Message passing for integrating and assessing renewable generation in a redundant power grid

Lenka Zdeborová (Los Alamos Natl. Lab.)
in collaboration with
Scott Backhaus (LANL)
Misha Chertkov (LANL) LDRD project 2010-2012

Optimization \& Control Theory for Smart Grids

http://cnls.lanl.gov/~chertkov/SmarterGrids/ (or google "Chertkov" and follow "smart grid" link)

Information science foundations for the Smart Grid

Optimization \& Control Theory for Smart Grids

Smart Grid as a National Grand Challenge
neopmetens tor smut onse

 -

Lontroen LARL apperin
-
-
-
Approach

Ons Cantrol
 antioned coneritivg
Ond Dowion

* wid movinhy
- TOR NASUS
design control stability

Optimization \& Control Theory for Smart Grids

design

 control stability
Assessing renewable generation

- Intermittent renewable-sources-based generation destabilizes the grid. How to improve grid control schemes?
- If renewable sources produce power x, how much can be saved on the level of the firm generation?

Improvement trough redundancy

- Build additional power lines and introduce switches (on / off = power line connected to / disconnected from the network)
- Redundancy must help to optimize both stability and efficiency - larger space to optimize over. But how much does redundancy help?

Methodology:

- Approach A: Take a realistic power grid model and several computers and run simulations. Do again when details change ...
- Approach B (probabilistic + physicist way): Study behavior of simple abstract models that facilitate the analysis, and look for universal properties, dependencies and behavior. Model choice criteria (in physics): The simpler and richer the better.

Our power grid model

- M producers, N=DM consumers
- Out of every D consumers R have auxiliary lines

Consumer "i" consumes x_{i} produces z_{i}

Producer "a" capability y_{a}
$M=4, \quad N=12, \quad D=3$

Setting

Switch variables for power lines:

$$
\sigma_{i a}=0 / \sigma_{i a}=1
$$

Each consumer has exactly one line on.

Constraints

$\sum_{a \in \partial i} \sigma_{i a}=1 \quad$ Every consumer one connection

$\sum_{i \in \partial a}$
Producers not overloaded

Note that the final topology is a tree, hence the Kirchhoff's laws satisfied.

However, general power flow optimum cannot be worse than the tree case!

Questions

Given $\left\{x_{i}\right\},\left\{z_{i}\right\},\left\{y_{a}\right\}$ can all the constraints be simultaneously satisfied? (Nobody overloaded.)

If yes, then how many satisfying configurations of the switches are there?
Is it easy to find one?

Answer: via Belief Propagation

How does BP work?

Prob. that line "ia" is in state $O_{i a}$ conditioned

$$
\begin{array}{ll}
\psi_{\sigma_{i a}}^{a \rightarrow i} & \text { constraint on " } i \text { " is missing } \\
\chi_{\sigma_{i a}}^{i \rightarrow a} & \text { constraint on " } a \text { " is missing }
\end{array}
$$

Iterative "message passing" scheme

Belief Propagation

- Distributed approximative way of:
- (a) computing the probability that a given switch is on or off.
- (b) estimating number of valid (not overloading) configurations.
- For large number of customers and producers (thermodynamic limit) - average analysis solvable.

Example n. 1

Fraction $1 / 3$ of consumers produce amount z
Every consumer consumes random number in (0.9,1.1)

Example n. 2

Every consumer produced a random number between $(0, z)$

Example n. 3

produced > consumed

$y / 3>1-f z$

amount z is produced by fraction f of consumers

Conclusions and Perspectives

- Existence of SAT/UNSAT phase transition and regimes where higher penetration useful or futile.
- Redundancy + switches help renewable integrations. Belief propagation a tool of analysis but also distributed control algorithm.
- In physics: Study of toy models (and phase transitions) leads to qualitative understanding. Is that true also for the Smart Grid?
- Combine belief propagation with DC or AC power flow rules on a non-tree topology.

References

- L. Zdeborová, A. Decelle, M. Chertkov; Phys. Rev. E 90, 046112 (2009).
- L. Zdeborová, S. Backhaus, M. Chertkov; in HICSS 43.

Belief Propagation Equations

$$
\begin{aligned}
\chi_{1}^{i \rightarrow a} & =\frac{1}{Z^{i \rightarrow a}} \prod_{b \in \partial i \backslash a} \psi_{0}^{b \rightarrow i} \\
\chi_{0}^{i \rightarrow a} & =\frac{1}{Z^{i \rightarrow a}} \sum_{b \in \partial i \backslash a} \psi_{1}^{b \rightarrow i} \prod_{c \in \partial i \backslash a, b} \psi_{0}^{c \rightarrow i} \\
\psi_{1}^{a \rightarrow i} & =\frac{1}{Z^{a \rightarrow i}} \sum_{\sigma \partial a \backslash i a} \theta\left(y_{a}-w_{i}-\sum_{j \in \partial a \backslash i} \sigma_{j a} w_{j}\right) \prod_{j \in \partial a \backslash i} \chi_{\sigma_{j a}}^{j \rightarrow a} \\
\psi_{0}^{a \rightarrow i} & =\frac{1}{Z^{a \rightarrow i}} \sum_{\sigma_{\partial a \backslash i a}} \theta\left(y_{a}-\sum_{j \in \partial a \backslash i} \sigma_{j a} w_{j}\right) \prod_{j \in \partial a \backslash i} \chi_{\sigma_{j a}}^{j \rightarrow a}
\end{aligned}
$$

Example n. 0

Everybody consuming random number between (mean-width/2) and (mean+width/2), epsilon - fraction of consumers with no demand.
$\forall a$
$\forall i$

Asymptotic, but also algorithmic solution

