Iinfrastructure

Minimal error certificates:

What is the minimal possible relative error of
both sensors so that the data is consistent

with the model ; :
Inconsistent

M

D (0% error)

D (20% error)

Coefficients of the PWA boundary conditions

D (40% error)
D (Spec error limit)
[Claudel, Bayen, Allerton CCC 2009]



Fault detection In sensor Iinfrastructure

Minimal error certificates:

What is the minimal possible relative error of
both sensors so that the data is consistent

with the model _
consistent

M

D (0% error)

D (20% error)

Coefficients of the PWA boundary conditions

D (40% error)
D (Spec error limit)

[Claudel, Bayen, Allerton CCC 2009]



Fault detection in sensor infrastructure

Example of sensor fault detection (actually sensor misplacement)
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Fault detection In sensor infrastructure

Example of sensor fault detection (actually sensor misplacement)
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Google Maps vs. HJ PDE
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Google Maps vs. HJ PDE
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Conclusion

Transformation of an estimation problem involving a nonsmooth,
nonlinear PDE into a convex optimization problem: e fficient way of
Integrating the model constraints into the estimati on problem

Can be used for different applications (not showed here), including:

- data assimilation

- data reconciliation

- security analysis

- user privacy analysis



