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Abstract

Several scenarios exist in the modern inter-
connected world which call for an efficient network in-
terdiction algorithm. Applications are varied, includ-
ing various monitoring and load shedding applications
on large smart energy grids, computer network security,
preventing the spread of Internet worms ad malware,
policing international smuggling networks, and control-
ling the spread of diseases. In this paper we consider
some natural network optimization questions related to
the budget constrained interdiction problem over gen-
eral graphs, specifically focusing on the sensor/switch
placement problem for large-scale energy grids. Many
of these questions turn out to be computationally hard
to tackle. We present a particular form of the interdic-
tion question which is practically relevant and which we
show as computationally tractable. A polynomial-time
algorithm will be presented for solving this problem.

1. Introduction

In today’s inter-connected world, it is often neces-
sary to maintain open energy, communication and trans-
portation networks. However in the interest of fair
use, it is also important to keep these networks safe
while at the same time preventing catastrophic events
and malicious attacks. This has to be achieved in the
most non-intrusive manner possible and done using min-
imal additional infrastructure in a robust as well as dis-
tributed manner while simultaneously meeting budget
constraints for the the cost of installation and operation.

Applications which require such interdiction, in-
clude future smart energy grids where dynamic load bal-
ancing will be crucial, computer network security appli-
cations where firewalls need to be setup to control the
spread of Internet worms and malware, quarantine plan-
ning for controlling the spread of diseases [2], as well as

policing drug [11] and nuclear smuggling networks [7].
A formal model for this practical problem is a

network interdiction model, where interdiction is per-
formed along the edges (or equivalently on the nodes)
of a graph which represents the distribution, communi-
cation or transportation network in sufficient detail. In
this paper, without loss of generality we will be con-
sidering an edge interdiction model on a directed net-
work graph. The model we are about to introduce is
primarily motivated by the problem of optimal sensor
and switch placement for smart grid usage monitoring
and control. An objective will be to optimally allocate
resources to maximize the detection probability of ab-
normality in a network. We also show in Section 2, how
the same model can be used to optimally place control
switches so as to minimize the response time in the event
of emergency load management on electricity grids.

The interdiction problem is an active research area
in operations research and theoretical computer science.
Several researchers have in the past considered inter-
diction in various forms [3, 6, 7, 9]. However many of
these formulations are known to be computationally in-
tractable for even modestly sized networks [12]. Most
of the suggested solution methods involve some form of
integer linear programming which is usually computa-
tionally costly. Cutting plane methods and sub-optimal
linear programming relaxations have also been proposed
in the literature [8].

In this paper, a network interdiction model, bud-
get constrained single edge interdiction, is proposed.
This model is closely related to the classical interdic-
tion models, while being computationally tractable (as
proved in a later section) unlike the classical models. In
Section 3, we will formally define the single-edge inter-
diction model and two related, but so far intractable clas-
sical interdiction models. Our single-edge interdiction
model is intuitively motivated by the following maxim:
The weakest link breaks the chain. A polynomial-time
algorithm is then developed based on an auxiliary graph



constructed from the original graph in Section 4.

2. Optimization Models for Effective Place-
ment on Smart Grids

Before introducing interdiction models to detect
and mitigate anomalous events in networks, we outline
several potential applications in this section. The gen-
eral framework for the interdiction model is as follows:
In a network G(V, E), on various edges e ∈ E on the
network graph, let us model the probability of an anoma-
lous event evading detection from the sensor installed on
that edge by a parameter called the edge evasion proba-
bility, πe. The detection probability δe is the comple-
ment of the evasion probability as δe = 1 − πe. In
most natural cases, the evasion probabilities on various
edges can be modeled to be statistically independent,
which means that on any path p on the network, the
effective evasion probability πp is given by the prod-
uct, πp = ∏e∈p πe. A limited number of sensors
(switches) are installed on edges and the goal is to find
a placement of the sensors (switches) such that the max-
imum detection probability (shortest response time) can
be achieved.

The primary applications that we foresee for our in-
terdiction model are in the optimal placement of sen-
sors and switches for monitoring and control over new
generation infrastructure for power grids. Sensor place-
ment on power grids to detect patterns of anomalous
spikes and excessive consumption presents several new
challenges. Given an anomalous event happening on
an edge, the probability of detecting such an event de-
pends on various physical properties of the power line,
the power flow at a given time on the line, and the en-
vironment surrounding the line. The detection rate will
depend on the amount of data collected from all sensors
within a period of time. In this case, the budgetary con-
straint on sensors is imposed by how much data can be
stored/processed during a given detection period. We
propose the use of the polynomial time interdiction al-
gorithm introduced later in this paper to solve this sensor
placement problem efficiently.

An application with a similar flavor is firewall
placement on packet communication networks. These
communication networks can be the Internet or a propri-
etary SCADA control network commonly encountered
in the electrical energy sector. Worms and virus can
propagate through the network along a set of paths P .
These abnormal activities can be detected by interdic-
tion resources, e.g., specialized firewalls. Placement of
a firewall on a node is equivalent to placement on an
edge in terms of mathematical modeling – splitting a
node into two nodes and adding an edge between the

two nodes, and interdicting the newly created edge. Due
to this equivalence hereafter, resources are assumed to
be only allocated to edges. The detection probability,
denoted as δe, of catching a malicious activity depends
on a number of characteristics of the edge e, for example
the load and hardware. We further assume that the de-
tection event at a given edge is statistically independent
of that on any other edge. The overall detection proba-
bility on a path p ∈ P is then 1−∏e∈p(1− δe). The
goal is to install a given number (representing the avail-
able budget) of firewalls on the network to achieve the
maximum detection probability.

Yet another type of application exists in smart en-
ergy grid system design. This concerns the placement
of load management (shedding/transfer) switches on a
grid for emergency control of consumption. Fast, opti-
mal power shedding is often crucial in preventing large
scale and uncontrolled blackouts which can lead to mas-
sive financial and resource losses on the one hand, and
unnecessary load tripping resulting in productivity loss
on the other [10]. In some cases, critical loads which
cannot tolerate extended power-cuts have to be switched
over to alternate sources. In either scenario, the objec-
tive is to reduce the response time in effecting a safe load
management given a certain budget.
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Figure 1. An illustrative power grid with two
power generators and three loads. Switching
equipment with switching times ts = f (be) are
placed at a cost of be on each edge e.

Load management is usually achieved by a re-
motely operated switch with a design parameter, switch-
ing time, ts which is a factor contributing to the over-
all response time. Another factor contributing to the re-
sponse time is the delay in operating the switch which
is inherent to the automatic or manual control system in



use. The response time of a switch also changes with
the technology used, the type of switch (make-before-
break, break-then-make etc) and constraints to be met
such as phase/frequency synchronization. In this con-
text, in what follows in the next section, be represents an
edge budget used to install a load switching equipment
and the cost incurred (which also includes loss of rev-
enue and cost of equipment failures) in achieving a re-
sponse time of fe(be). In general, the higher the allowed
budget, the lower is the achievable response time. In
this case, the objective is to switch loads as fast as pos-
sible, i.e., achieving a minimum response time on any
generator-load path while staying within a maximum
budget constraint: ∑e be ≤ B. A typical network with
load switching elements and multiple power sources and
sinks is shown in Figure 1. The resulting optimization
problem is formally stated as Question 3 in section 3.

These seemingly unrelated problems can be formu-
lated in quite general terms as network interdiction prob-
lems. A common objective in interdiction problems is to
determine an optimal allocation of budgets for installa-
tion of interdiction apparatus on individual edges such
that the effective evasion probability is minimized while
simultaneously satisfying some total budget constraints.
In the next section, we give a formal definition of the
budget constrained network interdiction problem.

3. Budget Constrained Single Edge Inter-
diction

In this section we consider a few most commonly
encountered versions of the network interdiction prob-
lem. We then consider a particular model (Question 3
below), which is most relevant in the smart-grids con-
text, deriving an efficient polynomial-time optimization
algorithm for it.

Definition 1 (BC-INT, BC-AV-INT, BC-SE-INT)
Instance: A directed network graph G(V , E); a set of
efficiently computable monotonic non-increasing local
budget-evasion-probability functions fe : R+ 7→ [0, 1]
associated with each directed edge e ∈ E ; two non-
empty subsets of V , the source nodes S and the des-
tination nodes D, such that S ∩ D = ∅; and a total
interdiction budget B.
Question 1 (BC-INT): Find a budget assignment to
each edge, be which satisfies the total budget constraint
∑e∈E be ≤ B, and minimizes,

πMAX
def= max

pi
(s,d) ∈ P(S ,D)

∏
ej ∈ pi

(s,d)

fej(bej)

Question 2 (BC-AV-INT): Find a budget assignment to
each edge, be which satisfies the total budget constraint

∑e∈E be ≤ B, and minimizes,

πAV
def= ∑

pi
(s,d) ∈ P(S ,D)

wpi
(s,d)
· ∏

ej ∈ pi
(s,d)

fej(bej)

Question 3 (BC-SE-INT): Find a budget assignment to
each edge, be which satisfies the total budget constraint
∑e∈E be ≤ B, and minimizes,

π
def= max

pi
(s,d) ∈ P(S ,D)

min
ej ∈ pi

(s,d)

fej(bej)

where P(S ,D) is the set of all directed paths pi
(s,d)

from some node in S to some node in D, wpi
(s,d)

are

positive weights associated with these paths such that
∑pi

(s,d)
wpi

(s,d)
= 1, and ej represents a directed edge in

the directed path pi
(s,d).

In the above definition, the local budget-evasion-
probability functions fe(·) can be interpreted as fol-
lows: given a local edge budget of be for edge e, we can
achieve an evasion probability (or equivalently, the over-
all response time for switches) of fe(be) at that edge.
Very often in practice, the local functions fe could be
made to subsume other more complex characteristics on
the network too.

For example, if in a network with a single source
and destination, there are already in place other inter-
diction apparatus, which ensures evasion probabilities
less than 1 on certain edges. Then, we may wish to cal-
culate the residual evasion probability before installing
any new apparatus by first running a Dijkstra type short-
est path algorithm. Let each edge e = (i, j) have a
prior evasion probability of αe. Also let us assume for
example that by installing Ne apparatus of unit cost,
the post-installation edge evasion probability can be re-
duced to αe · βNe

e . Then we may wish to set as a first or-
der approximation, fe(Ne) = αe · βNe

e ·∏e′s∈p(s,i) αe′s ·
∏e′d∈p(j,d) αe′d

. Here, p(s, i) is the shortest path from
source node s to node i when the edges e′ are labeled
with non-negative edge weights of (− log αe′). Simi-
larly p(j, d) is the shortest path from node j to the desti-
nation node d.

All the three forms of interdiction problems can be
seen to be practically relevant in various contexts. How-
ever, even for the simplest local functions fe, the prob-
lems posed in questions 1 and 2 above are known to be
NP-complete even to approximate within a constant fac-
tor, by a polynomial time reduction from the relatively
well known VERTEX-COVER and CLIQUE problems [5].
For a simple proof of this reduction, see [12].



In this paper therefore, we will focus solely on
Question 3. Since the local functions fe can be heav-
ily non-linear, it is not apriori clear that the problem
in Question 3 admits a polynomial time solution. We
present one such solution in the next section.

One may justify posing Question 3 in favor of the
other two versions in many situations. In the switch
placement problem minimizing the response time for
load management given a limited budget, Question 3 is
definitely the appropriate model. This is because the
response time for any source–load pair is given by the
maximum response time on any source–load path, while
for a fixed source–load path, the response time is given
by the fastest response among all links in that path.

In problems where non-zero evasion probabilities
have to be avoided at all costs (for example in the case
of preventing nuclear smuggling or protecting a crucial
SCADA system), interdiction apparatus at edge e can be
reasonably modeled as requiring a cost of be to ensure
πe = 0. In this case, solving Question 3 is equivalent
to solving Question 1, whereas Question 2 is perhaps
not practically relevant (since it is the worst case eva-
sion probability that matters, not the average case). In
many other instances, it is usually the case that the eva-
sion probability that can be achieved is so small that
a solution for Question 3 is practically very close to
that of Question 1. Moreover, the availability of an
efficient algorithm is clearly a factor to be considered.
Typical solutions to interdiction problems would other-
wise rely on the solution of cumbersome integer-linear-
programs, which are often computationally intractable
even for medium scale networks.

4. A polynomial time algorithm for BC-SE-
INT

In order to derive an algorithm for BC-SE-INT, we
will assume that the local functions are efficiently invert-
ible - that is, f−1

e (·) can be computed in polynomial-
time. There is no loss in generality due to this as-
sumption, since in virtually all practical scenarios this
is true - moreover in the event of there being no analyt-
ical form for the inverse function, a table look-up based
approach can be easily implemented. A pseudo-code
for the proposed algorithm BC-SE-INT-ALGO is listed
as Algorithm 1.

5. Correctness and complexity of BC-SE-
INT-ALGO

To see that the algorithm BC-SE-INT-ALGO pro-
duces the correct result to an accuracy of better that an

Algorithm 1 Budget Constrained Single Edge Interdic-
tion Algorithm (BC-SE-INT-ALGO)
INPUT:
A network graph G(V , E) to be interdicted
along with the local functions fe for all
e ∈ E, a total budget B and a tolerance
value ε > 0.
STEPS:

1. Set π1 ← 1 and π0 ← 0.
Augment the original network graph
to obtain a new graph G ′(V ′, E ′) in the
following way:
Create a new node s and connect it
to all nodes si ∈ S with new directed
edges e(s,si). Similarly, create a new
node d and connect it to all nodes
di ∈ D with new directed edges e(di ,d).
All newly created edges e are marked
non-interdictable, that is f−1

e (x) 7→ ∞
for x ∈ [0, 1).

2. while (π1 − π0 > ε) do {

3. Set π′ ← π1+π0

2 .

4. for all e ∈ E ′, compute b′e = f−1
e (π′).

5. Solve the linear program:
Minimize, ∑e∈E b′e · xe subject to,

xe ≥ (yi − yj); xe ≥ (yj − yi)
ys = 1, yd = 0; 0 ≤ yi, xe ≤ 1

Let B′ be the minimum attained.

Let E ′ ⊇ C def= {e : xe = 1}.
6. if (B′ > B) set π0 ← π′.

7. else if (B′ < B) set π1 ← π′.

8. }
9. Set π ← π1.

For all e ∈ C, set be ← b′e and for all
e ∈ E\C, set be ← 0.

OUTPUT:
The solution π and an associated set of

edge budgets {be : e ∈ E}

additive factor of ε, we can note the following. Since
S ∩ D = ∅, any (s, d)−path should contain at least
one interdictable edge. Moreover, since the local func-
tions are monotonic non-decreasing, an increased local
budget will not increase the edge’s evasion probability.

The linear program in step 5 is well known to have
an integral polyhedron, so that at the solution, xe ∈
{0, 1}. This can be easily seen considering the follow-
ing probabilistic argument: If ȳi is a fractional point in
the solution, let us use the following randomized proce-
dure - generate a uniform random variable u, then set



yi ← 0 if ȳi < u and set yi ← 1 otherwise. Now,

B′ ≤ E

(
∑
e∈E

b′e · xe

)
= ∑

e=(i,j)
b′e · Pr

(
u ∈ [min{ȳi, ȳj}, max{ȳi, ȳj}]

)
= ∑

e=(i,j)
b′e ·
∣∣ȳi − ȳj

∣∣ = ∑
e

b′e · x̄e = B′

Therefore step 5 finds a minimum budget interdic-
tion cut on the original network graph such that on any
(s, d)−path, at least one edge has evasion probability
less that π′. Moreover the interdiction cut cannot in-
volve any of the fictitious non-interdictable edges intro-
duced in step 1. Furthermore, the monotonous property
of the local functions fe implies that an optimal inter-
diction cut resulting in a higher budget B′, cannot have
a higher evasion probability π′. Therefore each itera-
tion of the loop from step 2 to step 8 reduces the search
region for π by half at either of the steps 6 or 7, while
satisfying the budget constraint and will therefore termi-
nate with the correct solution in O(log 1/ε) iterations.

To estimate the complexity of BC-SE-INT-ALGO,
for a precision as required by the constant ε, the loop
from step 2 to step 8 is executed O(log 1/ε) times,
which is again a constant. We can further improve the
algorithm by substituting for the linear program in step
5 any well known algorithm for max-flow, since max-
flow and min-cut are related by linear programming du-
ality [4]. Each iteration of this loop requires a poly-
nomial amount of time, which depends on the (s −
d)−min-cut algorithm employed. Using an efficient
max-flow algorithm as in [1], which has a complex-
ity of O(|V| · |E | + |V|2 log |V|), each iteration takes
O(r|E | + O(|V| · |E | + |V|2 log |V|)) time, where r
denotes the time required for computing the inverse
function f−1

e (·) to the required precision.

6. Conclusion

We considered the important system design prob-
lem of budget constrained interdiction which has a vari-
ety of applications in diverse areas such as smart power
grids, sensor networks, law enforcement and surveil-
lance. We focused on the efficient placement prob-
lem for load control equipment and monitoring sensors
on smart grids; formulating an equivalent optimization
problem covering such scenarios. We showed that this
optimization problem is tractable – unlike other com-
mon variations of the interdiction problem which are
typically computationally hard. We derived an algo-
rithm which finds an optimal solution (up to any given

small constant, ε) to the problem we consider. Sim-
ulation results using a C implementation of our al-
gorithm were very promising - large power networks
which were typically not amenable to brute force inte-
ger programming approaches have yielded meaningful
solutions while using up only reasonable computation
times.

Problems of future interest include scenarios where
simultaneous optimization is required over several cost
functions and under multiple budget constraints. Also
of interest are networks where multiple commodities
are transacted. Further improvements in running time
are of definite interest, as are faster approximation al-
gorithms for use with extremely large networks. Algo-
rithms which adapt to dynamic changes in evasion prob-
abilities as well as models which consider statistical de-
pendence and other stochastic variables are also of inter-
est.
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