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Passive advection in nonlinear medium
Michael Chertkov
Department of Physics, Princeton University, Princeton, New Jersey 08544

~Received 23 September 1998; accepted 15 April 1999!

Forced advection of passive tracer in nonlinear medium by a smooth flow is considered. Effective
theory for small scale scalar fluctuations is shown to be linear~asymptotic free! and universal.
Structure functions demonstrate an extremely anomalous, intermittent behavior while the dissipative
anomaly is absent in the problem. ©1999 American Institute of Physics.
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I. INTRODUCTION

Turbulence is a very nonequilibrium state of natu
which becomes stationary if energy is supplied permane
at large scales. To construct a theory of turbulence mean
describe temporal and spatial distributions of velocity a
variety of different thermodynamic characteristics of t
fluid, i.e., density if turbulence is compressible, temperat
if thermo-advection is applied, relative concentration
components in the case of multicomponent~color! flow,
magnetic field distribution in a conducting fluid, etc. Dynam
ics of different fields describing a real turbulent flow is bo
nonlocal and nonlinear. We call the general situationactive
to emphasize the reciprocal character of interaction betw
velocity field and thermodynamic characteristic~s!. However,
sometimes the effect of a thermodynamic field on the vel
ity distribution is suppressed. It takes place, for example
scales are separated: a typical spatio-temporal scale of v
ity is much larger than one of a thermodynamic quantity. T
case when it is theoretically justified to neglect the effect
back reaction of thermodynamic field on velocity, in com
parison with those of advection and nonlinearity, is cal
passive. The passiveness does not necessarily mean linea
Moreover, our objective is to study the passive yet nonlin
situation.

We consider a thermodynamic quantityu governed by

d

dt
u52

dH$u%

du
1f~ t;r !, ~1!

H$u%[E dr Fk2 ~¹u!21U~u!G , ~2!

whereH$u% is a positive thermodynamic functional of th
system,U(u) is a confined (U→1` at u→6`) potential,
k is the diffusion coefficient, andf(t;r … stands for statisti-
cally steady forcing to provide constant supply of~otherwise
relaxational! u dynamics at large scales. We will discu
here the simplest case possible, when the thermodyna
field is a scalar~notice, however, that generalization of th
theory discussed for a vector or generally tensorial objec
possible!. u is imbedded in a turbulent flow, i.e., the temp
ral derivative is extended by the sweeping term
2251070-6631/99/11(8)/2257/6/$15.00
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]t
1u¹ r , ~3!

where the incompressible velocity fieldu„t;r ) is prescribed
to be known statistically.

We aim at finding the statistics of the passive scalau
fixed by ~1!–~3! in the inertial interval of scales, i.e., fo
scales that are less than both the velocity correlation scaleLu

and the scale of the scalar supplyL, and larger than the
diffusion scale. Incompressible velocity field at those sca
is modeled by the first term of its local expansion in t
separation relating the reference point to the current one

u~ t;r !5ŝ~ t !r . ~4!

Here ŝ(t) is a d3d traceless random matrix of the veloc
ty’s derivatives.

Problems~1!–~4! describe forced advection of a scal
pollutant in the viscous–convective range absorbed or g
erated, depending on the sign of the nonlinear rate]u

2U(u),
for example via a chemical reaction with other species p
sented abundant in the flow. The problem is of a fundame
importance for geophysical atmospheric turbulence~see Ref.
1 for review!. Other relevant phenomenon is turbule
thermo-advection in a cell attached to thermal bath~see Ref.
2 and reference therein!. Then,]u

2U(u) is the nonlinear hea
transfer coefficient andu(t;r ) measures local deviation from
the bath temperature. Many regimes of premixed turbul
combustion are also governed by~1!–~4!.3 The last~but not
the least! problem to be mentioned is the phase ordering i
system described by a nonconserved scalar order param
~a very well known object of the phase transition theory, s
Refs. 4–7 for reviews! advected by large scale turbulent flo
~some interesting problem combining advection and criti
dynamics was studied in Ref. 8!.

Our consideration will be based essentially on und
standing, results and general terminology emerged fr
studies of the pure problem of passive scalar advection~no
medium effect at all,U50) having almost 5 decades o
history ~see Obukhov and Corrsin papers9,10 for the earliest
contributions!. Batchelor11 has pioneered the study of th
smooth velocity field limit~4!, which nowadays has grown
to be ~through the important contributions of man
people12–23! one of the most advanced theories in the fie
7 © 1999 American Institute of Physics
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A temporal short-correlated but spatially nonsmooth mo
of velocity, one which was given more than 2 decades la
~the first ever analytical evidence of intermittency in turb
lence! was invented by Kraichnan.12,24Structure functions of
scalar difference in the convective range

Sq~r !5^uu~ t;r !2u~ t;0!uq&;r jq, ~5!

became the key object in the intermittency study. T
anomalous scaling,D2n[nj22j2n , describing the law of
the algebraic growth withL/r of the dimensionless ratio
S2n(r )/@S2(r )#n, was shown to take place generically.25–27

The anomalous exponents were calculated perturbativel
expansions about three nonanomalous (D2n50) limits, of
large space dimensionalityd,25,28 extremely nonsmooth26,29

and almost smooth27 velocities, respectively. A strong
anomalous scaling~saturation ofj2n to a constant! was
found for the Kraichnan model at the largestn by a steepes
descent formalism.30,31 Although the restricted asymptoti
information about anomalous exponents in the mode
available, a future possibility to establish the rigorously co
plete dependence ofj2n on n, d and the degree of velocity
nonsmoothness seems very unlikely~in a sense, recent La
grangian numerics32 compensates for the lack of rigorou
information!.

Problems ~1!–~4! also show anomalous scaling,j2n

,nj2 . Here, the intermittency is resolved analytically for
arbitrary asymptotically~at u→6`) convex potentialU(u):
du r obeys the same statistics as one would expect from
auxiliary ~linear!! problem with quadratic potential,U* (u)
5au2, where a is given by the average of]u

2U(u) with
respect to single point scalar distribution,P1;exp
@2U(u)/x0#, with x0[*0

`dt^f(t;0)f(0;0)&. a is always
positive, i.e., at the smallest scales the effect of nonlinea
generally alternating between damping and acceleration
reduced to a pure linear damping. Finally, for the sho
correlated velocity statistics we have found anomalous ex
nents

jq5minH q,AF l̄

D
G2

1
2aq

D
2

l̄

D
J , ~6!

wherel̄ andD are, respectively, the average and dispers
of the exponential rate of line stretching,l(t)
5t21 ln@R(t)/R(0)#, with R(t), satisfied toṘ(t)5ŝ(t)R(t).
Generalization of~6! for the case of arbitrary correlated i
time velocity is given by~34!.

The anomalous behavior~6! differs from that perceived
in the Kraichnan model. First of all,j2n as a function ofn
does not saturate to a constant at the largestn but keeps
growing with n as An ~that is in thed-correlated case, in
general one getsn121/b, b.1). The second~and major!
difference is associated with the concept of dissipat
anomaly. It is generally accepted to talk about dissipat
anomaly if some stationary object calculated at zero diss
tion (k50) does not coincide with itsk→0 counterpart. In
the Kraichnan model the anomalous scaling coexists with
dissipative anomaly.24 However, the nonlinear problems~1!–
~4!, as well as their linear descendant, show no dissipa
anomaly while the anomalous scaling is present. We base
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important conclusion on the followingno anomalycriterion
~which, we believe, is general!: if zero dissipation analysis
produces a normalizable and everywhere positive solu
for the probability density functional~PDF! of fluctuated
field (u in our case! then the dissipative anomaly is absen

Physics of the no anomaly phenomenon is simple, sc
pumped at the integral scale and transferred downscale
advection is relaxationally destroyed at all the scales. Pra
cally no scalar reaches the dissipative scale and therefore
effect of diffusion is really negligible. The emerging stea
state is a result of an interplay between pumping, advec
and nonlinearity but the diffusion, if small, is simply no
involved.

The problem is formulated in Sec. II. To describe t
convective range scalar fluctuations we show how to in
grate out the large scale contribution in Sec. III. The sc
separation results in suppression of nonlinearity. The eff
tive small scale theory appears to be a linear one with u
form damping. All the final answers emerging from the stu
of the linear problem are presented in Sec. IV. Section V
reserved for conclusions.

II. FORMULATION OF THE PROBLEM

~1!–~3! describe advection of a passive scalaru(t;r ) by
the smooth incompressible velocity field~4!. The scalar is
forced by random fieldf(t;r ), which for the sake of sim-
plicity is considered to be Gaussian, and therefore fixed
ambiguously by

^f~ t1 ;r1!f~ t2 ;r2!&5x~ ur12r2u!d~ t12t2!. ~7!

Here the functionx(r ) decays sufficiently fast at larg
scales,r .L andx05x(0) is the flux ofu2 pumped into the
system.ŝ is a random in time matrix process described by
PDF,F$ŝ(t)%, which is supposed to be known. Diffusion
small, i.e., the range of scales in betweenr d5Ak/@S/t#1/4 (S
andt are typical values of the strain and velocity correlati
time, respectively! and L ~usually called the convective in
terval! is sufficiently large,L/r d@1.

Our main purpose is to find the two-point scalar PDF

P2~x1 ,x2ur ![^d@x22u~ t;0!1u~ t;r !#d

3@x12u~ t;0!2u~ t;r !#&, ~8!

and the scalar structure functions

S2n~r ![^@u~ t;r !2u~ t;0!#2n&, ~9!

where averaging with respect to bothŝ(t) and f(t;r ) is
assumed.

Other important objects used in the course of the for
coming calculations will be the two-point scalar PDF con
tioned byŝ(t)

G2~x1 ,x2ur1,2;t;$ŝ~ t8!;2`<t8<t%!

[^d@x12u~ t;r1!#d@x22u~ t;r2!#&f , ~10!

and the single point scalar PDF

P1~x![^d@x2u~ t;r !#&. ~11!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2259Phys. Fluids, Vol. 11, No. 8, August 1999 Passive advection in nonlinear medium
Deep inside the convective range~at L@r 12), uu12u2u
!uu11u2u, and~10! can be decomposed into the product

G2~u1 ,u2ur1,2;t;$ŝ~ t8!;2`<t8<t%!

5P1~u1!*G2~u12u2ur12r2 ;t;$ŝ~ t8!;2`<t8<t%!,

~12!

where spatial homogeneity of the Batchelor case was ta
into account. The average of~12! over ŝ reads as

P2~u1 ,u2ur 12!5P1~u1!*P2~u12u2ur 12!. ~13!

The assumption onthe absence of the dissipativ
anomalyin the case of a very small diffusion lies in the co
of our consideration. The formal consequence of the st
ment is the possibility to omit the dissipativek-dependent
term from ~2! already on the dynamical~yet unaveraged!
level. The no-anomaly assumption will be justified by t
positivity and normalizability of the derived answers f
PDFs.

III. REDUCTION OF THE NONLINEAR PROBLEM TO A
LINEAR ONE

In the absence of diffusion~1!–~4! can be integrated
along the Lagrangian trajectories~characteristics!

d

dt8
u@ t8;r~ t8!#52

dU

du U
u[ t8;r(t8)]

1f@ t8;r~ t8!#, ~14!

d

dt8
r~ t8!5ŝ~ t8!r~ t8!, r~ t !5r , 2`,t8,t. ~15!

The nonlinearity leads to dumping of the scalar in regions
convex (]uU.0) potential while it generates the scalar flu
tuations anywhere else. Fokker–Planck equations~see Ref.
33 for similar calculations! derived out of ~14!, ~15! by
means of direct averaging over the Gaussian noisef are

F]u

dU~u!

du
2x~0!]u

2GP150, ~16!

F ] t1 (
i 51,2

S smn~ t !r i
m] r i

n 2]u i

dU~u i !

du i
D

2 (
i , j 51,2

x~r i2r j !]u i
]u j GG250, ~17!

where G2 is not stationary, since it does depend on tim
explicitly throughŝ(t). Integrating~17! with respect tou1

5u11u2 and assuming that the integral is formed atuu1

2u2u!uu11u2u, where~12! is valid, we arrive at the close
equation for the scalar difference PDF

$] t1~smn~ t !r m] r
n2a]xx!22@x~0!2x~r !#]x

2%

3G2~xur ;t;$ŝ~ t8!;2`<t8<t%!50. ~18!

Here a is defined as the following average over the lar
scaleu statistics
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
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a[K d2U~u!

du2 L
LS

[E
2`

`

du
d2U~u!

du2
P1~u!. ~19!

The normalized and everywhere positive solution of~16! is

P1~u!5
exp@2U~u!/x0#

*2`
` du exp@2U~u!/x0#

. ~20!

Substitution of~20! into ~19! gives

a5
^@dU~u!/du#2&LS

x0

5
*2`

` du@dU~u!/du#2exp@2U~u!/x0#

x0*2`
` du exp@2U~u!/x0#

, ~21!

i.e., a is always positive constant if the potentialU(x) is
asymptotically (x→6`) convex. Therefore, we have foun
that deep inside the convective interval regions of scalar g
eration are suppressed statistically.

On the basis of~16! and~18! we conclude that from the
point of view of the small scale statistics of scalar differen
our problem is equivalent to the linear one, withdU(u)/du
being replaced just byau. In other terms, we may procee
averaging the linear dynamical equation

] tu1smn~ t !r m¹ r
nu52au1f~ t;r !, ~22!

instead of the original nonlinear one. The steady distribut
of the scalar difference enforced by~22! was the subject of a
recent paper,34 the method and results of which will b
briefed and generalized in Sec. IV.

IV. VELOCITY AVERAGING: ANOMALOUS SCALING

The linear analog of~14! is

u~ t;r !5E
0

`

dt8 exp@2at8#f@ t8;r~ t2t8!#, ~23!

wherer is the Lagrangian trajectory fixed by~15!.
Consider the case ofd correlated in time velocity

^sab~ t1!smn~ t2!&5D@~d11!damdbn2dandbm

2dabdmn#d~ t12t2!, ~24!

whered is space dimensionality. For the purpose of the 2nth
structure function calculation it is enough to discuss the
multaneous product,F1•••2n[^u1•••u2n&, which according
to ~23!, ~15! is

F1•••2n5 (
$ i 1,••• ,i 2n%

$1,•••,2n% K )
k51

n E
0

`

dtk e2atkx@Ŵ~ tk!r i k ; i k11
#L

ŝ

,

~25!

Ŵ~ t ![T expF E
0

t

dt8ŝ~ t8!G , dŴ~ t !

dt
5ŝ~ t !Ŵ~ t !. ~26!

Calculation ofF1•••2n is essentially simplified for the collin-
ear configurationr i5nr i ~we will argue below why the scal
ing results derived in the collinear way hold generally!. Then
the 2n3(d21)parametric average~25! is reduced to the fol-
lowing single-parametric one:
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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F1•••2n5 (
$ i 1,••• ,i 2n%

$1,•••,2n% K )
k51

n E
0

`

dtk e2atkx@eh(tk)r i k ; i k11
#L ,

~27!

with r i j [ur i2r j u. Here, the longitudinal stretching rate
h(t)[ lnuŴ(t)nu, is the only fluctuating quantity left. Thea
50 version of~27! was calculated in Ref. 17 for thed52
case and generalized for anyd>2 in Ref. 18 via a change o
variables and further straightforward transformation of
path integral standing for the average overŝ(t). It is shown
in Refs. 17 and 18 that theh measure~of the exponential
stretching rate of a line element! is a shifted Gaussian one

Dh~ t !expF2E
0

`

dt
~ ḣ2l̄ !2

2D G , ~28!

characterized by mean Lyapunov exponentl̄5Dd(d
21)/2, and dispersionD5D(d21). ~28! applied to ~27!
produces

F1•••2n

n!
5E S )

i 51

n

dti dh i D expS l̄

D
h12

l̄2

2D
t1D

3 (
$ki ,•••,k2n%

$1,•••,2n%

)
i 51

n

@e22at ix~eh i r k2i ,k2i 11
!

3G~ t i 21,i ;h i 21,i !#, ~29!

whereh i ( i<n) integrations are not restricted, 0<tn<•••

<t1<`, tn115hn1150, t i ,k[t i2tk ~with equivalent nota-
tions for h) and

G~ t;h![
exp@2 ~h2/2Dt !#

A2pDt
. ~30!

The integrand of~29! decays exponentially in time and
dominated by the contribution into the integral formed att i

;1/a. The leading term does not depend on anyr i j and
gives no contribution into 2nth order structure function. The
first actualr -dependent contribution stems fromn21 tem-
poral integrals formed att;1/a, and one at t i;t r

; ln@L/r#/max$a,D%. This special integration brings a spati
dependence into the object, therefore on a single dista
Generally, there exists a variety of terms with all the possi
combinations, like term withk integration formed att, with
n2k ones att r , and therefore dependent explicitly on 2(n
2k) spatial points. However, we are looking exclusively f
a term dependent on all the 2n points since only such a term
contributesS2n(r ). It is simple to calculate the scaling of th
term making use of the temporal separationt r@t. Indeed,
the large time contribution may be extracted out of~29! in a
saddle-point calculation. Variation of all the exponent
terms in~29! with respect tot i gives a chain of saddle equa
tions. Thex functions in the integrand of~29! limits the h
integrations from above by ln@L/r#. Therefore, the desirabl
2n-point contribution forms at t i

5Al̄/@D(2anD1l̄2/2)# ln@L/r#, andh i5 ln@L/r#, where it is
assumed that in the leading logarithmic order there is
need to distinguish between contributions of different se
rationsr i j . Substituting the saddle-point values oft i andh i
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
e

e.
e

l

o
-

into ~29! one arrives at the anomalous part of~6!, with q
52n. The normal-scaling counterpart of~6! originates from
expansion of the integrand of~29! in a regular series inr 2.

The basic physics of nonzeroj2n ~means deviating from
the naive balance of pumping and advection! and generally
anomalous (j2n,nj2) scaling ata.0 can be stated quite
clearly. According to~23! the advection changes scales b
not amplitude, while the amplitude of the injected scalar fie
decays exponentially from the time of injection at the co
stant ratea. The temporal integrals in~29! form at the mean
time to reach a scale which is proportional to the negat
log of the scale. However, the effective spread in the fac
by which amplitude has decayed, upon reaching a gi
scale, increases as the scale decreases. This is whyj2n.0.
Also there is more room for fluctuations about the mean ti
due to the interference between the exponential decay of
scalar amplitude and fluctuations of the stretching rateh.
Thus intermittency increases when the scale size decrea

Another way to derive~6! from ~23! is to construct
S2n(r ) directly. It is easy to check that the structure functio
of different orders are produced by the PDF satisfied to

l̄r 122l̄/D] r r
112l̄/D] rP21a]x~xP2!

1@x02x~r !#r 2]x
2P250. ~31!

The solution of~31!, in the regime where you can neglect th
x-dependent term is

P2~xur !5
1

2p i

1

uL
E

012 i`

011 i`
dsS uL

x D s11

3S r

L D Ad2/41as/[D(d21)]2d/2

as . ~32!

Here,as is a function fixed by matching at the integral sca
roughly, P2(xuL);P1(x), whereP1(x) is given by ~20!.
The PDF~32! appears to be positive and normalizable, the
fore confirming the initial hypothesis on the absence of d
sipative anomaly. Also,~32! shows that~6! holds for general
~not only even integer! positiveq.

The assumption of collinearity made above is not c
cially important for evaluation of~25!. The calculations be-
come more evolved~but still doable! mainly because of the
necessity to follow additionally the dynamics of thed21
subleading Lyapunov exponents~not just the leading one!,
which all are entering the argument of thex function in~25!.
In thed-correlated case the Lyapunov exponents’ statistic
Gaussian and the Lyapunov spectrum is equidistant.18,20

Therefore, complications comes through the set ofn(d21)
integrals to be inserted in the generalization of~29!. Having
the large parameter ln@L/r# in hand we can treat all the inte
grations in a saddle-point manner and the final answer for
correlation function will be consistent with what was deriv
above in the collinear case. In the simple calculations
therefore check directly the absence of dissipative anom
in this case. In Lagrangian terms it can be stated as follo
two initially close Lagrangian trajectories, making a dom
nant contribution into the correlation functions of th
dumped scalar, stay close forever~see relevant discussion i
Ref. 21!. Notice that the dissipative anomaly is present in t
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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pure Batchelor case~no medium,U50),21 i.e., integration
with respect to subleading Lyapunov exponents in the c
results in the effective renormalization of~28!: the dispersion
of a line element exponential stretching rateD5D(d21)
should be replaced by one characterizing the expone
stretching rate of the largest dimension of a fluid blob,Db

53(d21)D/(d11).23

The last observation is about generalization of the res
for the case of finite-correlated velocity statistics.35 In the
general case theh measure is not Gaussian and the posit
quadratic form in the integrand of~28! is to be replaced by a
convex S(ḣ). Then all the above calculations are easy
redo. The saddlet i is given by xn ln@L/r#, where xn is a
solution of

xn
2]xn

@S~xn!/xn#52an. ~33!

Finally, the expression for the exponents generalizing
anomalous part of~6! is

j2n5]xn
S~xn!. ~34!

One concludes, particularly, that at the largestn, j2n

}n121/b, whereS(x→1`)→xb (b.1).

V. CONCLUSION

We have shown that the nonlinear problems~1!–~4! are
reduced to a linear one at the smallest~still from convective
not dissipative range! scales. We note the asymptotic theo
about initial nonlinearity through the effective damping c
efficient ~19!. The linear problem was solved for the gene
case of the large scale velocity field arbitrarily correlated
time.

The most important feature, guessed initially in t
course of calculations, appears to be the absence of dis
tive anomaly. Self-consistency of the hypothesis was c
firmed afterwards by a direct check of positivity and norm
izability of the final expression~32! for PDF. Of course, the
absence of dissipative anomaly is not a common situatio
turbulence. It is, however, suggested that we start analy
any new turbulent problem from the simpleno anomalytest.

We discussed only the case of smooth velocity here
the restriction was very important because of the absenc
dissipative anomaly, scales separation and subsequ
solvability of the problem. The Batchelor case is very sp
cial, since the Lagrangian dynamics ofn particles, generally
described byn(d21) degrees of freedom, is reduced to t
dynamics ofd21 eigenvalues of the stretching matrix. Th
lies in the core of the Batchelor problem’s solvability. Als
in the Batchelor case the scaling dimension of the eddy
fusivity operator coincides with one of thea ~damping! de-
pendent term. The coincidence of exponents explains
anomalous scaling, particularly the continuous depende
of the exponents ona. Any multiscale velocity field~say
taken from the Kraichnan model! leads to the disbalance o
the scaling dimensions of the advective and mediu
originated contribution into the eddy-diffusivity operator, r
sulting in complete screening of any medium effect in t
convective range. We conclude by this guess, which is ra
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
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brave~and, of course, is not rigorous at all!. More studies in
this direction, first of all on the nature of dissipativ
anomaly, are required.
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