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Mobile sensing for solving societal challenges

Fusion of mobile pollution 
data with models, for air 
pollution monitoring

source: DHS/NASA

source: Seto UC Berkeley



Mobile sensing for solving societal challenges

Participatory sensing for traffic flow monitoring: 
fusion of fixed and mobile data into traffic models



Mobile sensing for solving societal challenges

Impact of desalination on water 
ecosystems: how can we assess it?
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model parameters and state of system
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Assume that any evolution trajectory of a system can be
represented as a point in a (high dimensional) vector space V

Measurement of the state at time t=3

Inverse modeling problems

V
Measurement of the state at time t=1

Measurement of the state at time t=2

State trajectory



The measurement data corresponds to a set of “possible state
trajectories” D of the system (i.e. trajectories that are compatible
with the measurement data)

D is not a single point because of:

- Measurement uncertainty
- Missing measurements

Inverse modeling problems

V

D
(data)



The model yields a set of “possible model trajectories” M (i. e.
trajectories that are compatible with the model)

M is not a single point since:

- The evolution trajectory depends upon the initial condition
- The model parameters may be uncertain

Inverse modeling problems

V

M
(model)



Case 1: compatibility between data and model

If both sets intersect, there exist state trajectories whic h are both
compatible with the model and the data

V

M
(model)

D
(data)



If both sets do not intersect, there are no state trajectorie s which
are both compatible with the model and the data. Two problems
might still be of interest

Case 2: incompatibility between data and model

[Evensen 07]
[Wu, Litrico, Bayen 08]
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Data reconciliation problem : finding the trajectory satisfying the
model closest to the data

Case 2.a: incompatibility between data and model

Solution to the “data reconciliation” 
problem

[Evensen 07]
[Wu, Litrico, Bayen 08]
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Data assimilation problem : finding the trajectory satisfying the
data closest to be a solution of the model

Case 2.b: incompatibility between data and model

Solution to the “data 
assimilation” problem

[Evensen 07]
[Wu, Litrico, Bayen 08]
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Introductory example

Consider the measurement of a battery’s voltage x over (disc rete)
time. If n discrete measurements are considered, the evolut ion
trajectory space V is R n

For n=3, the state trajectory is defined by (x 1,x2,x3)

x1 (voltage at time t=1)

x2 (voltage at time t=2)

x3 (voltage at time t=3)



Consider the simple discrete time linear model: x k+1= xk

Introductory example

M (model) 

x1 (voltage at time t=1)

x2 (voltage at time t=2)

x3 (voltage at time t=3)
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Case 1: compatible data

There can exist more than one solution to the
problem
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Case 2: incompatible data
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There exist no solution to the problem
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Case 2.a: data reconciliation
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Case 2.b: data assimilation
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Context of this work: Mobile Millennium project

Mobile Millennium project: estimating traffic 
conditions on highways and secondary 
roads using multiple sources of data:

Dedicated infrastructure:

- Transponders (FasTrak)
- Speed radars
- Magnetometers
- Loop detectors
- Traffic cameras

http://traffic.berkeley.edu



Context of this work: Mobile Millennium project

Mobile Millennium project: estimating traffic 
conditions on highways and secondary 
roads using multiple sources of data:

Participatory sensing

- Phones
- Taxi location information
- Aftermarket devices
- Fleet location information

http://traffic.berkeley.edu



Context of this work: Mobile Millennium project
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Architecture of the Mobile Millennium system
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Real time traffic information system: 
- more than 2 million data points a day (from the fi xed infrastructure)
- more than 500 000 data points a day (from mobile s ensing)
- more than 200 GB of data (cumulated)

today’s talk
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System: highway section

The state of the system is described by the Moskowi tz function M(t,x).

- We attribute consecutive labels n to the vehicles entering a 
stretch of highway

- The Moskowitz function is a continuous function sat isfying 
M(t,x)=n

Problem description: state definition

[Newell 93], [Daganzo 03,06]
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The Moskowitz function satisfies the following Hamilton-J acobi
(HJ) partial differential equation (PDE), which can be deri ved
from the Lighthill-Whitham -Richards (LWR) PDE

Model: Hamilton-Jacobi PDE

The function ψ is a parameter of the HJ PDE known as “flux
function”

[Lighthill, Whitham 55], [Richards 56], [Newell 93],  [Daganzo 03,06]
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Data (boundary conditions)

To solve the PDE, one usually needs

• Initial condition (satellite, camera)
• Upstream boundary condition (loop detector, radar)
• Downstream boundary condition (loop detector, radar )

They are not always known, but we can use in additi on:

• Internal condition 1 (cellphone, taxi, fleet, after market device)
• Internal condition 2 (cellphone, taxi, fleet, after market device)
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Model solution procedure

Input: data (with error bounds), model parameter

STEP 1: Define the proper mathematical solution to the PDE 
using control theory

STEP 2: Express the boundary conditions by piecewise 
affine (PWA) functions

[Claudel, Bayen, IEEE TAC 09 a,b] [Claudel, Bayen, SIAM SICON 10 (in review)] 

STEP 3: Express the solutions to the HJ PDE as semi-
analytic functions

STEP 4: Derive the model compatibility conditions as a 
set of inequality constraints

STEP 5: Solve the problem numerically (LP, QP, GP)

Output: possible traffic states compatible with the model a nd 
the data



Controlled dynamical system:

STEP 1: Mathematical solution procedure

Control theoretic definition of the solution to the HJ PDE

[Aubin 91], [Cardaliaguet, Quincampoix, Saint Pierre  99], [Aubin, Bayen, Saint-Pierre 08]



Capture 
basin

Capture basin of a target: 

Set of initial points for 
which there exists at 
least one solution of the 
dynamical system 

STEP 1: Mathematical solution procedure

Control theoretic definition of the solution to the HJ PDE

[Aubin 91], [Cardaliaguet, Quincampoix, Saint Pierre  99], [Aubin, Bayen, Saint-Pierre 08]

Target  (representing a 
boundary condition)

dynamical system 
reaching the target in 
finite time



Tangential property: 

The lower envelope of the 
capture basin solves the 
Hamilton-Jacobi PDE in the 
Barron -Jensen/ Frankowska

Capture 
basin

STEP 1: Mathematical solution procedure

Control theoretic definition of the solution to the HJ PDE

[Crandall, Evans, Lions 84], [Aubin 91], [Aubin, Bay en Saint-Pierre 08]

Barron -Jensen/ Frankowska
sense 

Solution to the HJ PDE

Target



Data (from sensors)

Boundary conditions

Capture 
basin

STEP 1: Mathematical solution procedure

Control theoretic definition of the solution to the HJ PDE

Solve the HJ PDE with 
these boundary conditions

Solution to the HJ PDE may 
(or may not) satisfy all the 

prescribed boundary 
conditions

[Crandall, Evans, Lions 84], [Aubin 91], [Aubin, Bay en Saint-Pierre 08]
Solution to the HJ PDE

Target



A set of boundary 
conditions is compatible 

with the model

STEP 1: Mathematical solution procedure

Capture 
basin

Control theoretic definition of the solution to the HJ PDE

[Aubin 91], [Aubin, Bayen, Saint-Pierre 08], [Claude l, Bayen, IEEE TAC 09 a] 

There exists a solution to 
the HJ PDE satisfying all 
the boundary conditions

Target



The data generated by mobile phones or fixed detectors corre sponds
to a set of piecewise affine initial, boundary or internal co nditions

po
si

tio
n

STEP 2: express the data as PWA  functions

Loop detectors

[Claudel, Bayen, ACC 10 (accepted)], [Claudel, Baye n, SIAM SICON 10 (in review)]
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Video or 
satellite



• Standard schemes:
- Lax-Friedrichs
- Dynamic programming
- Level set methods

• For piecewise affine initial,
boundary and internal

Example: solution the HJ PDE associated 
with an affine internal condition

STEP 3: develop a fast semi-analytical scheme

boundary and internal
boundary conditions, the
solution to the HJ PDE is
the minimum of closed-
form expression functions
Advantages:

- Exact
- Faster

[Claudel, Bayen, IEEE TAC 09 b]



Example: solution the HJ PDE associated 
with an affine internal condition

STEP 3: develop a fast semi-analytical scheme

Solution

Model parameter

Intermediate 
computation

[Claudel, Bayen, IEEE TAC 09 b]

Coefficients of the affine 
internal condition

Coordinates



Problem : how can we check quickly if a set of coefficients (of
PWA boundary conditions) satisfies the model?

STEP 4: compatibility conditions as convex inequalities

M 

[Claudel Bayen, SIAM SICON 10 (in review)]

Coefficients of the PWA boundary conditions

M 



Checking that there exists a 
solution to the Hamilton-Jacobi 
PDE amounts to checking that a 

Depends on the boundary 
condition coefficients

STEP 4: compatibility conditions as convex inequalities

PDE amounts to checking that a 
set of convex inequalities is 
satisfied

[Claudel, Bayen, IEEE TAC 09 a,b]

Explicit solutions to the HJ PDE 
(depend on boundary condition 

coefficients and model parameter) 



The inequalities defining the compatibility with the model are
convex in terms of the parameters of the PWA conditions

M 

STEP 4: compatibility conditions as convex inequalities

[Claudel Bayen, SIAM SICON 10 (in review)]

Coefficients of the PWA boundary conditions

M 



The set of parameters of the PWA conditions that are compatib le
with the data is also convex (with usual error models)

M 
D

STEP 5: implementation using convex programming

[Claudel Bayen, SIAM SICON 10 (in review)]

Coefficients of the PWA 
boundary conditions



Data assimilation and reconciliation problems: finding th e
minimum distance between M and D

STEP 5: implementation using convex programming

y

M 
D

Minimize ||x-y||

s.t.
x satisfies the convex inequality 
constraints(M)
y satisfies the convex inequality 
constraints (D)

[Claudel Bayen, SIAM SICON 10 (in review)]

x y

Coefficients of the PWA 
boundary conditions



Bounds on PWA condition parameters (traffic parameters) x i

STEP 5: implementation using convex programming

M 
D

[Claudel Bayen, SIAM SICON 10 (in review)]

Minimize  (or maximize) x i

s.t.
x satisifies the convex inequality 
constraints (M) and (D)

x

Coefficients of the PWA 
boundary conditions
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The model parameter ψ is usually uncertain. Nothing 
guarantees that real data solves the model exactly.

Model parameter uncertainty

M(ψ)

Real value of the parameters 
of the PWA conditions

[Claudel, Bayen, Allerton CCC 2009]
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Model parameter uncertainty

M(ψ1)

Real value of the parameters 
of the PWA conditions

The real value of the parameters is guaranteed to satisfy the
HJ PDE, for a class of parameters ψ

[Claudel, Bayen, Allerton CCC 2009]
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Model parameter uncertainty

M(ψ1)

The real value of the parameters is guaranteed to satisfy the
HJ PDE, for a class of parameters ψ

D

[Claudel, Bayen, Allerton CCC 2009]

Coefficients of the PWA boundary conditions

D

Guaranteed bounds 
on traffic parameters
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Fault detection in sensor infrastructure

PeMS loop detector network:

- 1200 sensors in the San Francisco Bay Area
- poor reliability (70% availability in average)
- detecting sensor failures is a big problem

[Claudel, Bayen, Allerton CCC 2009]
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550 mph!
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Fault detection in sensor infrastructure

PeMS loop detector network:

- 1200 sensors in the San Francisco Bay Area
- poor reliability (70% availability in average)
- detecting sensor failures is a big problem

Status: good! 

sp
ee

d 
(m

ph
)

time
[Claudel, Bayen, Allerton CCC 2009]

Status: good! 

Heavy congestion 
reported at 2:00AM! 



Fault detection in sensor infrastructure

Model-based fault detection

Checking (on multiple sensors) that model , data
and sensor specifications (maximal error level)
are consistent

M

[Claudel, Bayen, Allerton CCC 2009]

Coefficients of the PWA boundary conditions



Minimal error certificates:

What is the minimal possible relative error of 
both sensors so that  the data is consistent 
with the model

Fault detection in sensor infrastructure

M
inconsistent

D (20% error) 

Coefficients of the PWA boundary conditions

[Claudel, Bayen, Allerton CCC 2009]

D (0% error) 

D (40% error) D (Spec error limit) 



Minimal error certificates:

What is the minimal possible relative error of 
both sensors so that  the data is consistent 
with the model

Fault detection in sensor infrastructure

M
consistent

D (20% error) 

Coefficients of the PWA boundary conditions

[Claudel, Bayen, Allerton CCC 2009]

D (0% error) 

D (40% error) D (Spec error limit) 



Example of sensor fault detection (actually sensor misplacement) 

Fault detection in sensor infrastructure

consistent consistentinconsistent inconsistent

sensor 1 sensor 2 sensor 3 sensor 4 sensor 5



Example of sensor fault detection (actually sensor misplacement) 

Fault detection in sensor infrastructure
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Google Maps vs. HJ PDE

Setup:

February March 20 th, 2009
1:30PM (Friday afternoon congestion)

Google Maps Mobile MillenniumGoogle Maps Mobile Millennium



Google Maps vs. HJ PDE
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Transformation of an estimation problem involving a  nonsmooth, 
nonlinear PDE into a convex optimization problem: e fficient way of 
integrating the model constraints into the estimati on problem

Can be used for different applications (not showed here), including:

Conclusion

- data assimilation
- data reconciliation
- security analysis
- user privacy analysis 


