

#### Hsiao-Dong Chiang

Professor, Electrical and Computer Engineering



#### Research areas: (i) Electric Power Systems, (ii) Nonlinear Computation & Application in Circuits, systems, Signals and Images

- Modeling, analysis, stability and control of electric power systems (both transmission and distribution level)
- On-line Power system Security assessment and enhancement
- Smart Power Grids
- Nonlinear Systems Theory and Applications
- Global optimization and applications







Always search for excellence...

#### Research: Nonlinear System Theory, Computation and Applications in Electric Circuits, Systems, Signals and Images



A (Smart) Real-time PMU-assisted Power Transfer Limitation Monitoring and Enhancement System

Support Renewables on the Grid

- Exploring existing transmission infrastructure
- •Enhance control room situational awareness and early warning system

Dr. Hsiao-Dong Chiang





### An Example



- NYISO's Base-case power system (State estimation EMS using CIM-compliance format or PSSE format)
- Look-ahead scenario (proposed power transfer, look-ahead loads, look-ahead generation dispatch scheme, planned outage schedule)
- NYSIO's On-line Available transfer capability monitoring system and (smart) enhancements (i.e. increase ATC)

#### Monitoring & Analysis (Base-Case) Main Window



#### ATC Monitoring and Enhancement Systems

#### **Challenges and Opportunities**

- N-1 criteria
- Real-time network model
- Real-time data
- Verification of model and data
- On-line computation capability
- On-line optimization technologies



### Mega-blackout of 2003

- Affected customers: 10 million in Ontario, Canada; 40 million in 8 U.S. states
- Affected area: about 9,300 square miles
- Financial loss: an estimated \$6 billion.

#### Mega-blackout of 2003

- One important conclusion is the fact that the transmission network is the weakest link of the restructured power system.
- Impacts of major blackouts can be immense and very costly.

#### Contingencies



#### **Contingencies cause limits on power systems**



#### Hard Limits

**Transient (angle) instability** 

**Voltage instability** 

#### **Soft Limits**

Thermal-limit violation Voltage-limit violation

### Problem statements



# Considerations (ATC monitoring systems)

- 1. ATC of the base-case power system
- 2. ATC of base-case + contingencies
- 3. Which ones will cause ATC's limitation ? (insecure contingencies)
- 4. Which ones will push the system near its limitations ? (critical contingencies)
- 5. Where are the weak buses, weak areas ?

## **Computational Challenges**

- On-Line Transient Stability Assessments Requires solving
- One contingency involves a set of 15,000 differential equations + 40,000 nonlinear algebraic equations
- Need to fast and accurately solve 3000 contingencies in 5 minutes
- Traditional time-domain-based approach can not meet this requirements

## On-line TSA&C Requirements

- 12,000 plus buses in system model
- 1,300 generators
- 3000 contingencies
- 15-minute cycle for real-time EMS data
- 5 minutes in cycle allocated for contingency screening
- TEPCO-BCU screening performance target is 1.5 seconds to 2 seconds per contingency

#### System Model for Each Contingency

| $[\dot{x}_1 = f_1(x, y)]$            | $\left[0=g_1(x,y)\right]$ |
|--------------------------------------|---------------------------|
| $\dot{x}_2 = f_2(x, y)$              | $0 = g_2(x, y)$           |
| -                                    |                           |
|                                      |                           |
| $\dot{x}_{15,000} = f_{15,000}(x,y)$ |                           |
|                                      | $[0 = g_{40,000}(x, y)]$  |

#### **Time-Domain Approach**

- Speed: too slow for on-line applications
- Degree of Stability: no knowledge of degree of stability (critical contingencies vs highly stable contingencies)
- Control : do not provide information regarding how to derive effective control

|                                                                                                                                      | Time-Domain Approach                                                                                                        | Direct Methods (Energy Function)                                                                                                                                                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pre-Fault System                                                                                                                     | • (Pre-fault s.e.p.)                                                                                                        | • (Pre-fault s.e.p.)                                                                                                                                                                                                                                                                            |  |
| Fault-On System<br>$\dot{\mathbf{x}} = \mathbf{f}_{F}(\mathbf{x}, \mathbf{y})$<br>$\mathbf{t}_{0} < \mathbf{t} < \mathbf{t}_{cl}$    | <b>x(t)</b> end point of fault-on<br>trajectory<br>fault-on trajectory<br>$t = t_0$ $t = t_{cl}$ t<br>Numerical integration | <b>x(t)</b> end point of fault-on<br>trajectory<br>fault-on trajectory<br>$t = t_0$ $t = t_{cl}$ t<br>Numerical integration                                                                                                                                                                     |  |
| Post-Fault System<br>$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{y})$<br>$\mathbf{t_{cl}} < \mathbf{t} < \mathbf{t}_{\infty}$ | <b>x(t)</b> initial point of post-fault<br>trajectory<br>$t = t_{cl}$ t<br>Numerical integration                            | <ol> <li>The post-fault trajectory x(t)<br/>is not required</li> <li>If v(x(t<sub>cl</sub>))&lt; v<sub>cr</sub>, x(t) is stable.<br/>Otherwise, x(t) may be unstable.</li> <li>Direct stability assessment is based on<br/>an energy function and the associated<br/>critical energy</li> </ol> |  |

### History of Direct Methods

- an active research topic in the last 60 years
- originally proposed by Magnusson in 1947 (in his Doctor Thesis)
- most R&D works were based on heuristic and dormant (DOE spent multi-million in 1970s)
- A popular topic of Doctor thesis
- EPRI spent about \$10M in the 1980s and 1990s.

### History of Direct Methods

- R&D between 1950s and 1980s were based on heuristics and did not work.
- EPRI spent about \$10M in the 1980s and 1990s.
- Theoretical foundations were developed in 1987 by Chiang, Wu and Varaiya
- Practical methods, Controlling UEP method + BCU method, were developed in the 1990s.

## History of Direct Methods

- MOD (mode of disturbance) method (1970-1980s)
- PEBS method (by Kakimoto etc.)
- Acceleration machine method (Pavella etc.)
- Extended Equal Area Criteria (EEAC)
- Single-Machine-Equivalent-Bus (SIME)
- BCU method
- TEPCO-BCU method

#### **Computational Challenges**

**On-Line TSA Requires solving** 

- One contingency involves a set of 15,000 differential equations + 40,000 nonlinear algebraic equations
- Need to fast and accurately solve 3000 contingencies in 5 minutes
- Traditional time-domain-based approach can not meet this requirements



#### **TEPCO-BCU**

 TEPCO-BCU is developed under this direction by integrating BCU method, improved BCU classifiers, and BCU-guide time domain method. The evaluation results indicate that TEPCO-BCU works well on several study power systems including a 15,000-bus test system.

### Input Data

- Powerflow: is prepared using the real-time system snapshot and passed from EMS system.
- Dynamics: Dynamic data matches the real-time powerflow and passed from EMS system.

- Theoretical Foundation
- Design of Solution Algorithm
- Numerical Methods
- Implementations (Computer Programs)
- Industrial User Interactions
- Practical system installations

- Theoretical Foundation (gain insights and build <u>belief</u>)
- Theory of stability boundary
- Energy Function Theory (extension of Lyapunov function function)
- Energy Functions for Transient Stability Models (non-existence of analytical energy function)

- 1. Theoretical Foundation (gain insights and build <u>belief</u>)
- Theoretical Foundations of Direct Methods
- CUEP method and Theoretical foundation
- Theoretical Foundation of BCU method



sustained fault-on trajectory moves toward the stability boundary intersects it at the exit point. The exit point lies on the stable manifold of the controlling UEP of the fault-on trajectory.



If the fault is cleared before the fault-on trajectory reaches the exit point, then the fault-clearing point must lie inside the stability region. Hence, the post-fault trajectory starting from the fault-clearing point must converge to the post-fault SEP.



The controlling UEP method approximates the relevant stability boundary, which in this case is the stable manifold of the controlling UEP, by the constant energy surface, which passes through the controlling UEP.



The only scenario in which the controlling UEP method gives conservative stability assessments is the situation where the fault is cleared when the fault-on trajectory lies between the connected constant energy surface and the relevant stability boundary which is highlighted in the figure.

- 2. Design of <u>Solution algorithms</u>
- BCU method for computing CUEP
- BCU Classifiers
- High-yield BCU classifiers

#### **Important Implications**

- CUEP method is the "must"
- To directly compute CUEP of the original power system model is impossible.
- Analytical results serve to explain why previous direct methods developed in the 1970s and 1980s did not work
- Analytical results provide directions for developing BCU method
- Do not pursue analytical energy functions

#### Fundamentals of BCU Method

 What: a boundary of stability region based controlling unstable equilibrium point method to compute the critical energy
 Basic Ideas: Given a power system stability model (which admits an energy function), the BCU method computes the controlling u.e.p. of the original model via the controlling u.e.p. of a dimension-reduction system whose controlling u.e.p. can be easily, reliabily computed.

### Fundamentals of the BCU Method

<u>Step 1</u>: define an artificial, dimensionreduction system satisfying the static as well as dynamic properties.

(**how ?**) explores special properties of the underlying original model

<u>Step 2</u>: find the controlling u.e.p. of the

dimension-reduction system

(**how?**) explores the special structure of the stability boundary and the energy function of the dimension-reduction system.

### Fundamentals of the BCU Method

<u>Step 3</u>: find the controlling u.e.p. of the original system.

(**How** ?) relates the controlling u.e.p. of the artificial system to the controlling u.e.p. of the original system with theoretical supports.



#### Static and Dynamic Relationships

## Spirits of BCU Method

- Explores the special structure of the underlying model so as to define an artificial, reduced-state model which captures all the equilibrium points on the stability boundary of the original model, and then
- Computes the controlling u.e.p. of the original model via computing the controlling u.e.p. of the reduced-state, which can be efficiently computed without resorting to an iterative timedomain procedure.

#### Challenges for Practical Applications of Direct

| Challenges                 | Descriptions                                                                                                                                                                                                                                        | <b>Possible Solutions</b>                                                                                                         |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Modeling (I)               | Models admitting energy functions                                                                                                                                                                                                                   | Development of a systematic way to construct energy functions                                                                     |
| Modeling (II)              | Post-fault system needs to be an autonomous system                                                                                                                                                                                                  | The fault-sequence must be specified                                                                                              |
| Condition (I)              | Existence of post-fault s.e.p.                                                                                                                                                                                                                      | Computation and verification                                                                                                      |
| Condition (II)             | The pre-fault s.e.p. lies inside the stability region of the post-fault s.e.p.                                                                                                                                                                      | Computation and verification                                                                                                      |
| Scenario                   | Requires the initial condition of the post-fault system                                                                                                                                                                                             | Inherent problem (numerical integration of fault-on system)                                                                       |
| Accuracy (I)               | Non-existence of analytical energy functions for general transient stability models                                                                                                                                                                 | Numerical energy function                                                                                                         |
| Accuracy (II)              | Direct methods, except the controlling u.e.p. method, give either conservative or over-estimate stability assessments                                                                                                                               | Controlling u.e.p. method                                                                                                         |
| Accuracy (III)             | Controlling u.e.p.method always gives conservative stability assessments                                                                                                                                                                            | Further development                                                                                                               |
| Controlling<br>u.e.p. (I)  | <ol> <li>Various definitions of controlling u.e.p.</li> <li>The controlling u.e.p. is the first u.e.p. whose stable manifold is hit by the fault-on trajectory (at the exit point)</li> </ol>                                                       | BCU method uses the precise definition of controlling u.e.p.                                                                      |
| Controlling<br>u.e.p. (II) | <ol> <li>The computation of the exit point usually requires the bruce force<br/>time-domain approach</li> <li>The existing methods proposed to compute the controlling u.e.p.<br/>based on the original power system models usually fail</li> </ol> | BCU method and its improvements                                                                                                   |
| Function                   | Applicable for only first-swing stability analysis                                                                                                                                                                                                  | <ol> <li>Use transient stability model valid for<br/>multi-swing stability analysis</li> <li>Controlling u.e.p. method</li> </ol> |



#### LEARN HOW TO IMPLEMENT BCU METHODS FOR FAST DIRECT Stability assessments of electric power systems

CHIANG

Direct Methods for Stability Analysis of Electric Power Systems

Ŵ

WILEY

Electric power providers around the world rely on stability analysis programs to help ensure uninterrupted service to their customers. These programs are typically based on step-by-step numerical integrations of power system stability models to simulate system dynamic behaviors. Unfortunately, this off-line practice is inadequate to deal with current operating environments. For years, direct methods have held the promise of providing real-time stability assessments; however, these methods have presented several challenges and limitations.

This book addresses these challenges and limitations with the BCU methods developed by author Hsiao-Dong Chiang. To date, BCU methods have been adopted by twelve major utility companies in Asia and North America. In addition, BCU methods are the only direct methods adopted by the Electric Power Research Institute in its latest version of DIRECT 4.0.

Everything you need to take full advantage of BCU methods is provided, including

- Theoretical foundations of direct methods
- Theoretical foundations of energy functions
- BCU methods and their theoretical foundations
- Group-based BCU method and its applications
- Numerical studies on industrial models and data

Armed with a solid foundation in the underlying theory of direct methods, energy functions, and BCU methods, you'll discover how to efficiently solve complex practical problems in stability analysis. Most chapters begin with an introduction and end with concluding remarks, making it easy for you to implement these tested and proven methods that will help you avoid costly and dangerous power outages.

HSIAO-DONG CHIANG, PHD, a Fellow of IEEE, is Professor of Electrical and Computer Engineering at Cornell University. Dr. Chiang is the Founder of Bigwood Systems, Inc. and Global Optimal Technology, Inc. as well as the Co-founder of Intelicis Corporation. Dr. Chiang's research and development activities range from fundamental theory development to practical system installations. He and his group at Cornell have published more than 300 refereed journal and conference papers. Professor Chiang's research focuses on nonlinear system theory and nonlinear computations and their practical applications to electric circuits, systems, signals, and images. He was awarded ten US patents and four patents from overseas countries.

Cover Design: Michael Rutkowski

Subscribe to our free Engineering «Newsletter at wiley.com/enewsletters Visit wiles.com/engineering.





#### Direct Methods for Stability Analysis of Electric Power Systems

Theoretical Foundation, BCU Methodologies and Applications

HSIAO-DONG Chiang

**WILEY** 





#### PJM as Part of the Eastern Interconnection

No.

KEN OTATIOTICO





| RET STATISTICS              |           |
|-----------------------------|-----------|
| PJM member companies        | 400+      |
| millions of people served   | 51        |
| peak load in megawatts      | 145,000   |
| MWs of generating capacity  | 165,738   |
| miles of transmission lines | 56,070    |
| GWh of annual energy        | 700,000   |
| generation sources          | 1,082     |
| square miles of territory   | 164,260   |
| area served 13 st           | ates + DC |

26% of generation in Eastern interconnection\* 23% of load in Eastern interconnection\* 19% of transmission assets in Eastern Interconnection\*



## **PJM Evaluation Results**

 (1) Reliability measure: TEPCO-BCU consistently gave conservative stability assessments for each contingency during the three-month evaluation time. TEPCO-BCU did not give overestimated stability assessment for any contingency.

### **PJM Evaluation Results**

• For a total of 5.29 million contingencies, TEPCO-BCU captures all the unstable contingencies.

#### Table 1.Reliability Measure

| Total No. of contingency | Percentage of capturing<br>unstable contingencies |
|--------------------------|---------------------------------------------------|
| 5293691                  | 100%                                              |

### Speed:

 TEPCO-BCU consumes a total of 717575 CPU seconds. Hence, on average, TEPCO-BCU consumes about 1.3556 second for each contingency.

#### Table 2. Speed Assessment

| Total No. of contingency | Computation Time | Time/per<br>contingency |
|--------------------------|------------------|-------------------------|
| 5293691                  | 717575 seconds   | 1.3556<br>second        |

### Screening measure:

 Depending on the loading conditions and network topologies, the screening rate ranges from 92% to 99.5%

#### Table 3. Screening Percentage Assessment

| Total No. of contingency | Percentage Range |
|--------------------------|------------------|
| 5293691                  | 92% to 99.5 %    |

#### A summary

 The overall performance indicates that TEPCO-BCU is an excellent screening tool These unstable contingencies exhibit firstswing instability as well as multi-swing instability.

## Table 4. Overall performance of TEPCO-BCU for on-linedynamic contingency screening

| Reliability | Screening    | Computation | on-line     |
|-------------|--------------|-------------|-------------|
| measure     | measurement  | speed       | computation |
| 100%        | 92% to 99.5% | 1.3 second  | Yes         |

## **Concluding Remarks**

- A comprehensive evaluation study of the TEPCO-BCU package in a real time environment as a screening tool for on-line transient stability assessment has been presented.
- TEPCO-BCU package is an excellent dynamic contingency screening tool for on-line transient stability analysis of largescale power systems.

### **Concluding Remarks**

This evaluation study represents the largest practical application of the stability region theory and its estimation of relevant stability region behind the BCU methodology in terms of the size of the study system which is a 14,000-bus power system dynamic model with a total of 5.3 million contingencies.

#### **Concluding Remarks**

This confirms our belief that theory-based solution methods can lead to practical applications in large-scale nonlinear systems.

|             | Dynamic Security<br>Assessment | <b>CPFLOW</b><br><b>Transient-Stability</b><br><b>ATC Evaluation</b> | Minimum-Number<br>Preventive Control |
|-------------|--------------------------------|----------------------------------------------------------------------|--------------------------------------|
| TEPCO-      | Very                           | Very                                                                 | Excellent                            |
| BCU         | Good                           | Good                                                                 |                                      |
| Time-Domain | Good                           | Not                                                                  | No Such                              |
| Simulations |                                | Good                                                                 | Capability                           |

|                            | Minimum-Cost<br>Preventive Control | Minimum-Number<br>Enhancement<br>Control | Minimum-Cost<br>Enhancement<br>Control |
|----------------------------|------------------------------------|------------------------------------------|----------------------------------------|
| TEPCO-<br>BCU              | Excellent                          | Excellent                                | Excellent                              |
| Time-Domain<br>Simulations | No Such<br>Capability              | No Such<br>Capability                    | No Such<br>Capability                  |

#### Improving transient stability



#### **Control Developments**

- 1. Preventive control (against all insecure contingencies)
- 2. Enhancement control (to increase load margins for critical contingencies)

#### Improved CCT's on IEEE145

Scheme: Minimal # of control (Rank 1- Rank 50 pair MW Shift) Single contingency

| Contingency | Fault- bus: fault- | Original CCT | Maximum CCT | %           |
|-------------|--------------------|--------------|-------------|-------------|
| #           | line               |              | after       | Improvement |
|             |                    |              | enhancement |             |
| 1           | 7: 7, 6            | 0.16103      | Co48 Pals   | 203.8 %     |
| 2           | 59: 59, 72         | 0.25914      | 0.43190     | 66.67 %     |
| 3           | 112: 112, 69       | 0.27209      | 6.0462      | 2122.13%    |
| 4           | 91: 91, 75         | 0.29763      | 0.53721     | 80.5%       |
| 5           | 6: 6, 1            | 0.17822      | 4.39887     | 2368.22%    |
| 6           | 12: 12, 14         | 0.33291      | 0.53222     | 59.87%      |
| 7           | 6: 6, 10           | 0.26490      | 3.29890     | 1145.34%    |
| 8           | 33: 33, 49         | 0.21777      | 0.41671     | 91.35%      |
| 9           | 69: 69, 32         | 0.13749      | 0.31002     | 125.49%     |
| 10          | 105: 105, 73       | 0.19812      | 0.26773     | 35.14%      |
| 11          | 59: 59, 103        | 0.23701      | 5.67811     | 2295.726%   |
| 12          | 66: 66, 8          | 0.30105      | 2.33595     | 675.93%     |

#### Effects on stability boundary



• Relevant stability boundaries can be stretched to increase stability and critical clearing times.

#### Enhancement control results on Structure-Preserving Models (DAE)

| Contingency | Fault- bus: fault- | Original CCT | Maximum CCT        | %           |
|-------------|--------------------|--------------|--------------------|-------------|
| #           | line               |              | after              | Improvement |
|             |                    |              | enhancement        |             |
| 1           | 7: 7, 6            | 0.1539       | <b>consta</b> rb1s | 238.5965 %  |
| 2           | 59: 59, 72         | 0.2633       | 0.4592             | 74.40182 %  |
| 3           | 112: 112, 69       | 0.2631       | 8.3104             | 3058.647 %  |
| 4           | 91: 91, 75         | 0.301        | 0.6271             | 108.3389 %  |
| 5           | 6: 6, 1            | 0.1667       | 4.4899             | 2593.401 %  |
| 6           | 12: 12, 14         | 0.3209       | 0.5936             | 84.97974 %  |
| 7           | 6: 6, 10           | 0.2713       | 4.296              | 1483.487 %  |
| 8           | 33: 33, 49         | 0.2007       | 0.4371             | 117.7877 %  |
| 9           | 69: 69 <i>,</i> 32 | 0.1408       | 0.3532             | 150.8523 %  |
| 10          | 105: 105, 73       | 0.2021       | 0.2935             | 45.22514 %  |
| 11          | 59: 59, 103        | 0.2442       | 5.798              | 2274.283 %  |
| 12          | 66: 66, 8          | 0.3135       | 2.4021             | 666.2201 %  |

The enhancement control scheme is also effective on SP model

### My Belief

solving practical problems efficiently and reliably can be accomplished through

- a thorough understanding of the underlying theory, in conjunction with
- exploring the features of the practical problem under study