Market Model and Algorithmic Design for Demand Response in Power Networks

Lijun Chen, Na Li, and Steven Low

Computing and Mathematical Sciences California Institute of Technology

April 18, 2011

Demand response

Use incentive mechanisms such as real-time pricing to induce customers/appliances to shift usage or reduce (even increase) consumption

Demand response techniques

- □ Smart appliances responding to price/event signals
- Load shifting technologies such as storage
- Peak-eliminating techniques such as distributed generation or simply turning off appliances
- ...

Enabler

Smart grid

- Timely two-way communications between customers and utility companies
- Individual customers and appliances are empowered with certain computing capability
- High speed WAN allows real-time and global monitoring at control centers
- High performance computing allows faster control decisions

Outline

- Motivation for demand response
- Main issues in demand response design
- Demand response: Match the supply
- Demand response: Shape the demand

Time-varying demand

Electricity demand is highly time-varying

Provision for peak load

- Low load factor
 - US national load factor is about 55%
- Underutilized
 - 10% of generation and 25% of distribution facilities used less than 5% of the time

Source: DoE, Smart Grid Intro, 2008

Shape the demand

- Reduce peak load
- Flatten load profile

Benefits

- Lower generation cost
- Larger safety margin
- Reduce or slow down the need for new generation and distribution infrastructure

Uncertainty of renewables

Source: Rosa Yang

Uncertainty of renewables

Source: Rosa Yang

Dealing with uncertainty

- Reduce uncertainty by
 - Aggregating supply types
 - Aggregating over space
 - Aggregating over time (but large-scale storage is currently not available)
- Accommodate uncertainty
 - Reliability as resource to trade off
 - Optimize risk tolerance
 - Match time-varying supply (demand response)

Outline

- Motivation for demand response
- □ Main issues in demand response design
- Demand response: Match the supply
- Demand response: Shape the demand

Main challenge

Matching supply and demand

- Market challenge
 - achieve efficient and economic generation, delivery, and consumption
- Engineering challenge

electricity must be consumed at the moments it is generated

Overall structure

Main issues

The role of utility as an intermediary

- Play in multiple wholesale markets to provision aggregate power to meet demands
- □ Resell, with appropriate pricing, to end users
- Provide two important values
 - Aggregate demand at the wholesale level so that overall system is more efficient
 - Absorb large uncertainty/complexity in wholesale markets and translate them into a smoother environment (both in prices and supply) for end users.

How to quantify these values and price them in the form of appropriate contracts/pricing schemes?

Main issues

our focus

Utility/end users interaction

- Design objective
 - Welfare-maximizing, profit-maximizing, ...
- Distributed implementation
- Real-time demand response

The impact of distribution network

- i.e., put in physical network (Kirkoff Law, and other constraints)
- How does it change the algorithm and optimality
- Can we exploit radial structure of distribution network

Retail market

Retail (utility-user) essentially uses fixed prices

□ Tiered, some time-of-day

Demand response will (likely) use real-time pricing to better manage load

How should utility company design real-time retail prices to optimize demand response?

The basics of supply and demand

Supply function: quantity supplied at given price

q = S(p)

Demand function: quantity demanded at given price

q = D(p)

□ Market equilibrium: (q^*, p^*) such that $q^* = S(p^*) = D(p^*)$

□ No surplus, no shortage, price clears the market

Competitive vs oligopolistic markets

- Competitive market: no market participant is large enough to have market power to set the price
 - Price-taking behavior
 - e.g., individual residential customers
- Oligopolistic market: (a few) market players can influence and be influenced by the actions of others
 - Price-anticipating behavior
 - e.g., large commercial customers

Utility function

 \Box Given the set X of possible alternatives, a function

 $U: X \to R$

is a utility function representing preference relation among alternatives, if for all $x, y \in X$,

"x is at least as good as y" $\Leftrightarrow U(x) \ge U(y)$ U inelastic x To use utility function to characterize preferences is a fundamental assumption in economics

Outline

- Motivation for demand response
- Main issues in demand response design
- Demand response: Match the supply
- Demand response: Shape the demand

Problem setting

Supply deficit (or surplus) on electricity: *d* weather change, unexpected events, ...

- **Supply is inelastic**
 - □ because of technical reasons such as supply friction

<u>**Problem</u>**: How to allocate the deficit/surplus among demand-responsive customers?</u>

□ load (demand) as a resource to trade

Supply function bidding

D Customer $i \in N$ load to shed: q_i

Customer *i* supply function (SF): $q_i(b_i, p) = b_i p$

□ parameterized by $b_i \ge 0$; $b \triangleq (b_i)_{i \in N}$

- the amount of load that the customer is committed to shed given price p
- Market-clearing pricing:

$$\sum_{i} q_{i}(b_{i}, p) = d$$

$$p = p(b) \triangleq d / \sum_{i} b_{i}$$

Parameterized supply function

- Adapts better to changing market conditions than does a simple commitment to a fixed price or quantity (Klemper & Meyer '89)
 - widely used in the analysis of the wholesale electricity markets
 - Green & Newbery '92, Rudkevich et al '98, Baldick et al '02, '04, ...

Parameterized SF

- easy to implement
- control information revelation
- ...

Optimal demand response

- Customer *i* cost (or disutility) function: $C_i(q_i)$
 - continuous, increasing, and strictly convex
- Competitive market and pricetaking customers
- Given price *p*, each customer *i* solves

 $\max_{b_i} pq_i(b_i, p) - C_i(q_i(b_i, p))$

Competitive equilibrium

Definition: A competitive equilibrium (CE) is defined as a tuple $\{(b_*^*)_{i \in N}, p^*\}$ such that

$$b_{i}^{*} = \arg \max_{b_{i} \ge 0} p^{*} q_{i}(b_{i}, p^{*}) - C_{i}(q_{i}(b_{i}, p^{*})), \forall i$$
$$\sum_{i} q_{i}(b_{i}^{*}, p^{*}) = d$$

Theorem: There exist a unique CE. Moreover, the equilibrium is efficient, i.e., maximizes social welfare

$$\max_{q_i} -C_i(q_i) \quad \text{s.t.} \quad \sum_i q_i = d$$

Proof

Show the equilibrium condition is the optimality condition (KKT) of the optimization problem

Iterative supply function bidding

Upon receiving the price information, each customer *i* updates its supply function

$$b_i(k) = \left[\frac{(C_i')^{-1}(p(k))}{p(k)}\right]^+$$

Upon gathering bids from the customers, the utility company updates price

$$p(k+1) = [p(k) - \gamma(\sum_{i} b_{i}(k)p(k) - d)]^{+}$$

Requires

- timely two-way communication
- certain computing capability of the customers

$$p(k+1) = [p(k) - \gamma(\sum_{i} b_{i}(k)p(k) - d)]^{+}$$

utility company:
deficit d

$$p(k) / p(k + 1)$$

$$p(k) / b_{1}(k + 1)$$

customer 1:

$$b_{1}(k) = [\frac{(C_{1}')^{-1}(p(k))}{p(k)}]^{+}$$

Strategic demand response

 Oligopoly market and price-anticipating customer

$$p = p(b) \triangleq d / \sum_{i} b_i$$

Given others' supply functions b_{-i} , each customer i solves

$$\max_{b_i} u_i(b_i, b_{-i})$$

with

 $u_i(b_i, b_{-i}) = p(b)q_i(b_i, p(b)) - C_i(q_i(b_i, p(b)))$

It is a game

Game-theoretic equilibrium

■ **Definition**: A supply function profile b^* is a Nash equilibrium (NE) if, for all customers *i* and $b_i \ge 0$,

 $u_i(b_i^*, b_{-i}^*) \ge u_i(b_i, b_{-i}^*).$

Theorem: There exists a unique NE when the number of customers is larger than 2. Moreover, the equilibrium solves

$$\max_{0 \le q_i \le d/2} -D_i(q_i) \quad \text{s.t.} \quad \sum_i q_i = d$$

$$D_i(q_i) = (1 + \frac{q_i}{d - 2q_i})C_i(q_i) - \int_0^{q_i} \frac{d}{(d - 2x_i)^2}C_i(x_i)dx_i$$

Proof

Show the equilibrium condition is the optimality condition (KKT) of the optimization problem.

Nash Equilibrium
 Optimization

 max

$$pq_i(p(b), p) - C_i(q_i(p(b), p))$$
 $max_{q_i} - D_i(q_i)$ s.t. $\sum_i q_i = d$
 $= d^2b_i / (\Sigma_j b_j)^2 - C_i(db_i / \Sigma_j b_j)$
 $max_{q_i} - D_i(q_i)$ s.t. $\sum_i q_i = d$
 $\sum_i q_i(b_i, q) = d$
 $-\int_0^{q_i} d / (d - 2x_i)^2 C_i(x_i) dx_i$
 $(p^* - (1 + \frac{q_i^*}{d - 2q_i^*}) C_i'(q_i^*)) (b_i p^* - q_i^*) \le 0$
 $(p^* - (1 + \frac{q_i^*}{(d - 2q_i^*)}) C_i'(q_i^*)) (q_i - q_i^*) \le 0$
 $\sum_i b_i^* p^* = d$
 $(p^* - (1 + \frac{q_i^*}{(d - 2q_i^*)}) C_i'(q_i^*)) (q_i - q_i^*) \le 0$
 $\forall q_i \ge 0$
 $\sum_i q_i^* = d$
 $p^* > 0$

Iterative supply function bidding

Each customer *i* updates its supply function

$$b_i(k) = \left[\frac{(D_i')^{-1}(p(k))}{p(k)}\right]^+$$

The utility company updates price

$$p(k+1) = [p(k) - \gamma(\sum_{i} b_{i}(k)p(k) - d)]^{+}$$

 $p(k+1) = [p(k) - \gamma(\sum b_i(k)p(k) - d)]^+$ utility company: deficit dp(k) / p(k+1) $h_{h_{1}}(k) / b_{1}(k+1)$ customer 1: $b_i(k) = \left[\frac{(D_i')^{-1}(p(k))}{p(k)}\right]^+$

Numerical example

Optimal supply function bidding (upper panels) v.s. strategic bidding (lower panels)

Outline

- Motivation for demand response
- Main issues in demand response design
- Demand response: Match the supply
- Demand response: Shape the demand

Problem setting

- Load is deferrable and reducible
- Subject to various constraints, depending on the types of appliances
 - minimal/maximal load over certain period of time
 - minimal/maximal load at each time
 - □ battery has finite capacity and usage-dependent cost

• ...

<u>**Problem</u>**: How to shape deferrable load over certain period of time, so as to reduce peak, flatten load profile and even conserve energy?</u>

Customer-side model (abstract)

\Box Each customer *i*, each of the appliances $a \in A_i$:

- □ Load at time $t : q_{i,a}(t)$; define: $q_{i,a} \triangleq (q_{i,a}(t))_{t \in T}$
- □ Load constraint: $q_{i,a} \in C_{i,a}$
- Total load at time t: $Q_i(t) = \sum_a q_{i,a}(t) + r_i(t)$ Utility: $U_{i,a}(q_{i,a})$
- The appliances divided into 4 categories

 \square Energy Storage: one battery for each customer i

□ Load at time *t*: $r_i(t)$; define $r_i \triangleq (r_i(t))_{t \in T}$

positive means charging

negative means discharging

□ Load constraints: $r_i \in R_i$

Cost function: $D_i(r_i)$

Utility-side model

The utility company incurs cost C(Q) when the supply is Q
 convex, with a positive, increasing marginal cost

Piecewise quadratic cost functions

$$C(Q) = \begin{cases} c_1 Q^2 + b_1 Q + a_1; & 0 \le Q \le Q_1 \\ c_2 Q^2 + b_2 Q + a_2; & Q_1 \le Q \le Q_2 \\ & \vdots \\ c_m Q^2 + b_m Q + a_m; & Q_{m-1} \le Q \end{cases}$$

with

$$c_m > c_{m-1} > \cdots > c_1 > 0$$

Utility-side model

Objective: induce customers' consumption to maximize **social welfare**

$$\begin{split} \max_{q,r} & \sum_{i} \left(\sum_{a \in A_{i}} U_{i,a} \left(q_{i,a} \right) - D_{i}(r_{i}) \right) - \sum_{t} C \left(\sum_{i} Q_{i}(t) \right) \\ \text{s.t.} & q_{i,a} \in C_{i,a} \\ & r_{i} \in R_{i} \\ & 0 \leq Q_{i}(t) \leq Q_{i}^{\max} \end{split}$$

proof of conception, to see how effective real-time pricing can be

Utility-customer interaction

□ Utility sets prices $p \triangleq (p(t))_{t \in T}$ to induce customer behaviors

Customer *i* maximizes his own **net benefit**

$$\max_{q_i, r_i} \sum_{a} U_{i,a} \left(q_{i,a} \right) - D_i(r_i) - \sum_{t} Q_i(t) p(t)$$

s.t. $q_{i,a} \in C_{i,a}$
 $r_i \in R_i$
 $0 \le Q_i(t) \le Q_i^{\max}$

Market equilibrium

- **Definition**: The prices and customer demands $(p^*, q_{i,a}^*, r_i^*)$ is in equilibrium if $(q_{i,a}^*, r_i^*)$ maximizes the social-welfare, and also maximizes customer i net benefit for given price p^* .
- **Theorem**: There exists an equilibrium $(p^*, q^*_{i,a}, r^*_i)$. Moreover, the equilibrium price $p^*(t) = C'(\sum Q^*_i(t))$.
 - follow from the welfare theorem and imply that setting the price to be the marginal cost of power is optimal
 - similar proof

Customer-side model (appliances)

Air Conditioner Refrigerator

Etc

Utility function: $U_{i,a}(q_{i,a}) = \sum_{t} U_{i,a}(T_{i,a}(t), T_{i,a}^{comf})$ temperature $T_{i,a}^{\min} \leq T_{i,a}(t) \leq T_{i,a}^{\max}$ $T_{i,a}(t) = g(T_{i,a}(t-1), q_{i,a}(t))$ $0 \leq q_{i,a}(t) \leq q_{i,a}^{\max}(t)$

PHEV Washer Etc

Utility function:
$$U_{i,a}(q_{i,a}) = U_{i,a}\left(\sum_{t} q_{i,a}(t)\right) U$$

Constraints: $0 \le q_{i,a}(t) \le q_{i,a}^{\max}(t)$
 $Q_{i,a}^{\min} \le \sum_{t} q_{i,a}(t) \le Q_{i,a}^{\max}$

Customer-side model (appliances)

Utility function: $U_{i,a}(q_{i,a}) = \sum_{t} U_{i,a}(q_{i,a}(t), t)$ Constraints: $0 \le q_{i,a}(t) \le q_{i,a}^{\max}(t)$

Utility function: $U_{i,a}(q_{i,a}) = \sum_{t} U_{i,a}(q_{i,a}(t), t)$ Constraints: $0 \le q_{i,a}(t) \le q_{i,a}^{\max}(t)$ $Q_{i,a}^{\min} \le \sum_{t} q_{i,a}(t) \le Q_{i,a}^{\max}$ a crude model

Customer-side model (Battery)

Cost function:

$$D_{i}(r_{i}) = \eta_{1} \sum_{t} r_{i}^{2}(t) - \eta_{2} \sum_{t} r_{i}(t) r_{i}(t+1) + \eta_{3} \sum_{t} (\min\{B_{i}(t) - \delta B_{i}, 0\})^{2}$$

charging charging -dis deep discharging
& discharging cycles
Constraints:

$$O \leq B_{i}(t) \leq B_{i}$$

$$B_{i}(T) \geq \gamma_{i} B_{i}$$

$$r_{i}^{\min} \leq r_{i}(t) \leq r_{i}^{\max}$$

Numerical example: no battery

4 households with people at home all the day;4 with no person at home during day time

Numerical example: with battery

Numerical example

Numerical experiments

Concluding remarks

Demand response: Match the supply

- iterative supply function bidding (competitive vs oligopolistic)
- Demand response: Shape the demand
 - Real-time pricing based on marginal cost is "ideally" very effective
- Future work: extend the models to study the aforementioned issues in demand response design
 - Current focus: real-time demand response; coordinated control with Volt/Var

References

- Two Market Models for Demand Response in Power Networks, L. Chen, N. Li, S. Low and J. Doyle, IEEE SmartGridComm, 2010. <u>http://cds.caltech.edu/~chen/papers/DemandResponse.pdf</u>
- Optimal Demand Response Based on Utility Maximization in Power Networks, L. Chen, N. Li and S. Low, IEEE PESGM 2011. <u>http:\\cds.caltech.edu\~chen\papers\ODemandResponse.pdf</u>

Thanks