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A new phenomenological model of turbulent fluctuations is constructed by considering the
Lagrangian dynamics of four pointthe tetradl. The closure of the equations of motion is achieved

by postulating an anisotropic, i.e., tetrad shape dependent, relation of the local pressure and the
velocity gradient defined on the tetrad. The nonlocal contribution to the pressure and the incoherent
small scale fluctuations are modeled as Gaussian white “noise.” The resulting stochastic model for
the coarse-grained velocity gradient is analyzed approximately, yielding predictions for the
probability distribution functions of different second- and third-order invariants. The results are
compared with the direct numerical simulation of the Navier—Stokes. The model provides a
reasonable representation of the nonlinear dynamics involved in energy transfer and vortex
stretching and allows the study of interesting aspects of the statistical geometry of turbulence, e.g.,
vorticity/strain alignment. In a state with a constant energy flamd K41 power spectrumit

exhibits the anomalous scaling of high moments associated with formation of high gradient sheets—
events associated with large energy transfer. An approach to the more complete analysis of the
stochastic model, properly including the effect of fluctuations, is outlined and will enable further
quantitative juxtaposition of the model with the results of the direct numerical simulation§99®
American Institute of Physic§S1070-663(99)02708-7

I. INTRODUCTION must rely on phenomenology. One reason for pursuing the
_ _ modeling approach is the need to bridge the existing gulf
The old problem of hydrodynamic turbulence has in re-petween our understanding of the scatifgf turbulent fluc-
cent years attracted resurgent interest stimulated by the neyations and their structure or “statistical geometry? 2 A
generation of laboratory experiments and the newly acquiredtep in this direction will be the subject of the present paper.
ability of the direct numerical simulations to probe interest- goal here is to advance a phenomenological model
ing aspects of turbulence. In light of the new ideas and degy e propability distribution functiofPDF) of turbulent
velopmepts t-here has also been new.apprec.:latlon of the SerrQ)élocity fluctuations. We shall start by noting that the longi-
nal cc_)ntrl?utlons of Kc_)lmogorov, reviewed in a recent bOOI(tudinal velocity difference between two observation poffits,
by Frisch; and of Kraichnan, to whom the present VOIumewhiIe being most readily observable, seems a poor candidate

and this article are dedicated. The key issues and th . o .

) or a fundamental dynamical field in terms of which to at-
progress of the last years have been well reviewetid are tempt a closed statistical description. The intuitive reason is
well represented in the present issue. Much effort has beelr P ption.

dedicated tqa documenting and understanding the anoma-that t_he Iongitud_inal velocity difference senses only pne of
lous (i.e., non-Kolmogorov 41Lscaling of high moments® the eight locally independent components of the velocity gra-

associated with intermittency antb) understanding the dient tensor which govern the dynamics of the. velocity field.
structure and the local geometry of the intermittent regiondnstead we shall choose the fundamental field to be the
of the flow?~25On the theory side, new ideas derived from Coarse-grained velocity gradient tenddg,= J rdrd,vp(r),
the new understanding of anomalous scaling of the Passivéefined over a regiod” with characteristic scal® lying in
Scalar problef~2° and of the Burger's turbulenég'~2%  the inertial range. This region may be best thought of as a
both pioneered by Kraichnaf.Yet, the theoretical descrip- local correlation volume of the velocity gradient coarse-
tion of turbulence based on first principles, i.e., on a congrained on scal®—an “eddy” of sort. The phenomenologi-
trolled approximation to the Navier—Stokes equations, is stillcal model then will be based on the Lagrangian dynamics of
over the horizon and to proceed in the right direction onethe I'-volume, parametrized by four points—the “tetrad”—
and its strain and vorticity fields as describedMy, . Effort

dAuthor to whom correspondence should be addressed; Electronic maivVIII be_made to preserve the esse_ntlal nor!lmear dyna_mms
boris@physics.bell-labs.com governing evolution of coarse-grained strain and vorticity
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and the concomitant distortion of the Lagrangian volumesure approximation: the unphysical finite time singularity of
This dynamics expresses the fundamental constraints due RE is removed, while the sensible short-time dynamical
the conservation of energy and circulation. In contrast, thgroperties (related, for example, to the vorticity strain
dynamics of velocity fluctuations arising from the scalesalignmen®) are retained. Finally, in Sec. Ill the deterministic
smaller than that of the tetraghnd generating incoherent dynamics will be compared with the empirical “mean field”
motion of the pointswill be modeled as a Gaussian white equation of motion for the coarse-grained velocity terdor
process obeying K41 scaling. The essential element of theonstructed from the conditional averagd|M) measured
theory advanced below will be the decomposition of thein the DNS of the Navier—Stokes B, =85. In Sec. IV we
pressure into the local part determined by tiefield via  return to the stochastic model and write down the formal
incompressibility and the nonlocal part due to the contribu-solution of the Fokker—Planck equation in terms of the path
tion of distant regions, which will again be modeled as aintegral relating the probability of a given coarse-grained ve-
Gaussian random force. Such an approximation for the predocity gradient on a given inertial range tetrad to the velocity
sure may be justifiable in large spatial dimenstdf’~2°but ~ PDF on the integral scale. This path integral representation
we shall be content with exploring its consequences angerves as a point of departure for the semiclassical approxi-
comparing the results with the direct numerical simulationsmation. It also has a well-defined deterministic limit where
We cannot hope to review here the evolution of the phethe effect of the stochastic terms in the tetrad dynamics can
nomenological modeling ideas, yet we shall put the preserff€ heglected. In the latter limit the probability of “observ-
work into the context of two recent efforts. The “PDF mod- INg” any given coarse-grained velocity gradient on an iner-
els” of Pope and co-workef8 attempt to close the equation tial range tetrad is determined by the probability of its inte-

for the velocity probability distribution functioiPDF) on gral scale preimage and can be calculated by integrating the

the level of one point: in contrast, our model deals with €duations of motion backward in time. This crude but simple
relative velocity differences on four points, which naturally @PProximation is employed in Sec. V in order to gain insight
brings in Kolmogorov's ideas and allows us to address thdnto the behavior of the model and to elaborate its statistical

intermittency phenomenon. The two approaches, howevePredictions emphasizing energy transfer, enstrophy and its
share the need to model the pressure Hessian/strain-rate cBfeduction, and the alignment of vorticity and strain. The
relations(in our case on the coarse-grained lewaid share COMParison of the results with the direct numerical simula-

the realization that this model is improved by incorporating;[zn OflthT thwerBSg_)llf[es d_e?ggltltqns f's qtl.“te elzncourﬁ%{?g.
dynamical information about local anisotrdpy? (in our € caculated probapiiity distribution function aiso exnibits

case furnished by the moment of inertia tensor of the evolv:anomalous scaling of high moments. In conclusion, Sec. Vi

ing Lagrangian volume Another point of reference is the is a summary and the outline of further inquiry.
two-point PDF closure advanced by Yakftain the basis of
the work of Kraichnatf and Polyako#! There too one ar- !l THE MINIMAL MODEL

rived at a Fokker—Planck-type equation for the PDF of ve-  The minimal parametrization of tHE volume is a tetra-
locity differences at given point separation, yet the approachedron(more generally @-dimensional simplexdefined by
differs from the present one in the treatment of the correlafour, hence tetradior d+1), Lagrangian pointss,(t),
tions of large and small scale fluctuations and our approaciyhich upon elimination of the center of mass define a triad
by virtue of tracking a tetrad rather than a pair, will retain of vectorsp;: p;=(r1—,)/v2, §2=(F1+F2_2F3)/\/§, p3
more of the geometry of the flow. =(ry+r,+r3—3r,)/V12. It will be useful to treat this triad
The model will be presented in Sec. Il in the form of the of vectors as a 3 matrix,p?, wherea is the spatial index.
stochastic equations of motion for two tensors specifying theznalogously, by eliminating the center-of-mass velocity
coarse-grained velocity gradient and the sh@ge, moment  from the instantaneous velocity of the vertices, one can
of inertia) of the evolving Lagrangian volume. We shall define a triad of relative velocities;. The coarse-grained
write down the corresponding Fokker—Planck equation forgradient field can now be defined simply by interpolation,
the Probability Distribution Function and discuss the energy s
transfer considerations which played the key role in the for- Map=(p H2P— _abtr(pflv) (1)
mulation of the model. Section Il relates the deterministic 3
aspects of the model to the so-called Restricted E(RE) (see Fig. 1
dynamics that has been investigated by VieillefoSserjgi- Alternatively, and more generally, one may decompose
nally in the context of the finite time singularitiésee also the “observed” velocity differencesy?, into a slow com-
Léorat™), and Cantwell and co-workefS;*” with the em-  ponent arising from the scales greater than the radius of gy-
phasis on the local topology of the flow. RE describes theation, =R, represented by the coarse-grained velocity gra-
evolution of the velocity gradient at a point within an isotro- dient matrix M., and the rapidly fluctuating incoherent
pic approximation for the pressure which allows one to closecomponentu?, arising from scales<R,
the Euler equation locally. We shall see that elevation of the a_ b a
dynamics to the coarse-grained level and the introduction of Ui~ Pi Mab U7 &
the second dynamical field to keep track of the shape of th&he strategy will be to derive the dynamics Mf,, and p?
Lagrangian correlation volumévhich depends on the his- while treatingu as a Gaussian white noise with the statistics
tory of the strain allows us to go beyond the isotropic pres- depending on the Kolmogorov’'s energy dissipation e
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where 7 is a random matrix, and a random function. The
dimension of botht andM? is time 2 so thata is a constant.
The last term is clearly not the most general one can write. It
is, however, the one suggested by the numerical study of the
statistics of the right-hand side @8a), originally by Borue
and Orszag® According to the DNS, the averagg, condi-
tioned onM is not zero, but is reasonably well approximated
by a(M?—TItr M?) with 0< < .8, depending on the scale,
at least for the isotropic tetra@d.e., II=1/3). We shall as-
sume that in the inertial range is constanfwhich corre-
sponds to keeping only the deterministic component of the
FIG. 1. Four Lagrangian points forming a “tetrad.” The velocities at the third term in(4)] and take it to be a model parameter. This
four points define the coarse-grained velocity gradient field. term “renormalizes” the time scale of the deterministic dy-
namics described by the left-hand side of the equat&ah
and will have an important consequence for the energy trans-
fer in the model, as we shall see shortly.

Let

well as the instantaneoysand M. Lagrangian dynamics is
governed by D/Dy)vi=-Vp;+f; and O/Dy)pi=v;,

wheref; is the random external force afMy; is the pressure ¢ 0)) = chf[5 S 35 S }5,{ 5
gradient, both properly differenced between the observation {72(1) 74(0)) trpp’ | “3c7Pd 3 “abed ®, (3
points. The dynamics of the coarse-grained velocity gradie

I’\Evhich is the simplest form respecting incompressibility, with
tensor,M, and the tetrad tensop, has the form b P 9 P Y

Kolmogorov's energy fluxe and C,—a dimensionless pa-
rameter. Randomy causes diffusion in velocity space; note

g Mant M2, = Tlaptr M?= &g, (38 that e has the dimension of corresponding diffusivity. The
appearance of in (53 is further supported by the fact that
d ., a fluctuations contribute to the energy transfer, as we shall see
giPi ~PiMbea=ur, (3D pelow. In the “minimal” model, which we are now con-
structing, we shall drop the possible multiplicative random
I p=kkP/trkk, (30 field ¢ [see Eq(4)].
with matrix k=p~%. The left-hand sides of3a and (3b) The small scale fluctuatiofsu can be resolved into

describe the self-advection and stretching of the tetrad by thBarts which are longitudinal and transversepfa
coherent(on the scale op) component of the velocity field. (ya(t)uP(0))=2C,\ir MM Tp2pP5(t)

The right-hand side of3a) derives from the pressure gradi- i . ) : )

ent and the random force differences as well as from the +2C, trMM T(p?52°5;;—pfip) 8(1), (5b)

coupling to incoherent small scale fluctuations. Thewherewith the K41 theory in mind we take the characteristic

II,,trM? term, with trIlI=1 on the left-hand side, repre- .. . Y T
sents the “local” component of the pressure needed to in:[Ime to be the "eddy turnover” time, JtrMM ". The lon

sure conservation of M =0 as required by incompressibil- gitudinal part ofu in the p-equation(3b) would by itself
) ) q y pr produce Richardson diffusion behavidp?(t))~ et®, pro-
ity. Tensor Il,, is a measure of tetrad anisotropy

: ing konang T 13 —2/3
representing the anisotropy of the Lagrangian correlatiorYIded that the Kplmogorov _scal_m MM 7~ e P

. . Cag . holds. However, Richardson diffusion would also arise from
volume built up by prior evolutior® This choice of the local

term, in contrast with the simpler, isotropic forthjs dic- the non-Gaussian coherent stretching tepM, and the

tated by the requirement that the pressure forces should d%aussmn longitudinal fluctuation€;;, do not appear to be

essential. We shall se€;=0. The transverse fluctuations
no work and drop out of the energy balar(see below. In . . :
O . .. .. C,, however, are very important, because in their absence
addition, it reintroduces proper reduction of the deterministic

. . . . ) the effect of volume preserving coherent stretching would
dynamics[left-hand side of(3a)] to two dimensiong2D): . g
i.e., a 2D velocity gradient configuration remains 2D pro—lealOI to the rapid growth of anisotropy of the tetrad. The

vided that the tetrad has the shape of a filament,p/gis a incoherent transverse velocity fluctuations act to redistribute

. the vertices of the tetrad uniformly on the surface of e
tensor of rank one. The remaining nonlocal part of the pres-_~ "{ o . . . .

. . =tr p'p hypersphere id“=9 dimensions, thus introducing
sure is subsumed g, .

We now define the stochastic components of the modetlhe isotropization mechanism. The competition of the coher-
appearing on the right-hand sides 88) and (3b). It is ap- ent stretching which leads to the growth of the radius of

. 2 . .
pealing to model the nonlocal part of the pressure retained igyraﬂonp (both forward and backward in timeand the

. . 2 . .
¢, along with the contribution of small scales, &sorrelated lsotroplzann over thep” shall will play the key role in
setting up the energy flux.

Gaussian random noise with the variance depending on the . . ,
energy fluxe as well as the instantaneopsand M. Let us Th? stochastic tetraql dynaml_c_s defined l_)_y HGs-(5)
consider a polynomial determines the Lagrangian transition probability from tetrad
’ (M’,p") to (M,p) at a timet later, G;(M,p|M’,p"), which
E=p+t{M+a(M2—TIItrM?), (4)  satisfies a Fokker—Planck equation
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(E—L)Gt(M,pIM’,p’)=5(M—M’)5(p—p’), (6)
with the evolution operator
_ J 2 2 J
L_(l_a)é"\/l_ab(Mab_HabtrM )—%EpaMab
it 92 1 9?
ﬂp2 IMapdMap 3 IMaadMpp
+C, JtrMM i(pzcsab(s--—p?‘pb) i (7)
MM G (R0 PP b
The invariant joint distributionP(M, p), satisfying

can be interpreted as the Eulerian PBEFM,p) provided
that the normalizatioff dMP(M, p) =1 is imposed? Equa-

tions (7) and(8), once supplemented with the boundary con-

dition specifying the Eulerian PDF on the integral scale,
=L2, completely define our model.

Lagrangian tetrad dynamics and the phenomenology of turbulence

2397

_d

f=——=(p?6°"5; - piop)
I

X

1%
ﬂ_5<\/tr|\/||v|’ftrva)p—zpjc VtrMM T(MM T)bc>p},

(10

which redistributes the energy within th€=const shell,
while the C, Dy is the diffusive contribution to the eddy

damping,
1
(pr— §p2) MM TD :

p

(119

Dd=18< trMM " tr

This D4 is reminiscent of the Smagorinsiy#*form of eddy
damping(popular in subgrid simulatiofi$*9 but with a sig-
nificant difference that in the latter thé-wave projector
(p'p— (1/3)p?) appearing in11a is replaced by the simple
scale factorp®. Hence, in contrast with the Smagorinsky
model, our diffusive damping term is only active to the ex-
tent that the(tr MM (MM T)ab>p tensor is correlated with
the (p'p)ap tensor within thep? shell. Strictly speakingD 4

is not positive definite and its interpretation as the damping
term is contingent on the expectation that the tetrad dynam-

Before proceeding with the analysis of the Fokker—ics puilds up the alignment of the principal axis @fp and

Planck equation(8), let us examine the energy balance,

which was one of the key considerations in the formulation

of the model,
1 Ty — t ot
Eat(trvv )= dM tr(pMM "p")4,P(M, p)

_ 9 t t
== 5 VAW ), afir (VM)

16

+ 5 C,e=CDg+Cu 1, (9)

which is obtained by multiplying Eq8) by trvv' (where
V,=pp,Mpa) and averaging with respect M. Note that the
average...),, is taken at fixegp and remains a function of it.

The first two terms on the right-hand side may be identified
as the divergence of the large scale energy flux and the eddy

damping, respectively.
Note that the term originating from the deterministic
component of the pressulé,,tr M? drops out: the particu-

lar form of I1,, was chosen for that purpose on the grounds,
that the pressure gradients should not contribute to the er;

ergy transfer as seen in the von r@n—Howarth
derivation?® However, sinceV, is only the coarse-grained
and not the full local velocity, in contrast with the von

MM T,
Notably, the deterministic eddy damping term which has
appeared in9),

D= —a(trVIVM),, (11b

is a direct generalization of the so-called nonlinear eddy
dampingp?(tr M2M ™) advanced by Litet al*® and reduces
to it for isotropic tetradspp'=1p2. In this limit, D, —
—tr(s— Q-s-Q), wheresandQ are, respectively, the sym-
metric and antisymmetric parts M. Thus the energy trans-
fer down scale is due to negative strain skewness or positive
enstrophy productidrf® (i.e., vortex stretching We can de-
fine the energy flux by averaging over the fix&dshells. Let
R=\/p? and Vg=p2V?R denote the longitudinal velocity,
then

16
e=—aR<vRtrvv*>R+§cne (12
is balanced by eddy damping=D,+C,Dy. Here{...)g
denotes an additional average oy&r= R? shell.
Below we will often think of the diffusive contributions
as being small compared to the nonlinear interactions on a
urrent scale: that is, we shall assu@g, C, <1 and treat
them aga singulay perturbation of the deterministic dynam-
ics. Another tractable and physically plausible limitGs

Karman—Howarth analysis, the divergence of the energy flux
is balanced not directly by the viscous dissipation term, but

by the eddy damping. There are also additional contribution
due to the coupling with small scale fluctuations represente
by the last three terms i(8). The C, term represents the

diffusive component of the energy flux arising from the

. DETERMINISTIC DYNAMICS AND THE

I
EZESTRICTED EULER MODEL

Note that the equation of the for(8a) also governs the

small scale fluctuations and the coupling of the tetrad to théagrangian evolution of the actual local velocity gradient

neighboring regiongentering via Gaussiary). The C, f
term represents the transverse energy flux with

matrix my,= dvp, (We use lower casm to avoid confusion

with the coarse-grained object
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with A (t)=X\(0)/(1—tN\(0)) making the finite time singu-
larity att, =1/\(0) explicit.

The region above the separatri,>0, is elliptic: the
eigenvalues of the velocity gradient eigenvalues become
complex and the Lagrangian trajectories are rotating; the re-
gion below the separatri <0, is hyperbolic: the eigenval-
ues are real and the trajectories are strain dominated. These
topological aspects of RE dynamics were emphasized by
Blackburnet al®’

As a model of finite time singularity, RE solutions were
rejected’ on the reasonable ground that if considered as glo-
bal solutions of Euler equations these do not satisfy sensible
boundary conditions and have unbounded energy. Ashurst
et al,® however, noted that the statistics of the vorticity/
strain alignment observed in the DNS of Navier—Stokes may
be qualitatively understood in terms of RE. Subsequently,
Cantwell and co-workefs~3" proceeded to investigate the
DNS generated statistics &,Qinvariants and observed that
R the probability distribution functioiPDF) of R,Q exhibits a
pronounced tail along the Viellefosd2=0 asymptote, as
can be seen on Fig. 3. These two observations suggest that
despite the draconian local and isotropic approximation to
pressure and the unphysical finite time singularity, the RE
dynamics does capture certain statistical features of the

d ) physical flow.

gt Mab™ Map= — dadbP, (133 The deterministic part of the Lagrangian tetrad dynamics

i defined in Sec. Il generalizes RE by reinterpreting the veloc-
as derives from the Euler equation. dre® and ity gradient tensor as a coarse-grained field defined over the
Vieillefossé3 have ConSidereCﬂ.Sa) retaining Only the local tetradp and Comp|eting the Lagrangian picture by add|ng the

FIG. 2. The Restricted Euler flow of velocity gradient invariants
Q=—(1/2)trM? andR= — (1/3)trM?3.

and isotropic contribution to the pressure dynamical equation fop(t). Thep field introduces the mea-
S5 sure of current length scale and the dependence on the his-
Fa0pP=— ?abtr m2, (13b  tory of the strain which controls the “shape” of the tetrad.

The p-dynamics(3b) is coupled toM via the anisotropy
as a model of vorticity dynamics and observed (18 and  tensorll. For an isotropic tetradi.e., regular tetrahedron
(13b) lead to a finite time singularity withm|~(t, —t)"%.  Ilap= 6ap/3 and theM-dynamics]the left-hand side of3a)]
The dynamics governed Kg3a and(13b—the “Restricted ~ reduces instantaneously to the RE equatibda), (13b). In
Euler dynamics,” to use Cantwell’s terminolog¥lies en-  the next instant, however, the tetrad will become distorted
tirely in the two-dimensional phase space defined by the twahrough the action of the volume preservikigfollowing the
invariant$®2®tr m? and trm>. This reduction stems from the p-dynamics equatiofileft-hand side of(3b)] and the trajec-
SL(3) invariance,m—gmg !, with g being an arbitrary 3 tory will come out of the RE plane. Its evolution will depart
X 3 matrix, which allows one to brinm(t) to diagonal form  from RE as the anisotropy increases and at some point the
A(t) by a time-independent similarity transformation(t) ~ growth of||M|| will be cut off. This is most easily seen for the
=UA(t)U™ L. There is yet one more independent constant oD =0 Vieillefosse line. The dynamics of [see(14)] be-
motion found by Viellefossé® the “discriminant” D comesh=(6q 1—1)\2, with II=diag{1,1q— 2}/q, where
=3(tr(m?))?— (1/2)(tr(m?))>= — (A1 = X2)*(\2—N3)*(A\5 q evolves according t@=6(q—2)\. The isotropic tetrad
—X\1)? where\(t) are the(in general complexeigenval-  corresponds ta=3. Starting from isotropy and >0, both
ues Ofm(t) The RE dynamiCS thus reduces to 1D ﬂOW, Ie,)\(t) and q(t) grow. The growth qu Corresponds to the

it is integrable! Figure 2 shows the flow in the 2D phasecontraction of one of the principal axes of th& tensor as
plane of the invarianf§ Q=-(1/2trm®>, R=  the tetrad is flattened into a pancake. However, wher6
—(1/3)trm?, and the finite time singularity corresponds 10 the growth of\ reverses. Thus, anisotropy caused by the
the R—, Q— —o asymptotically approaching thl@=0  stretching of the tetrad cuts off the Viellefosse finite time

separatrix. _ _ _ singularity”® The modified RE dynamics, however, retains
~ Along the D=0 separatrix the flow is particularly the initial growth ofM with two expanding and one contract-
simple, ing strain directions and the consequent deformation of the
A1) O 0 tetrad into a pancake or ribb8RThis process is the funda-
mental step of energy transf&r°CIn the next section we will
mt)={ 0 A1) 0 : (149 see that the Viellefosse tdlargeR>0, Q<0 region of the
0 0 —2)\(1) Cantwell PDF on Fig. 3, which is generated through this
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process, indeed corresponds to large negative strain skew-
ness associated with the energy tranéfeknother retained
aspect of the RE dynamics is the evolution of the vorticity/
strain alignment from configurations where vorticity is par-
allel to a-strain(i.e., the fast stretching directipto configu-
ration where vorticity is aligned with the intermediate,
B-strain, as observed numerical§:>! The new feature of
the modified model is that while in the isotropic RE all 2D
configurations oM evolve into 3D,(e.g.,M ;5= €4p,0, Will

in the next instant acquire, due to low local pressure, a con-
tracting component of strain along tielirection which will

act to destroyw,), the new anisotropic model allows the 2D
configurations oM to persist provided that thH tensor is
rank two (p"p rank one, which corresponds to filamentlike
tetrads. Note that both intense vorticity and quasi-one-
dimensional tetrads will be produced by the action of strain
with one stretching and two contracting directionpstt
>0, thus there potentially is a chance of describing vortex
“worms.” "%1112\We shall return to the discussion of the
kinematics of energy transfer and vortex stretching in Sec. V.

How can one compare the deterministic tetrad dynamics
model with the real Navier—Stokes dynamics? The relevant
empirical object is the averaggM/dt and dp/dt condi-
tioned onM, p, but to simplify matters we will restrict our-
selves to isotropic tetrads and examine the flow in ¢hR
phase space generated by the conditional aver(d?jﬁQ)
and (Q|R,Q). The latter were obtained by a DNS of
Navier—Stokes.

Briefly, the Navier—Stokes equations are integrated by a
standard pseudospectral algorithm. Our code is fully
dealiased. We used up to (138&ollocation grid points, and
the effective resolution was maintained to be higher than
Kmax7=1.4, wherek,,,, is the highest wave vector in the
simulation, and nx the Kolmogorov length scald nk
=(v%€)Y4]. Statistics were accumulated for at least three
eddy turnover times. In the following, we present our results
for a Taylor scale Re=85. Our investigation of the influence
of the Reynolds number in the range<2Beg <85 did not
reveal any major qualitative change of the statistics pre-
sented here.

Figures 4a)—4(c) show the streamlines in th&R,Q
plane, reconstructed from the conditional averages of
(R|R,Q) and(Q|R,Q) computed numerically for three dif-
ferent p2. The latter were increasing from the dissipation
range to large scale. For isotrogicour M-dynamics is in-
stantaneously tangent to the RE and therefore the empirical
flows can be compared with Fig. 2. Remarkably, while there
are significant deviations in the topology of the flow foin
the dissipative rangfFig. 4@)], the instantaneous flow for
large scalep is surprisingly close to RE. The deviations at
1 - s small scales are presumably due to the viscous effects. The

© * R ? conditional flow for|p|=107, can be fitted by the modified
*
RE,
FIG. 3. The PDF o, ,R, invariants normalized to the variance of strain,
Q,=Q/(s?) andR,=R/(s?)®? (“star” denotes normalizatioyy obtained dm
from DNS atR,=85 measured at different length scalés: dissipation —=(a—1)(M?2—IITrM?), (15

rangep=27, (b) low end of the inertial rangp=87, and(c) upper end of dt

the inertial rangep=L/2. The isoprobability contours are logarithmically . . . .
spaced, and are separated by factors of 10. The dashed line correspondWith « decreasing with increasing|/ 7 from 8 to 0. qu
zero discriminant. the reasons related to the energy transfer, discussed in Sec.
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conditional flow from(15): these are expected to arise from
the possible additional deterministic terms(i%) (e.g.,yM)

as well as the stochastic dynamics. Much further work is
required in this direction.

IV. LAGRANGIAN PATH INTEGRALS AND THE
SEMICLASSICAL APPROXIMATION

Let us now explore the statistical properties of the
coarse-grained/-field on the tetracp. The probability dis-
tribution P(M,p) is governed by the Fokker—Planck equa-
tion (7), (8) but requires specification of an additional bound-
ary condition. Since the PDF of velocity is known to be
Gaussian on the integral scale, we shaff%ix

trMMm T
P(M,p),2- 2~ ex @ (16)

To impose the integral scale boundary condition one
may use a generalization of Green’s theorem,

P(M’,p’)=f de dp[P(M,p)L"g"(M,p[M",p")
—LP(M,p)g"(M,p|M’,p")]
=f dez 2tr(o|p|v|TpT)P(M,p)
pc=L

Xg'(M,p|M’,p"), (17)

whereL " denotes the adjoint operator which governs evolu-
tion backward in time (obtained by M——M) and
g'(M,p|M’,p")=L""1its static Green function. The deriva-
tion of (17) takes advantage of the assumed lack of longitu-
dinal p-diffusion (C;=0). More generally one would
impose an “absorbing” boundary condition:
g+(M!p|M,1p,)|p2:L2:0'

The static Green’s functiog' is computed via the La-
grangian Green's functiof6),

0
gT(M,pIM'p’)=f dTG(M,p|M’p"), (18)
FIG. 4. Streamlines of the flow d¥l-invariants, constructed from the con- -
ditional averagegQ|Q,R) and (R|Q,R) measured via DNS at different
length scalesta) dissipative range=27%=L/32, (b) upper end of the iner-
tial rangep=L/2. The invariantR andQ are normalized as in Fig. 3.

which has an intuitively appealing path integral representa-
tion,

,, M(0)=M p(0)=p
G_1(M,p|M’p )=f /DMJ Dp
M(-T)=M p(—T)=p

II, we believe thate should be constant in the inertial range.
The continuous scale dependence observed in the fit to DNS, xexd —S({M,p})], (19

accessible Re is quite limited. On the other hand, the apime —T with the final M, p at time 0 weighted with the
proximate validity of (15) as a description of the coarse- gction

grained Lagrangian evolution is quite encouraging. It would

be important to extend the comparison of the deterministic, 1 JO M= (a—1)(M2=TIItr M?)||?
T

dynamics(15) with the numerical simulation for anisotropic >~ 2 C,ep 2

tetrads; however, in that case the(SLinvariance of(15) is

lost and in addition to th&®,Qinvariants the time derivative tr[(p—pM)(C| 1(1_;,‘;,*) +Cy 1;,;,*)(,‘,_,,M )1
must be conditioned on the vorticity, which makes the com-  + > ,
putation more demanding statistically. It would also be im- pNIrMM

portant to investigate systematically the deviations of the (20
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where| X|2=tr XX, p=pl/|p|l, andC,—0, as assumed be- Let us now construct the PDF of tHQ invariants for

fore. the isotropic tetrad of radius It is convenient to consider
This path integral form invites a semiclassical the ellipticD>0 and the hyperboli® <0 regions separately

approximatiofit>3%* which estimates the integral via the and use different parameterizations of #ematrix,

saddle point G(M,p|M’,p')~exd—S(M,p|M’,p")] (@) for D>0

given by the minimal actioi®; along the “classical” trajec-

tories connecting the prescribed initial and final poifits A Ae”

time T) and obeying the Euler—Lagrange variational equa- M= —Ae™” X\ w1 (233
tions. Moreover, for each final poir(M,p) there exists a 0 0 -2\

uniqueS=0 trajectory governed by the deterministic part of

Lagrangian dynamicg3a), (3b) which picks out the La- and(b) for D<0
grangian preimag®’=M(M,p,—T), p’'=p(M,p,—T) as

an initial condition. If the small scale generated stochastic
component of the dynamics were sm@l| , C,—0, these M= 0 A-A o |, (23b)
deterministic Lagrangian trajectories would control the 0 0 -2\

Green’s function. Since the probability is constant along the

zero action trajectory, the PDF of the firdl,p is determined ~ Wherew, refers to vorticity and if23a w;=2A coshy. The
by the probability of its Lagrangian preimagél’  invariants arga) R=2\(\?+A?) andQ=A?—-3\? and(b)
—f(M,p,—T) at the integral scale where the PDF is as-R=2MA?—A?) andQ=—A?-3\?, and the strain tensor is
sumed to be Gaussian. Crude as this zero action approxim&= (M +M™)/2. Itis straightforward to numerically integrate
tion is, it is the natural zeroth-order calculation and will pro- (218, (21b) starting with givenM andg=r?1 in time until
vide some physically interesting insights, as well shall sel” 9=L?, at which pointP(M,g) is assigned vid22). How-
below. The full semiclassical analysis will be deferred to a€Vver, to determind (R,Q) one must integrat®(M) over

)\+A w3 (OF)

forthcoming publication. (@ vy, w;, and (b) over w. (Note the Jacobian:
JdMS(trM) = [dRdQdw= fd\dAdw|D| and dAdw,

V. PROBABILITY DISTRIBUTION FUNCTIONS AND =2Aysinf{yldydd) o

STATISTICAL GEOMETRY The task is simplified within the saddle approximation

) ) where the integration is reduced to minimizaffdrof
To make contact with the numerical results we shall usqoq (v r) with respect to the integration variables which
the “poor man’s” zero action approximation introduced in ;e carry out numerically via an “amoeba” algorithth.
the previous section, and, according to which, the probabilityy, e the wholeR,Q plane we find that the saddle point is at
of given M observed on a tetrag in the inertial range is (8) y=w; =0 and(b) w=0. In addition, for the special case
equal to the probability of its integral scale preimage. Theyt b= when is the only nonzero parameter (239 and

latter _is found by_ integ_rating the deterministic_ part pf the(23b), the trajectory and th®(M,g) can be computed ana-
equations of motion(which generates zero action trajecto- lytically (see Appendix The resulting distributiorgfor dif-

ries) from the observation point backward in time, ferentr) is displayed on Figs.(8) and b). P(Q,R) exhibits
d a long[but Gaussian-exp(—ar?r??+)] ridge—the “Vieille-
FiM= —(a=1)(M*~IItrm?), (218 fosse tail’—along theD=0 line in theR>0, Q<0 quad-

rant and a valley of low probability approaching the origin
d +t 1 from theR>0 side. This structure appears because the back-
a9~ —gM-M'g'=BVrMM 7| g— §trg ' 21D \yard in time trajectory of the point on tHe =0 separatrix
converges to the origin and maps to a highly probable, small
M’ integral scale preimage, whereas the trajectories originat-
ing in the low probability gulf in their time reversed dynam-
ics are swept westward past the origin into the improbably
large M’ region. The PDFP,(R,Q) evolves continuousl
in (7) which is physically more appropriate than the formal Wit?l decreaging/ L away fror;1(theQ )Gaussia(mvhich appear)s/
C.,C—0 deter.mlnlstlc limit of(20). Dimensionless CoN- " nontrivial in the R,Q variables shown for comparison on
stantsa and B WI|! serve as model para_met'ers. quatlonsFig_ 6. The appearance of the PDF tail alobg-0, R>0
(_21? and (21D will be integrated back in time until § . the trend of /L dependence are reminiscent of those for
=p* reaches the integral scale, yielding for the PDF, the PDF obtained from the Navier—Stokes. Yet, both the
tr(M L(M 7g)|\7| f(M,9) high probability ridge and the low probability valley found in
P(M,g)~exp — (L 27 , (22)  the present deterministic approximation are strongly exag-
_ gerated. There is a good reason to expect that the effect of
with M (M,qg) (and the time of flighfT) fixed implicitly by  the fluctuations will be strong in these regions: the narrow
t[g(M,g,— T)]=L2. To the extent that the nontrivial PDF ridge should be largely “washed out” as the asymptotic be-
in this approximation arises as a nonlinear mapping of théavior of the tails and low probability regions is clearly
initially Gaussian variables, our construction here is reminisdominated by fluctuations. Yet again, the rather comple
cent of Kraichnan’s “Mapping Closure ®°° dependence of the PDF and the crude qualitative similarity

whereg=p'p. The 8 term has been added to reintroduce the
isotropization effect due to the transverse small scale fluc
tuations already in the deterministic approximation. This
may be thought of as a Mean Field treatment of@heterm
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0
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FIG. 6. The PDF of), ,R, invariants(normalized as in Fig.)3obtained by
replacing the realDNS) velocity field by a random Gaussain field, with the
same velocity spectrum.

=0 tail. Next we compute the average strain skewng&gs,
=[detrs’P,(R,Q), which is the object associated with en-
ergy transfef® and find that it is strongly localized in the
D=0 Vieillefosse tail as shown in Fig. 9Curiously, we

find that in the elliptic regionQ>0, the strain skewness
changes sign three times—a fact that can be understood on
the basis of the structure of tHd tensor given by(25).]

FIG. 5. PDF ofQ, ,R, invariants(normalized as in Fig. 3calculated for Note that the energy transfer term i®) is actually

the tetrad model in the deterministic approximatiéa; p/L=.2; (b) p/L

TrM2MT=Trs*— (1/4)w-s-w, so that vortex stretching

=05. also contributes to the energy flikVortex stretching, how-
ever, does not dominate the energy transfer: while most of

of the model PDF with the results of the DNS merit a de-
tailed discussion of the underlying kinematics and dynamics.
Let us compute the distribution in tHe,Q plane of the

average enstrophyw? and enstrophy production-s- w 1
=(1/2)Tr(M +MT) (M —M™)? which measures the rate of
vortex stretching®The enstrophy density is defined by
e(R,Q)=[dww?P,(R,Q,w), but in order to save computer
time will only be evaluated in the saddle approximation by
varying the integrand w.r.iw. For all of the hyperbolic re-
gion, the saddle of the integral occurs at a nonzero value o
v, parameterg21a, (21b). The result is presented in Fig.
7. We see that the average enstrophy peakR=ad and

small positiveQ. This is explained by noting that the condi- |

=)
T

tional averagé w?|R,Q) grows likeQ (at least forR~0 and -

Q>0) becaus®=((1/2)w?—Trs)/2, while P(R,Q) falls
off. The average enstrophy productior(R,Q)=/dww-s
-wP(R,Q,w) is also dominated by a nontrivial saddle and
has theR,Q dependence shown in Fig. 8. We observe that -2}

enstrophy is produced predominantly in the upper left quad-  °°
rant of theR,Q plane, it is(partially) destroyed in the upper

R*

L
0.5 1

right quadrant, and there is weak vortex stretching inbhe FIG. 7. Enstrophy density iR,Q plane for the tetrad model afL=0.5.
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-0.5

FIG. 8. Enstrophy production density R,Q plane for the tetrad model at L
pIL=0.5. FIG. 10. Energy flux density iR,Q plane for the tetrad model at/L

=0.5.

the enstrophy production is in the upper left quadrangle, Fig.
8, the energy flux distribution F(R,Q)

=-afdeTrM?M'P(R,Q,w) is localized in theD=0  strain skewness in the energy transfer. Furthermore, there is
tail where the negative B lives, see Fig. 10. Thus we 5 clear correspondence of the positive and negative regions
arrive at the conclusion that from the energy transfer point obf tr s* (Fig. 9 and 13 and energy fluxFigs. 10 and 14
view, the active regions are dominated by the strain and not  Much of this behavior can be understood by considering
vorticity.12?% Also of interest is the appearance of distinct the “statistical geometry” of the flowsee Ashurset al.®
regions of weak negative energy transfer: e.g.,Ri®>0  and Tsinobeet al?%) and is inherited from the RE dynamics.
quadrangle where bot and the energy flux are negati®e. Most of the vortex stretching occurs f&<0, Q>0, where
Remarkably, as seen from the comparison of Figs. 7—1éhe vorticity is aligned with the large positive eigenvector of
and Figs. 11-14 the DNS exhibits a rather similar distribu-the strain; this is immediately evident from the structure of

tion of average enstrophy, enstrophy production, and straithe M matrix at the saddle point controlling(R,Q),
skewness in th&,R plane. Both DNS and the model have

positive enstrophy production in the upper left quadrant and
in the D=0, R>0 tail, and negativer in the upper right
guadrangle; both have strain skewness strongly confined to
the D=0, R>0 tail, and both exhibit the dominance of the

-0.5 0 1

R

*

FIG. 11. Enstrophy density iRR,Q plane from the DNSR, =85, atp/L
FIG. 9. Strain skewness density ®Q plane for the tetrad model a/L =0.125[same value as in Figs(8 and 4c)]. The enstrophy is normalized
=0.5. by —2(tr(Q?)).
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05 ) 0 1

FIG. 12. Enstrophy production density R,Q plane from the DNSR, FIG. 14. Energy flux density, tl{?M™) in R,Q plane from the DNSR,
=85, at p/L=0.125. The enstrophy production is normalized by =85, at p/L=0.125. The energy flux density is normalized by
[{tr(M2M™))|. Solid lines correspond to positive values, dashed lines to|(tr((M2MT))|. The same convention as in Fig. 12 is used.

negative values.

vanishes before changing sign. The magnitude of vorticity

N A 0 reaches a maximum. In the peak vorticity region, kheen-
sor has the form
M,=[ —A A\ 0o |, (29 )
0 0 -2\ N Ae 0
= —Ae™” A 0
where® A <0, since the off-diagonal elements @) define Me : 25
the vorticity along the direction with the strain eigenvalue 0 0 -2x

—2A>0. The tetrad dynamics then takes Medfield into the  with A<A and y<1, so that the flow is essentially two di-
R~0, Q>0 region, where\, and hence the stretching rate  mensional with vorticity aligned with the nearly neutral
strain direction.

The alignment of intense vorticity with the intermediate
strain axis is well knowh®122%51and its reappearance in the
model is encouraging. The fate of the typical 2D vorticity is
to implode under the action of the contracting stridrought
about by the low pressure of the voriéR The energy is
transferred to larger scale.

To conclude, we examine the geometryMfin the D
=0 tail. Here the predominamdl configuration is

* N O D)
© Me=| 0 x 0, (26)
0 0 —2\
ar which leads to the strain eigenvalues
VRN A 2
Sa=h STVt g @

ands,=—s,—sz. The vorticity is aligned with the interme-
diate strain axis, which is stretching since #)e>0 consis-
tent with the negative strain skewnesssT+ 3s,S5S,. The
* normalizedg-strair?®°((s,/|s|)|\) as a function of along
—0 line i 232 it
FIG. 13. Strain skewness density,tr(S?) in R,Q plane from the DNS the D=0 line increases a«*/\*)|\) goes down with in-

R,=85, at p/L=0.125. The strain skewness density is normalized by Creasing\, as it is shown above and confirmed by Figs(al5
[{tr(M2M™)}|. The same convention as in Fig. 12 is used. and 1%b) for the DNS. To the extent th#&, (R,Q) is peaked
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T : - Let us further explore the results of the deterministic
approximation. The exact solution on tBe=0 line (see Ap-
pendi® exhibits strong asymmetry: even though the PDF is
Gaussian along th® =0 line both for R>0 and R<O,
In P(\)~—N2(r/L)*&~ 9P+ the characteristic exponents on
the two sides are differenty (B8)>h_(B). Itis theh_ ex-
ponent which controls the behavior of low moments includ-
ing the 3rd, and in order to impose constant energy flux we
must require (+ a)h_(B)=2/3, which forces K41 scaling
on the “head” of the PDF in Figs.®) and 8b). The con-
stant flux condition thus fixes a specific relati@etermined
in the Appendix between the model parameters: @sn-
creases from 0 te=.3, « decreases from 1/3 to 0.

However, while the scaling in the bulk of the PDF is
. . . . K41, the scaling in the Vieillefosse tail is anomalous. Intro-
(@) ' y ' ducing rescaled variable=Ar??%, A=Ar??, ando=wr?®
we find that thel dependence of the action in the hyperbolic
vicinity of the tail (which determines its width in th&,Q
plane has the asymptotic form

-~ - ~ A
S+()\,A,w=O)~)\2r27++A2r‘2’7fA(:r‘”‘”) ,
I
(28)
o where the scaling functiof, (0)=const andf ,(x)~x¢ for
x>1 with =1y, /(2— ). Similarly, the vorticity distribu-
tion on theD =0(R>0) line is governed asymptotically by
~ o~ ~ ’ Z) !
S.(NA=03)~N2r27++ % 27 fw(:r” T+
\
where f,(x)~x? for x<1 andf(x)~x°"3 for x>1 with
1 ' o5 o o5 7' =v,(3—-8)/(6—1). The anomalous exponents depend
(o) A on B y,=2(1-a)(h.(B)—h_(B)) varies from 0 atB
FIG. 15. (@ Normalized intermediate eigenvalue of the stras), =0, («=1/3) t0 1/2 atp~.3, a=0. Over the same range
. . 1Z | | | valu . H
E\/G_SBI\SL as a function oh along the Vieillefosse tail as observed in the varies from 110 3/2. Th.e exponents as a functiongodre
DNS, R,=85, p=27; (b) same for normalized enstrophye, tabulated in the Appendix.

(29

=(w?\)/\?, as a function oh. It follows that the conditional enstrophy in the Vieille-
fosse tail behaves for largeas
<Z’2|X>~(X)(2a‘/(2+ 82y ol2+ 5)+277” (30)

atR=Q=0 and hence ax =0, the most probable configu- ., 1ving an interesting nontrivial scaling relation between

rations haves,;>s,~0 and are close to plane shear or 2D e grain and vorticity of the velocity gradient sheets asso-
vorticity. Note that these most probable configurations have,siaq with the high energy transfer regions

TrM2~0 or Trs’~(1/2)e?, which means approximate lo- We can also compute the contribution of the=0, R
cal homogeneity—a much stronger statement than the NOmas 4] 1o the moments of the velocity gradient. We com-
geneity on average, i..TrM?)=0! This must have serious pute, e.g.
implications for the pressure. o

The exag_er_at_ed non-Gau_ssian(i;e., Vieillefosse tail _ <X2>taiI:Nf ngJ’ dZZf d.&)Xne,&({rn,gr—n,;r—n’)
of the deterministic model aside, there are also other quali-
tative differences between the results of the model and the
DNS: e.g., the vorticity density in the DNS peaks at the
origin and is skewed in the upper half plane, tow&d 0.  where the normalization factdd~1 because it is dominated
This effect is even stronger for the vorticity distribution mea-by the “head” of the PDF with K41 scaling, already factor-
sured in the dissipative range: an asymmetry also visible ifized explicitly. Thus we conclude that the tail contribution is
P(R,Q) shown on Fig. 8. This can be understood as a important only for sufficiently largen, when n>n.=(2%
result of enstrophy dissipation by viscosity which shifts the+3%')/y, —3 and the anomalous scaling becomes domi-
locus of null enstrophy growth and hence maximal enstrophyant over the normal contribution of the bulk of the PDF. We
to configurations where vorticity is still aligned with positive find that in the limit of 3—0 and a— 1/3, n;.— and the
strain. shape of the PDF, although non-Gaussian, becomes indepen-

~r27+37" —(n+3)y, (3D
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dent of the scale. This limit recovers the Kolmogorov 41plays the key role in transferring energy down scale. This
theory. The intermittency effect is maximized @s~.3 and transfer occurs due to the volume preserving distortion of the
a—0, where anomalous scaling appearsrior6. fluid element which leads to the reduction of at least one of

It is clear that although the PDF found in the presentits principal axes.
deterministic approximation of the model is on the whole far ~ Our heuristic derivation of the model was fortified by the
from Gaussian(imposed on integral scalethe approxima- numerical test 0of3a) through the construction of the condi-
tion underestimates the intermittency effects. It predicts, e.gtional flow for the invariants oM. The deterministic part of
no deviations from K41 in the vorticity dominate@>0  (3a) appears to be quite close to the conditional flow at least
region, in contrast to the DNS result which in that regionfor isotropic tetrade =1r. It will be important to extend the
exhibitsr-dependence associated with the development of anumerical study to anisotropje and to find a way of exam-
exponential(or subexponentialtail on smaller scales. It is ining the stochastic contribution to the dynamics. The valid-
equally clear that the description of such a tail is beyond thety of the local approximation of the pressure Hes$tand
currently employed approximation. After all, the asymptoticthe neglect of nonlocal correlations remain the key issues.
behavior of the PDF, i.e., the statistics of large fluctuations, The tetrad model respects K41 scalingl--bM, p
is dominated by fluctuations. One does, however, expect to-b~%2p), both on the operatof7) and the integral scale
find the exponential asymptotftsonce the fluctuations are boundary condition(16) levels. Yet, as illustrated by our
accounted for via a proper semiclassical calculation. Thererude deterministic approximation, the resulting PDF has
thus appears to be two mechanisms contributing to the intefontrivial, model parameter dependent anomalous scaling.
mittency: (1) the deterministic nonlinear interactions in the The Kolmogorov scaling has to be reimposed on the level of
energy transfer region as indicated by our present calculahe 3rd moment by choosing the parameters so as to make
tion, and(2) the effect of small scale fluctuations responsiblethe energy flux scale independent. Except for one particular
for the exponential asymptotics of the PDF. The latterlimit (8—0, a—1/3) where the PDF has K41 behavior,
mechanism is analogous to the one responsible for the intehigh moments exhibit anomalous scaling. Remarkably, while
mittency of the Passive Scaldr.?° this anomalous scaling has little to do with the Kolmogorov—
Obukhov arguments?® it does originate in the domain of
energy transfer: the Vieillefosse tail.

The deterministic approximation employed in Sec. V

In the preceding sections we have introduced and begugrossly overestimates the extent of the Vieillefosse tail in
to analyze the phenomenological model of inertial scale veP(Q,R) but it does bear resemblance to the PDF observed in
locity fluctuations defined through the velocity gradient ten-the DNS. It also generates plausible distributions of enstro-
sor coarse-grained over a region specified by a tetrad gshy, enstrophy production, and strain skewness. The present
points. The dynamics of this field was decomposed into theanalysis provides a clear dissection of the high enstrophy and
nonlinear deterministic component representing local samehe high enstrophy production regions, identifies the differ-
scale interactions and a Gaussian stochastic component wiémce in the vorticity-strain alignment in the two regidns,
embedded K41 scaling representing interactions nonlocal iand exhibits their dynamical connection. As explained in
space and the incoherent contribution of the velocity fluctuaSec. Ill, much of this sensible phenomenology was inherited
tions from scales smaller than that of the tetrad. The deterfrom the RE dynamic8.The elimination of the Vieillefosse
ministic component is closely related to the RE dynamics ofinite time singularity was, however, essential in order to
the Vieillefossé&® model. The latter, although marred by the have a model with stationary statistics.
unphysical finite time singularity* has been an appealing The energy transfer for isotropjcconfigurations occurs
candidate description for the dynamics of the local velocityvia the nonlinear eddy dampifitf'®tr MM T term (9), which
gradient%3° A novel aspect of our model is the elevation combines contributions of strain skewness and vortex
of the velocity gradient dynamics to the coarse-grained levestretching. Within our present crude deterministic approxi-
and the introduction of the tetrad tengpd dynamics which  mation, the energy transfer occurs largely in the Viellefosse
explicitly introduces the scale and the measure of anisotroptail and is due to large negativest:. In this region strain has
generated through the strain induced distortion of the Latwo positive eigenvalues and Lagrangian volumes are de-
grangian volume. This allows us to construct an anisotropidormed into pancakes or ribbons, i.e., this is the region of
model of the coarse-grained pressure Hessian which elimsheet formatior’® In contrast, the vortex filaments are gen-
nates the finite time singularity from the deterministic dy-erated in theQ>0, R<0 quadrant where enstrophy produc-
namics by suppressing the work done by the pressure on th®sn is peaked. This region does not contribute as much to
distorted fluid element. Furthermore, the explicit appearancéhe energy flux. Furthermore, the maximal vorticity region is
of the current scale allows us to build in K41 spectrum in thecharacterized by nearly 2D configurations and does not con-
stochastic componéfitof the dynamics. An important rea- tribute at all—a notion consistent with recent numerical
son for working with the coarse-grained field is that in theresults!? Yet, whereas we are optimistic about correct de-
dynamics of the purely inertial range fields the direct contri-scription of the high—trs® tail in the model, the correct
bution of the viscosity can be neglect€dnstead, the ulti- description of the highr region may be more difficult be-
mately viscous dissipation is incorporated through the effectause of the importance of long-range strain in vortex
of the incoherent small scales acting through the eddy damystretching.
ing D,,,+D, terms in the model. The deterministic dynamics In order to enable a more quantitative comparison of the

VI. CONCLUSIONS
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model and the DNS, the treatment of the model must include Last but not least, two remarks concerning the relation
the effect of the fluctuations which control the asymptoticwith the experiment. The traditional approach to turbulence
behavior of the PDF. Our present, deterministic approximaand most of the existing data involves velocity difference at
tion overestimates the PDF in the narrow Vieillefosse tail,two points. This two-point statistics can be extracted from
while underestimating the asymptotic behavior of the PDRhe tetrad statistics by averaging over “unobserved” vari-
elsewhere in th&,R plane. Both effects are due to the ne- ables P(V,p1) = [dp,fdpsfdM 8(piM zp—v1,) P(M, p).
glect of the fluctuations. Since the relevant Fokker—PlanclConversely, it would be very interesting to study tetrad sta-
equation lives in the?— 1+d(d+ 1)/2=14 dimensionaM, tistics experimentally. For that we need a velocity measure-
p space, the direct numerical approach seems out of the quesient at four points in the inertial range, which can be ob-
tion. However, one may hope to make progress with theained from thredcrossed wirgprobegsay a fixed probe at
semiclassical analysis of the path integral representé®@n  the origin and two movable probes at,y,z)=(0,\/3/2r,
along the lines of Refs. 41 and 53. This approach is valid for+ 1/2r)] in a flow with (v,)# 0. The time laglon the static
the calculation of the PDF tails and associated anomalousrobe then can be used to provide the fourth
scaling. We expect that the fluctuation effects will changemeasuremerft:’® The PDF of the coarse-grained velocity
the Gaussian decay of the PDF tails found in the determingradient may then be obtained. Quite independently of the
istic approximation to the exponenti@le.g.,\ ~2e~ ", predictions of the present model, ttR,Q-plane density of
An interesting simplification appears in the limit of the second- and third-order invariariesg., Figs. 8—14are
strong transverse diffusioB, >1 which corresponds to the very useful in dissecting the role of vorticity and strain in
physically sensible regime of strong reisotropization of theintermittency and the possible difference in their anomalous
tetrads arising from the action of incoherent small scale flucscaling.
tuations. In that limit, the PDF becomes nearly uniform over ~ We conclude finally that despite its relative simplicity
the p?=const shells and can be projected onto stendd  the tetrad model is surprisingly rich in physics, offering an

representations of S@®) acting onp?, insight both into the geometry and dynamics as well as the
statistical and scaling properties of the inertial range fields.

P(M,p)~W(M,p?)+ g Many nontrivial statistical objects can be calculated in terms
2d°C, of the three parameters of the present model. Further work

% Pianb_ éngabcsij CDﬂb(M,pz). (32) ar_1d detail_ed comparison with the DNS ar_ld the ex_periment

will establish the degree of success and failure of this model.

Note added After this manuscript had been submitted

Curiously, this nearly isotropic approximation doublesfor publication the authors learned of the work of Martin
as ad>1 expansiof’?®%° because thal-wave mode of et al.”® who investigated the validity of the Restricted Euler
SO(d?) is suppressed by thgl +d?—2) total angular mo- dynamics numerically and constructed the conditional flow
mentum factor witH =2. This expansion allows a consider- (R|Q,R) and(Q|Q,R) in the dissipative range. Our Fig(a}
able simplification of(7) and (20). is in agreement with their result.

Several related models are worth mentioning. The
present model appears to be the real space, Lagrangian codarﬁc—:K'\'OWLEDGMENTS
terpart of the momentum space, Eulerian “shell” model pro- It is a pleasure to thank A. Libchaber, E. D. Siggia, and
posed by Siggid? Yet, the geometrical and statistical impli- A. Tsinober for stimulating discussions. M.C. acknowledges
cations of that model have not been fully explored and we dguPport of the R. H. Dicke Fellowship and the hospitality of
not at present understand the relative merits of the assumfgell Labs. We also gratefully acknowledge the grant of com-
tions involved in the two models. The logic which led@®  Puter time from IDRIS(France.
and(3b) can and has been applied to the Passive scalar prOlA-PPENDl)(Z SCALING IN THE DETERMINISTIC LIMIT
lem, in which case one would replabé by a Gaussian ran-
dom field. This would lead to a PS model of the type con-
sidered in Refs. 20 and 73 closely related to the
Kraichnan'$* model. It would be interesting also to explore

Consider Lagrangian dynamics F andg described by
(213, (21b for the following class of matrices forming a
subspace in the Elliptic regiorD(=0):

whether the 2D version of3a) and (3b) could provide a NA 0 x 0 O
sensib_le description of 2D turbulence_ \_/vhere the phy§ics is M= —A o |, g=|0 x of. (A1)
very different. In that case the deterministic left-hand side of
(38 would vanish for isotropic “triads,” and the nonlinear 0 0 -2r 0 0y
energy transfer term if®) would dissappear. The energy flux We arrive at the system of equations
then would be dominated by the, e term, the diffusion in dIn[\] 72— A— 42
. L7 . . nz
M, which has the opposite sign suggestive of inverse cas- =(1-a)————, (A2)
cade. Finally, if the tetrad model provides a reasonable de- Adt z+2
scription of turbulent fluctuations in the homogeneous case, dIn[u] z+8+pu?
it will be interesting to attempt to generalize it to the inho- Ndt YT (A3)
mogeneous and anisotropic case: e.g., one could study the
;trz;tilzt)i;sr of tetrads moving away from the wall in the bound- % — Bzt sgr[)\]g W(1+22)(1—z), (Ad)
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din[G] 4(1-2)
At 142z

(A5)

with u=A/N, z=xly (z(0)=1), G=t[§]=2x+y. This
system is integrable in quadratures if eithg+=0 or A(0)
=0 [and thereforeA(t) =0, for any othett]. We shall now
calculate the effective actidé=—In[P(M,g) ] [ see(22)] for

these two cases.
1. Elliptic region, B=0

Integration of the systerfA2)—(A5) gives

3X/2r2 1-«a r2 1-a
)\!2: — s ()\Z_A23a—ﬁ{(_’)
X'+ 2r X
£ 1-«a 4—q —2r8
Xk, 3 Mg 3
P22, A6
201 TyaaTa l ( )
r2 1-a rG
A :A(X—,> , Y :F’ (A?)
where the " notation stands to mark the<{T) preimage.

Chertkov, Pumir, and Shraiman

terms ofr, A, and A, providing T is fixed by tfp(—T)p*
(-T)]=2x"+r8x'2=3L2=3. There are two solutions for
x' realized separately depending on the sigr of

First, consider the region with being positive during
the all-Lagrangian evolution. At<1, the respective value of
the effective action is

2

>0, S—>3>\2<E

l1-a
+A?

V3\2(1-a)
"

We find that the action becomes infiniterat-0 in the do-
main.

If X(t) is negative(at least at the final stage of the back-
ward in time evolutionandr <1, the effective action is

1-«a

A'<0, S— 3

1a1_1_2

3

4_
)\2+A23“12F1( - )

X

5 (A9)

3r2)la

The transition region betwed@\8) and (A9) shrinks withr
—0. The crossover occurs at the intersection of Xkep A
line in the\, A (Q,R plane.u depends on botkr andr and

These expressions allow us to rewrite the effective action ifas the following asymptotic form:

IU/|T—>0_)

Therefore, a sector in the right part of t§eR plane bounded
by the D=0 line from below and the\=uA one from
above forms a low probability gulf of the PDF.

2. Zero discriminant line: D=0

For the §=D=0 line, the integration 0f(A2)—(A5)
yields

[ S]-e 1z
3] T )o[67- B(1+22)(1-2)V2/3sgiin]](1+22)
A
In G =(1l-a)
Xfl (4-72)dz
2 (62— B(1+22)(1-2)\2/3sgiiN])(2+2)

(A11)

The dynamicgon D=0 line) does not change the sign kf
so that sgh\] is constant.

For positiveX, \(t) is monotonically decreasing while
G(t) grows andz(t) decreases. For small enough initial
G(=3r?<1), z approacheg, ,

_ . 4—a 4a—1
3 1[2[ 11’3F(T)r( 3 )/[—ST(a—

3V2ma(1—a)rie Y29 Y (1-4a)(2a+1)],

D] oFy 1% 0, 228 2) >1/4;
- _1a1_1_ Ll a 1
2103 3 (A10)
a<l/4.
|
_ B—36+54-686+942 AL
z,= 5 - (A12)
For z' close toz. , one finds
' cti const r2
——const[z' —z,]¢11" %, G'»———, (A13)
A [2'—2,]%
where
4—z,
Ci=V3/2 : Al4
! (2+2,)\/54—686+92 (AL9)
1-z
ct i (A15)

=./2 )
\/_4(1+ 22.)\/54—63/6+932

We get the following asymptotic behavior for the effective
action forD=0 andR,\>0:
S—NE~NZrAm ey (A16)

with h,=C//C; .
If N is negative\(t) increases in absolute value while
z(t) decreases at the initial stage of backward in time evolu-
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TABLE |. Table of exponents for th® =0, R>0 tail in the deterministic
limit (Appendix.

B 0.05 0.1 0.15 0.2 0.25 0.3

a 0.29 0.24 0.19 0.14 0.07 0.005
Vi 0.05 0.11 0.18 0.25 0.33 0.43

n 111 1.14 121 1.28 1.35 1.44

14 1.95 1.86 1.71 1.66 1.63 1.55

o 1.33 1.69 1.69 1.85 1.89 1.90

n' 0.27 0.22 0.34 0.34 0.42 0.52

ne 62.98 28.87 18.82 12.88 9.92 7.52

tion. The dynamics changésis supposed to be very small
oncez crosses 4 and(t) starts moving toward the origiz.
keeps growing to approach ,

36+ B+ \54+6165+95°

~ 75 (A17)
For z close toz_ , one finds
A - constx r?
—|—consx[z2'—z_]¢1 "% G- —-—,
[2/—z_]%
(A18)
where
z_—4
C; =32 , (A19)
! (2+2_)\54+6\65+932
_ z_—1
C,= (A20)

24 .
\/—(1+22_) V54+6./63+92

Finally, we get the following asymptotic behavior for the
effective action forD =0 andR,\<0:

S"’)\E"’)\Zr‘l(l_a)h’,

with h_=C; /C, . Note, thath_<h, .

(A21)
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