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A new phenomenological model of turbulent fluctuations is constructed by considering the
Lagrangian dynamics of four points~the tetrad!. The closure of the equations of motion is achieved
by postulating an anisotropic, i.e., tetrad shape dependent, relation of the local pressure and the
velocity gradient defined on the tetrad. The nonlocal contribution to the pressure and the incoherent
small scale fluctuations are modeled as Gaussian white ‘‘noise.’’ The resulting stochastic model for
the coarse-grained velocity gradient is analyzed approximately, yielding predictions for the
probability distribution functions of different second- and third-order invariants. The results are
compared with the direct numerical simulation of the Navier–Stokes. The model provides a
reasonable representation of the nonlinear dynamics involved in energy transfer and vortex
stretching and allows the study of interesting aspects of the statistical geometry of turbulence, e.g.,
vorticity/strain alignment. In a state with a constant energy flux~and K41 power spectrum!, it
exhibits the anomalous scaling of high moments associated with formation of high gradient sheets—
events associated with large energy transfer. An approach to the more complete analysis of the
stochastic model, properly including the effect of fluctuations, is outlined and will enable further
quantitative juxtaposition of the model with the results of the direct numerical simulations. ©1999
American Institute of Physics.@S1070-6631~99!02708-7#
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I. INTRODUCTION

The old problem of hydrodynamic turbulence has in
cent years attracted resurgent interest stimulated by the
generation of laboratory experiments and the newly acqu
ability of the direct numerical simulations to probe intere
ing aspects of turbulence. In light of the new ideas and
velopments there has also been new appreciation of the s
nal contributions of Kolmogorov, reviewed in a recent bo
by Frisch,1 and of Kraichnan, to whom the present volum
and this article are dedicated. The key issues and
progress of the last years have been well reviewed1,2 and are
well represented in the present issue. Much effort has b
dedicated to~a! documenting and understanding the anom
lous ~i.e., non-Kolmogorov 41! scaling of high moments1–6

associated with intermittency and~b! understanding the
structure and the local geometry of the intermittent regio
of the flow.7–15 On the theory side, new ideas derived fro
the new understanding of anomalous scaling of the Pas
Scalar problem16–20 and of the Burger’s turbulence,6,21–23

both pioneered by Kraichnan.24 Yet, the theoretical descrip
tion of turbulence based on first principles, i.e., on a c
trolled approximation to the Navier–Stokes equations, is s
over the horizon and to proceed in the right direction o

a!Author to whom correspondence should be addressed; Electronic
boris@physics.bell-labs.com
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must rely on phenomenology. One reason for pursuing
modeling approach is the need to bridge the existing g
between our understanding of the scaling1,2 of turbulent fluc-
tuations and their structure or ‘‘statistical geometry.’’15,25 A
step in this direction will be the subject of the present pap

Our goal here is to advance a phenomenological mo
for the probability distribution function~PDF! of turbulent
velocity fluctuations. We shall start by noting that the long
tudinal velocity difference between two observation points26

while being most readily observable, seems a poor candi
for a fundamental dynamical field in terms of which to a
tempt a closed statistical description. The intuitive reason
that the longitudinal velocity difference senses only one
the eight locally independent components of the velocity g
dient tensor which govern the dynamics of the velocity fie
Instead we shall choose the fundamental field to be
coarse-grained velocity gradient tensorMab[*GdrW]avb(rW),
defined over a regionG with characteristic scaleR lying in
the inertial range. This region may be best thought of a
local correlation volume of the velocity gradient coars
grained on scaleR—an ‘‘eddy’’ of sort. The phenomenologi
cal model then will be based on the Lagrangian dynamics
the G-volume, parametrized by four points—the ‘‘tetrad’’—
and its strain and vorticity fields as described byMab . Effort
will be made to preserve the essential nonlinear dynam
governing evolution of coarse-grained strain and vortic
il:
4 © 1999 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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and the concomitant distortion of the Lagrangian volum
This dynamics expresses the fundamental constraints du
the conservation of energy and circulation. In contrast,
dynamics of velocity fluctuations arising from the sca
smaller than that of the tetrad~and generating incoheren
motion of the points! will be modeled as a Gaussian whi
process obeying K41 scaling. The essential element of
theory advanced below will be the decomposition of t
pressure into the local part determined by theM-field via
incompressibility and the nonlocal part due to the contrib
tion of distant regions, which will again be modeled as
Gaussian random force. Such an approximation for the p
sure may be justifiable in large spatial dimension,19,27–29but
we shall be content with exploring its consequences
comparing the results with the direct numerical simulatio

We cannot hope to review here the evolution of the p
nomenological modeling ideas, yet we shall put the pres
work into the context of two recent efforts. The ‘‘PDF mo
els’’ of Pope and co-workers30 attempt to close the equatio
for the velocity probability distribution function~PDF! on
the level of one point: in contrast, our model deals w
relative velocity differences on four points, which natura
brings in Kolmogorov’s ideas and allows us to address
intermittency phenomenon. The two approaches, howe
share the need to model the pressure Hessian/strain-rate
relations~in our case on the coarse-grained level! and share
the realization that this model is improved by incorporati
dynamical information about local anisotropy31,32 ~in our
case furnished by the moment of inertia tensor of the evo
ing Lagrangian volume!. Another point of reference is th
two-point PDF closure advanced by Yakhot29 on the basis of
the work of Kraichnan16 and Polyakov.21 There too one ar-
rived at a Fokker–Planck-type equation for the PDF of
locity differences at given point separation, yet the appro
differs from the present one in the treatment of the corre
tions of large and small scale fluctuations and our approa
by virtue of tracking a tetrad rather than a pair, will reta
more of the geometry of the flow.

The model will be presented in Sec. II in the form of th
stochastic equations of motion for two tensors specifying
coarse-grained velocity gradient and the shape~i.e., moment
of inertia! of the evolving Lagrangian volume. We sha
write down the corresponding Fokker–Planck equation
the Probability Distribution Function and discuss the ene
transfer considerations which played the key role in the f
mulation of the model. Section III relates the determinis
aspects of the model to the so-called Restricted Euler~RE!
dynamics that has been investigated by Vieillefosse,33 origi-
nally in the context of the finite time singularities~see also
Léorat34!, and Cantwell and co-workers,35–37 with the em-
phasis on the local topology of the flow. RE describes
evolution of the velocity gradient at a point within an isotr
pic approximation for the pressure which allows one to clo
the Euler equation locally. We shall see that elevation of
dynamics to the coarse-grained level and the introduction
the second dynamical field to keep track of the shape of
Lagrangian correlation volume~which depends on the his
tory of the strain! allows us to go beyond the isotropic pre
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
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sure approximation: the unphysical finite time singularity
RE is removed, while the sensible short-time dynami
properties ~related, for example, to the vorticity strai
alignment8! are retained. Finally, in Sec. III the determinist
dynamics will be compared with the empirical ‘‘mean field
equation of motion for the coarse-grained velocity tensorM ,
constructed from the conditional average^Ṁ uM & measured
in the DNS of the Navier–Stokes atRl585. In Sec. IV we
return to the stochastic model and write down the form
solution of the Fokker–Planck equation in terms of the p
integral relating the probability of a given coarse-grained
locity gradient on a given inertial range tetrad to the veloc
PDF on the integral scale. This path integral representa
serves as a point of departure for the semiclassical appr
mation. It also has a well-defined deterministic limit whe
the effect of the stochastic terms in the tetrad dynamics
be neglected. In the latter limit the probability of ‘‘observ
ing’’ any given coarse-grained velocity gradient on an in
tial range tetrad is determined by the probability of its in
gral scale preimage and can be calculated by integrating
equations of motion backward in time. This crude but sim
approximation is employed in Sec. V in order to gain insig
into the behavior of the model and to elaborate its statist
predictions emphasizing energy transfer, enstrophy and
production, and the alignment of vorticity and strain. T
comparison of the results with the direct numerical simu
tion of the Navier–Stokes equations is quite encouragi
The calculated probability distribution function also exhib
anomalous scaling of high moments. In conclusion, Sec.
is a summary and the outline of further inquiry.

II. THE MINIMAL MODEL

The minimal parametrization of theG volume is a tetra-
hedron~more generally ad-dimensional simplex! defined by
four, hence tetrad~or d11), Lagrangian points,rWa(t),
which upon elimination of the center of mass define a tr
of vectorsrW i : rW 15(rW12rW2)/&, rW 25(rW11rW222rW3)/A6, rW 3

5(rW11rW21rW323rW4)/A12. It will be useful to treat this triad
of vectors as a 333 matrix,r i

a , wherea is the spatial index.
Analogously, by eliminating the center-of-mass veloc
from the instantaneous velocity of the vertices,ṙ a , one can
define a triad of relative velocities,vi . The coarse-grained
gradient field can now be defined simply by interpolation

Mab5~r21! i
av i

b2
dab

3
tr~r21v! ~1!

~see Fig. 1!.
Alternatively, and more generally, one may decompo

the ‘‘observed’’ velocity differences,v i
a , into a slow com-

ponent arising from the scales greater than the radius of
ration, >R, represented by the coarse-grained velocity g
dient matrix Mab and the rapidly fluctuating incoheren
component,uj

a , arising from scales,R,

v i
a5r i

bMab1ui
a . ~2!

The strategy will be to derive the dynamics ofMab and r i
a

while treatingu as a Gaussian white noise with the statist
depending on the Kolmogorov’s energy dissipation ratee as
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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well as the instantaneousr andM . Lagrangian dynamics is
governed by (D/Dt)vW i52¹pi1 fW i and (D/Dt)r i5vW i ,
wherefW i is the random external force and¹pi is the pressure
gradient, both properly differenced between the observa
points. The dynamics of the coarse-grained velocity grad
tensor,M , and the tetrad tensor,r, has the form

d

dt
Mab1Mab

2 2Pab tr M25jab , ~3a!

d

dt
r i

a2r i
bMba5ui

a , ~3b!

Pab[ki
aki

b/tr kk†, ~3c!

with matrix k[r21. The left-hand sides of~3a! and ~3b!
describe the self-advection and stretching of the tetrad by
coherent~on the scale ofr! component of the velocity field
The right-hand side of~3a! derives from the pressure grad
ent and the random force differences as well as from
coupling to incoherent small scale fluctuations. T
Pab tr M2 term, with trP51 on the left-hand side, repre
sents the ‘‘local’’ component of the pressure needed to
sure conservation of trM50 as required by incompressibi
ity. Tensor Pab is a measure of tetrad anisotrop
representing the anisotropy of the Lagrangian correla
volume built up by prior evolution.38 This choice of the local
term, in contrast with the simpler, isotropic form,33 is dic-
tated by the requirement that the pressure forces shoul
no work and drop out of the energy balance~see below!. In
addition, it reintroduces proper reduction of the determinis
dynamics@left-hand side of~3a!# to two dimensions~2D!:
i.e., a 2D velocity gradient configuration remains 2D pr
vided that the tetrad has the shape of a filament, i.e.,r†r is a
tensor of rank one. The remaining nonlocal part of the pr
sure is subsumed injab .

We now define the stochastic components of the mo
appearing on the right-hand sides of~3a! and ~3b!. It is ap-
pealing to model the nonlocal part of the pressure retaine
j, along with the contribution of small scales, asd-correlated
Gaussian random noise with the variance depending on
energy fluxe as well as the instantaneousr and M . Let us
consider a polynomial,

j5h1zM1a~M22P tr M2!, ~4!

FIG. 1. Four Lagrangian points forming a ‘‘tetrad.’’ The velocities at t
four points define the coarse-grained velocity gradient field.
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
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whereh is a random matrix, andz a random function. The
dimension of bothj andM2 is time22 so thata is a constant.
The last term is clearly not the most general one can write
is, however, the one suggested by the numerical study of
statistics of the right-hand side of~3a!, originally by Borue
and Orszag.39 According to the DNS, the averagejab condi-
tioned onM is not zero, but is reasonably well approximat
by a(M22P tr M2) with 0,a,.8, depending on the scale
at least for the isotropic tetrad~i.e., P51/3). We shall as-
sume that in the inertial rangea is constant@which corre-
sponds to keeping only the deterministic component of
third term in~4!# and take it to be a model parameter. Thisa
term ‘‘renormalizes’’ the time scale of the deterministic d
namics described by the left-hand side of the equation~3a!
and will have an important consequence for the energy tra
fer in the model, as we shall see shortly.

Let

^hab~ t !hcd~0!&5
2Che

tr rr† Fdacdbd2
1

3
dabdcdGd~ t !, ~5a!

which is the simplest form respecting incompressibility, w
Kolmogorov’s energy fluxe and Ch—a dimensionless pa
rameter. Randomh causes diffusion in velocity space; no
that e has the dimension of corresponding diffusivity. Th
appearance ofe in ~5a! is further supported by the fact thath
fluctuations contribute to the energy transfer, as we shall
below. In the ‘‘minimal’’ model, which we are now con
structing, we shall drop the possible multiplicative rando
field z @see Eq.~4!#.

The small scale fluctuations40 u can be resolved into
parts which are longitudinal and transverse tor i

a ,

^ui
a~ t !uj

b~0!&52CiAtr MM †r i
ar j

bd~ t !

12C'Atr MM †~r2dabd i j 2r i
ar j

b!d~ t !, ~5b!

where with the K41 theory in mind we take the characteris
time to be the ‘‘eddy turnover’’ time, 1/Atr MM †. The lon-
gitudinal part ofu in the r-equation~3b! would by itself
produce Richardson diffusion behavior,^r2(t)&;et3, pro-
vided that the Kolmogorov scalingAtr MM †;e1/3r22/3

holds. However, Richardson diffusion would also arise fro
the non-Gaussian coherent stretching termrM , and the
Gaussian longitudinal fluctuations,Ci , do not appear to be
essential. We shall setCi50. The transverse fluctuation
C' , however, are very important, because in their abse
the effect of volume preserving coherent stretching wo
lead to the rapid growth of anisotropy of the tetrad. T
incoherent transverse velocity fluctuations act to redistrib
the vertices of the tetrad uniformly on the surface of ther2

[tr r†r hypersphere ind259 dimensions, thus introducing
the isotropization mechanism. The competition of the coh
ent stretching which leads to the growth of the radius
gyration r2 ~both forward and backward in time! and the
isotropization over ther2 shall will play the key role in
setting up the energy flux.

The stochastic tetrad dynamics defined by Eqs.~3!–~5!
determines the Lagrangian transition probability from tetr
(M 8,r8) to ~M ,r! at a timet later, Gt(M ,ruM 8,r8), which
satisfies a Fokker–Planck equation
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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S ]

]t
2L DGt~M ,ruM 8,r8!5d~M2M 8!d~r2r8!, ~6!

with the evolution operator

L5~12a!
]

]Mab
~Mab

2 2Pab tr M2!2
]

]rb
i ra

i Mab

1Ch

e

r2 S ]2

]Mab]Mab
2

1

3

]2

]Maa]Mbb
D

1C'Atr MM †
]

]r i
a ~r2dabd i j 2r i

ar j
b!

]

]r j
b . ~7!

The invariant joint distribution,P(M ,r), satisfying

] tP~M ,r!5LP~M ,r!50, ~8!

can be interpreted as the Eulerian PDFP(M ,r) provided
that the normalization*dMP(M ,r)51 is imposed.42 Equa-
tions ~7! and~8!, once supplemented with the boundary co
dition specifying the Eulerian PDF on the integral scale,r2

5L2, completely define our model.
Before proceeding with the analysis of the Fokke

Planck equation~8!, let us examine the energy balanc
which was one of the key considerations in the formulat
of the model,

1

2
] t^tr VV†&r[E dM tr~rMM †r†!] tP~M ,r!

52
]

]ra
i ^Va

i tr~VV†!&r1a^tr~VV†M !&r

1
16

3
Che2C'Dd1C' f , ~9!

which is obtained by multiplying Eq.~8! by trVV† ~where
Va

i [rb
i Mba) and averaging with respect toM . Note that the

averagê ...&r is taken at fixedr and remains a function of it
The first two terms on the right-hand side may be identifi
as the divergence of the large scale energy flux and the e
damping, respectively.

Note that the term originating from the determinis
component of the pressurePab tr M2 drops out: the particu-
lar form of Pab was chosen for that purpose on the groun
that the pressure gradients should not contribute to the
ergy transfer as seen in the von Ka´rmán–Howarth
derivation.43 However, sinceVa

i is only the coarse-graine
and not the full local velocity, in contrast with the vo
Kármán–Howarth analysis, the divergence of the energy fl
is balanced not directly by the viscous dissipation term,
by the eddy damping. There are also additional contributi
due to the coupling with small scale fluctuations represen
by the last three terms in~9!. The Ch term represents the
diffusive component of the energy flux arising from th
small scale fluctuations and the coupling of the tetrad to
neighboring regions~entering via Gaussianh!. The C' f
term represents the transverse energy flux with
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
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]

]r i
a ~r2dabd i j 2r i

ar j
b!

3F ]

]r j
b ^Atr MM † tr VV†&r22r j

c^Atr MM †~MM †!bc&rG ,
~10!

which redistributes the energy within ther25const shell,
while the C'Dd is the diffusive contribution to the edd
damping,

Dd518KAtr MM † trF S r†r2
1

3
r2DMM †G L

r

. ~11a!

This Dd is reminiscent of the Smagorinsky39,44 form of eddy
damping~popular in subgrid simulations44,45! but with a sig-
nificant difference that in the latter thed-wave projector
(r†r2(1/3)r2) appearing in~11a! is replaced by the simple
scale factorr2. Hence, in contrast with the Smagorinsk
model, our diffusive damping term is only active to the e
tent that thê Atr MM †(MM †)ab&r tensor is correlated with
the (r†r)ab tensor within ther2 shell. Strictly speaking,Dd

is not positive definite and its interpretation as the damp
term is contingent on the expectation that the tetrad dyn
ics builds up the alignment of the principal axis ofr†r and
MM †.

Notably, the deterministic eddy damping term which h
appeared in~9!,

Dnl52a^tr V†VM &r , ~11b!

is a direct generalization of the so-called nonlinear ed
dampingr2^tr M2M†& advanced by Liuet al.46 and reduces
to it for isotropic tetradsrr†51r2. In this limit, Dnl→
2tr(s32V•s•V), wheres andV are, respectively, the sym
metric and antisymmetric parts ofM . Thus the energy trans
fer down scale is due to negative strain skewness or pos
enstrophy production1,26 ~i.e., vortex stretching!. We can de-
fine the energy flux by averaging over the fixedr2 shells. Let
R[Ar2 and VR[r i

aVi
a/R denote the longitudinal velocity

then

e52]R^VR tr VV†&R1
16

3
Che ~12!

is balanced by eddy dampinge5Dnl1C'Dd . Here ^...&R

denotes an additional average overr25R2 shell.
Below we will often think of the diffusive contributions

as being small compared to the nonlinear interactions o
current scale: that is, we shall assumeCh , C'!1 and treat
them as~a singular! perturbation of the deterministic dynam
ics. Another tractable and physically plausible limit isC'

@1.

III. DETERMINISTIC DYNAMICS AND THE
RESTRICTED EULER MODEL

Note that the equation of the form~3a! also governs the
Lagrangian evolution of the actual local velocity gradie
matrix mab5]avb ~we use lower casem to avoid confusion
with the coarse-grained object!,
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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d

dt
mab1mab

2 52]a]bp, ~13a!

as derives from the Euler equation. Le´orat34 and
Vieillefosse33 have considered~13a! retaining only the local
and isotropic contribution to the pressure

]a]bp52
dab

3
tr m2, ~13b!

as a model of vorticity dynamics and observed that~13a! and
~13b! lead to a finite time singularity withimi;(t* 2t)21.
The dynamics governed by~13a! and~13b!—the ‘‘Restricted
Euler dynamics,’’ to use Cantwell’s terminology,35 lies en-
tirely in the two-dimensional phase space defined by the
invariants33,35 tr m2 and trm3. This reduction stems from th
SL~3! invariance,m→gmg21, with g being an arbitrary 3
33 matrix, which allows one to bringm(t) to diagonal form
L(t) by a time-independent similarity transformationm(t)
5UL(t)U21. There is yet one more independent constan
motion found by Viellefosse:33 the ‘‘discriminant’’ D
[3(tr(m3))22(1/2)(tr(m2))352(l12l2)2(l22l3)2(l3

2l1)2, wherel i(t) are the~in general complex! eigenval-
ues ofm(t). The RE dynamics thus reduces to 1D flow, i.
it is integrable! Figure 2 shows the flow in the 2D pha
plane of the invariants35 Q[2(1/2)trm2, R[
2(1/3)trm3, and the finite time singularity corresponds
the R→`, Q→2` asymptotically approaching theD50
separatrix.

Along the D50 separatrix the flow is particularly
simple,

m~ t !5S l~ t ! 0 0

0 l~ t ! 0

0 0 22l~ t !
D , ~14!

FIG. 2. The Restricted Euler flow of velocity gradient invarian
Q52(1/2)trM2 andR52(1/3)trM3.
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
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with l(t)5l(0)/(12tl(0)) making the finite time singu-
larity at t* 51/l(0) explicit.

The region above the separatrix,D.0, is elliptic: the
eigenvalues of the velocity gradient eigenvalues beco
complex and the Lagrangian trajectories are rotating; the
gion below the separatrix,D,0, is hyperbolic: the eigenval
ues are real and the trajectories are strain dominated. T
topological aspects of RE dynamics were emphasized
Blackburnet al.37

As a model of finite time singularity, RE solutions we
rejected47 on the reasonable ground that if considered as g
bal solutions of Euler equations these do not satisfy sens
boundary conditions and have unbounded energy. Ash
et al.,8 however, noted that the statistics of the vorticit
strain alignment observed in the DNS of Navier–Stokes m
be qualitatively understood in terms of RE. Subsequen
Cantwell and co-workers35–37 proceeded to investigate th
DNS generated statistics ofR,Q invariants and observed tha
the probability distribution function~PDF! of R,Qexhibits a
pronounced tail along the ViellefosseD50 asymptote, as
can be seen on Fig. 3. These two observations suggest
despite the draconian local and isotropic approximation
pressure and the unphysical finite time singularity, the
dynamics does capture certain statistical features of
physical flow.

The deterministic part of the Lagrangian tetrad dynam
defined in Sec. II generalizes RE by reinterpreting the vel
ity gradient tensor as a coarse-grained field defined over
tetradr and completing the Lagrangian picture by adding t
dynamical equation forr(t). Ther field introduces the mea
sure of current length scale and the dependence on the
tory of the strain which controls the ‘‘shape’’ of the tetra
The r-dynamics ~3b! is coupled toM via the anisotropy
tensorP. For an isotropic tetrad~i.e., regular tetrahedron!,
Pab5dab/3 and theM-dynamics@the left-hand side of~3a!#
reduces instantaneously to the RE equation~13a!, ~13b!. In
the next instant, however, the tetrad will become distor
through the action of the volume preservingM following the
r-dynamics equation@left-hand side of~3b!# and the trajec-
tory will come out of the RE plane. Its evolution will depa
from RE as the anisotropy increases and at some point
growth ofiM i will be cut off. This is most easily seen for th
D50 Vieillefosse line. The dynamics ofl @see ~14!# be-

comesl̇5(6q2121)l2, with P5diag$1,1,q22%/q, where
q evolves according toq̇56(q22)l. The isotropic tetrad
corresponds toq53. Starting from isotropy andl.0, both
l(t) and q(t) grow. The growth ofq corresponds to the
contraction of one of the principal axes of ther†r tensor as
the tetrad is flattened into a pancake. However, whenq.6
the growth ofl reverses. Thus, anisotropy caused by
stretching of the tetrad cuts off the Viellefosse finite tim
singularity.48 The modified RE dynamics, however, retai
the initial growth ofM with two expanding and one contrac
ing strain directions and the consequent deformation of
tetrad into a pancake or ribbon.49 This process is the funda
mental step of energy transfer.26,50In the next section we will
see that the Viellefosse tail~largeR.0, Q,0 region! of the
Cantwell PDF on Fig. 3, which is generated through t
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. The PDF ofQ* ,R* invariants normalized to the variance of strai
Q* [Q/^s2& and R* [R/^s2&3/2 ~‘‘star’’ denotes normalization!, obtained
from DNS at Rl585 measured at different length scales:~a! dissipation
ranger52h, ~b! low end of the inertial ranger58h, and~c! upper end of
the inertial ranger5L/2. The isoprobability contours are logarithmical
spaced, and are separated by factors of 10. The dashed line correspo
zero discriminant.
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
process, indeed corresponds to large negative strain sk
ness associated with the energy transfer.26 Another retained
aspect of the RE dynamics is the evolution of the vortici
strain alignment from configurations where vorticity is pa
allel to a-strain~i.e., the fast stretching direction! to configu-
ration where vorticity is aligned with the intermediat
b-strain, as observed numerically.7,8,51 The new feature of
the modified model is that while in the isotropic RE all 2
configurations ofM evolve into 3D,~e.g.,Mab5eabzvz will
in the next instant acquire, due to low local pressure, a c
tracting component of strain along thez-direction which will
act to destroyvz), the new anisotropic model allows the 2
configurations ofM to persist provided that theP tensor is
rank two (r†r rank one!, which corresponds to filamentlike
tetrads. Note that both intense vorticity and quasi-o
dimensional tetrads will be produced by the action of str
with one stretching and two contracting directions tr@s3#
.0, thus there potentially is a chance of describing vor
‘‘worms.’’ 7,9,11,12 We shall return to the discussion of th
kinematics of energy transfer and vortex stretching in Sec

How can one compare the deterministic tetrad dynam
model with the real Navier–Stokes dynamics? The relev
empirical object is the averagedM /dt and dr/dt condi-
tioned onM , r, but to simplify matters we will restrict our-
selves to isotropic tetrads and examine the flow in theQ,R

phase space generated by the conditional averages^ṘuR,Q&
and ^Q̇uR,Q&. The latter were obtained by a DNS o
Navier–Stokes.

Briefly, the Navier–Stokes equations are integrated b
standard pseudospectral algorithm. Our code is fu
dealiased. We used up to (128)3 collocation grid points, and
the effective resolution was maintained to be higher th
kmaxh>1.4, wherekmax is the highest wave vector in th
simulation, and hK the Kolmogorov length scale@hK

[(n3/e)1/4#. Statistics were accumulated for at least thr
eddy turnover times. In the following, we present our resu
for a Taylor scale Rel585. Our investigation of the influenc
of the Reynolds number in the range 20<Rel<85 did not
reveal any major qualitative change of the statistics p
sented here.

Figures 4~a!–4~c! show the streamlines in the~R,Q!
plane, reconstructed from the conditional averages

^ṘuR,Q& and ^Q̇uR,Q& computed numerically for three dif
ferent r2. The latter were increasing from the dissipatio
range to large scale. For isotropicr our M -dynamics is in-
stantaneously tangent to the RE and therefore the empi
flows can be compared with Fig. 2. Remarkably, while the
are significant deviations in the topology of the flow forr in
the dissipative range@Fig. 4~a!#, the instantaneous flow fo
large scaler is surprisingly close to RE. The deviations
small scales are presumably due to the viscous effects.
conditional flow foruru>10hk can be fitted by the modified
RE,

dM

dt
5~a21!~M22P Tr M2!, ~15!

with a decreasing with increasinguru/hK from .8 to 0. For
the reasons related to the energy transfer, discussed in

s to
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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II, we believe thata should be constant in the inertial rang
The continuous scale dependence observed in the fit to D
however, is not unexpected, because the inertial range a
accessible Re is quite limited. On the other hand, the
proximate validity of ~15! as a description of the coarse
grained Lagrangian evolution is quite encouraging. It wo
be important to extend the comparison of the determini
dynamics~15! with the numerical simulation for anisotropi
tetrads; however, in that case the SL~3! invariance of~15! is
lost and in addition to theR,Q invariants the time derivative
must be conditioned on the vorticity, which makes the co
putation more demanding statistically. It would also be i
portant to investigate systematically the deviations of

FIG. 4. Streamlines of the flow ofM-invariants, constructed from the con

ditional averageŝ Q̇uQ,R& and ^ṘuQ,R& measured via DNS at differen
length scales:~a! dissipative ranger52h5L/32, ~b! upper end of the iner-
tial ranger5L/2. The invariantsR andQ are normalized as in Fig. 3.
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
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conditional flow from~15!: these are expected to arise fro
the possible additional deterministic terms in~15! ~e.g.,gM !
as well as the stochastic dynamics. Much further work
required in this direction.

IV. LAGRANGIAN PATH INTEGRALS AND THE
SEMICLASSICAL APPROXIMATION

Let us now explore the statistical properties of t
coarse-grainedM-field on the tetradr. The probability dis-
tribution P(M ,r) is governed by the Fokker–Planck equ
tion ~7!, ~8! but requires specification of an additional boun
ary condition. Since the PDF of velocity is known to b
Gaussian on the integral scale, we shall fix52

P~M ,r!ur25L2;expF2
tr MM †

~eL22!2/3G . ~16!

To impose the integral scale boundary condition o
may use a generalization of Green’s theorem,

P~M 8,r8!5E dME dr@P~M ,r!L†g†~M ,ruM 8,r8!

2LP~M ,r!g†~M ,ruM 8,r8!#

5E dME
r25L2

tr~drM†r†!P~M ,r!

3g†~M ,ruM 8,r8!, ~17!

whereL† denotes the adjoint operator which governs evo
tion backward in time ~obtained by M→2M ) and
g†(M ,ruM 8,r8)5L†21 its static Green function. The deriva
tion of ~17! takes advantage of the assumed lack of long
dinal r-diffusion (Ci50). More generally one would
impose an ‘‘absorbing’’ boundary condition
g1(M ,ruM 8,r8)ur25L250.

The static Green’s functiong† is computed via the La-
grangian Green’s function~6!,

g†~M ,ruM 8r8!5E
2`

0

dTGT~M ,ruM 8r8!, ~18!

which has an intuitively appealing path integral represen
tion,

G2T~M ,ruM 8r8!5E
M ~2T!5M8

M ~0!5M
DME

r~2T!5r8

r~0!5r

Dr

3exp@2S~$M ,r%!#, ~19!

summing over all possible paths connecting initialM 8,r8 at
time 2T with the final M , r at time 0 weighted with the
action

S5
1

2 E2T

0

dtF iṀ2~a21!~M22P tr M2!i2

Cher22

1
tr@~ ṙ2rM !~C'

21~12r̂r̂†!1Ci
21r̂r̂†!~ ṙ2rM !†#

r2Atr MM † G ,

~20!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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whereiXi2[tr XX†, r̂[r/iri , andCi→0, as assumed be
fore.

This path integral form invites a semiclassic
approximation41,53,54 which estimates the integral via th
saddle point GT(M ,ruM 8,r8);exp@2Sc(M ,ruM 8,r8)#
given by the minimal actionSc along the ‘‘classical’’ trajec-
tories connecting the prescribed initial and final points~in
time T! and obeying the Euler–Lagrange variational eq
tions. Moreover, for each final point~M ,r! there exists a
uniqueS50 trajectory governed by the deterministic part
Lagrangian dynamics~3a!, ~3b! which picks out the La-
grangian preimageM 85M̃ (M ,r,2T), r85 r̃(M ,r,2T) as
an initial condition. If the small scale generated stocha
component of the dynamics were smallC' , Ch→0, these
deterministic Lagrangian trajectories would control t
Green’s function. Since the probability is constant along
zero action trajectory, the PDF of the finalM ,r is determined
by the probability of its Lagrangian preimageM 8

5M̃ (M ,r,2T) at the integral scale where the PDF is a
sumed to be Gaussian. Crude as this zero action approx
tion is, it is the natural zeroth-order calculation and will pr
vide some physically interesting insights, as well shall s
below. The full semiclassical analysis will be deferred to
forthcoming publication.

V. PROBABILITY DISTRIBUTION FUNCTIONS AND
STATISTICAL GEOMETRY

To make contact with the numerical results we shall u
the ‘‘poor man’s’’ zero action approximation introduced
the previous section, and, according to which, the probab
of given M observed on a tetradr in the inertial range is
equal to the probability of its integral scale preimage. T
latter is found by integrating the deterministic part of t
equations of motion~which generates zero action traject
ries! from the observation point backward in time,

d

dt
M52~a21!~M22P tr M2!, ~21a!

d

dt
g52gM2M†g†2bAtr MM †S g2

1

3
tr gD , ~21b!

whereg[r†r. Theb term has been added to reintroduce t
isotropization effect due to the transverse small scale fl
tuations already in the deterministic approximation. T
may be thought of as a Mean Field treatment of theC' term
in ~7! which is physically more appropriate than the form
C' , Ci→0 deterministic limit of~20!. Dimensionless con-
stantsa and b will serve as model parameters. Equatio
~21a! and ~21b! will be integrated back in time until trg
5r2 reaches the integral scale, yielding for the PDF,

P~M ,g!;expF2
tr~M̃L~M ,g!M̃L

†~M ,g!!

~eL22!2/ G , ~22!

with M̃L(M ,g) ~and the time of flightT! fixed implicitly by
tr@ g̃(M ,g,2T)#5L2. To the extent that the nontrivial PD
in this approximation arises as a nonlinear mapping of
initially Gaussian variables, our construction here is remin
cent of Kraichnan’s ‘‘Mapping Closure.’’6,55
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Let us now construct the PDF of theR,Q invariants for
the isotropic tetrad of radiusr. It is convenient to conside
the ellipticD.0 and the hyperbolicD,0 regions separately
and use different parameterizations of theM matrix,

~a! for D.0

M5S l Deg v2

2De2g l v1

0 0 22l
D ~23a!

and ~b! for D,0

M5S l1D v3 v2

0 l2D v1

0 0 22l
D , ~23b!

whereva refers to vorticity and in~23a! v3[2D coshg. The
invariants are~a! R52l(l21D2) andQ5D223l2 and~b!
R52l(l22D2) andQ52D223l2, and the strain tensor is
s[(M1M†)/2. It is straightforward to numerically integrat
~21a!, ~21b! starting with givenM andg5r 21 in time until
Tr g5L2, at which pointP(M ,g) is assigned via~22!. How-
ever, to determinePr(R,Q) one must integrateP(M ) over
~a! g, v1,2 and ~b! over v. ~Note the Jacobian
*dMd(tr M )5*dRdQdv5*dldDdvAuDu and dDdv1

52Dg sinh@g#dgdD.)
The task is simplified within the saddle approximatio

where the integration is reduced to minimization56 of
log P(M ,r ) with respect to the integration variables whic
we carry out numerically via an ‘‘amoeba’’ algorithm.57

Over the wholeR,Qplane we find that the saddle point is
~a! g5v1,250 and~b! v50. In addition, for the special cas
of D50, whenl is the only nonzero parameter in~23a! and
~23b!, the trajectory and theP(M ,g) can be computed ana
lytically ~see Appendix!. The resulting distribution~for dif-
ferentr! is displayed on Figs. 5~a! and 5~b!. P(Q,R) exhibits
a long@but Gaussian;exp(2al2 r2g1)] ridge—the ‘‘Vieille-
fosse tail’’—along theD50 line in theR.0, Q,0 quad-
rant and a valley of low probability approaching the orig
from theR.0 side. This structure appears because the ba
ward in time trajectory of the point on theD50 separatrix
converges to the origin and maps to a highly probable, sm
M 8 integral scale preimage, whereas the trajectories origi
ing in the low probability gulf in their time reversed dynam
ics are swept westward past the origin into the improba
large M 8 region. The PDFPr(R,Q) evolves continuously
with decreasingr /L away from the Gaussian~which appears
nontrivial in the R,Q variables! shown for comparison on
Fig. 6. The appearance of the PDF tail alongD50, R.0
and the trend ofr /L dependence are reminiscent of those
the PDF obtained from the Navier–Stokes. Yet, both
high probability ridge and the low probability valley found i
the present deterministic approximation are strongly ex
gerated. There is a good reason to expect that the effec
the fluctuations will be strong in these regions: the narr
ridge should be largely ‘‘washed out’’ as the asymptotic b
havior of the tails and low probability regions is clear
dominated by fluctuations. Yet again, the rather complexR,Q
dependence of the PDF and the crude qualitative simila
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2402 Phys. Fluids, Vol. 11, No. 8, August 1999 Chertkov, Pumir, and Shraiman
of the model PDF with the results of the DNS merit a d
tailed discussion of the underlying kinematics and dynam

Let us compute the distribution in theR,Q plane of the
average enstrophyv2 and enstrophy productionv•s•v
5(1/2)Tr(M1M†)(M2M†)2 which measures the rate o
vortex stretching.26The enstrophy density is defined b
e(R,Q)5*dvv2Pr(R,Q,v), but in order to save compute
time will only be evaluated in the saddle approximation
varying the integrand w.r.t.v. For all of the hyperbolic re-
gion, the saddle of the integral occurs at a nonzero valu
g,v parameters~21a!, ~21b!. The result is presented in Fig
7. We see that the average enstrophy peaks atR50 and
small positiveQ. This is explained by noting that the cond
tional averagêv2uR,Q& grows likeQ ~at least forR'0 and
Q.0) becauseQ5((1/2)v22Tr s2)/2, while P(R,Q) falls
off. The average enstrophy productions(R,Q)[*dvv•s
•vPr(R,Q,v) is also dominated by a nontrivial saddle a
has theR,Q dependence shown in Fig. 8. We observe t
enstrophy is produced predominantly in the upper left qu
rant of theR,Qplane, it is~partially! destroyed in the uppe
right quadrant, and there is weak vortex stretching in theD

FIG. 5. PDF ofQ* ,R* invariants~normalized as in Fig. 3! calculated for
the tetrad model in the deterministic approximation;~a! r/L5.2; ~b! r/L
50.5.
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
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50 tail. Next we compute the average strain skewnessS3

[*dv tr s3Pr(R,Q), which is the object associated with en
ergy transfer,26 and find that it is strongly localized in th
D50 Vieillefosse tail as shown in Fig. 9.@Curiously, we
find that in the elliptic region,Q.0, the strain skewnes
changes sign three times—a fact that can be understoo
the basis of the structure of theM tensor given by~25!.#
Note that the energy transfer term in~9! is actually
Tr M2M†5Tr s32(1/4)v•s•v, so that vortex stretching
also contributes to the energy flux.58 Vortex stretching, how-
ever, does not dominate the energy transfer: while mos

FIG. 6. The PDF ofQ* ,R* invariants~normalized as in Fig. 3! obtained by
replacing the real~DNS! velocity field by a random Gaussain field, with th
same velocity spectrum.

FIG. 7. Enstrophy density inR,Qplane for the tetrad model atr/L50.5.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



ig

t o
n
ct

–1
u

ra
e
n

d
e

e is
ons

ng

.

of
of

t
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the enstrophy production is in the upper left quadrangle, F
8, the energy flux distribution F(R,Q)
[2a*dv Tr M2M†Pr(R,Q,v) is localized in theD50
tail where the negative Trs3 lives, see Fig. 10. Thus we
arrive at the conclusion that from the energy transfer poin
view, the active regions are dominated by the strain and
vorticity.12,25 Also of interest is the appearance of distin
regions of weak negative energy transfer: e.g., theR,Q.0
quadrangle where boths and the energy flux are negative.44

Remarkably, as seen from the comparison of Figs. 7
and Figs. 11–14 the DNS exhibits a rather similar distrib
tion of average enstrophy, enstrophy production, and st
skewness in theQ,R plane. Both DNS and the model hav
positive enstrophy production in the upper left quadrant a
in the D50, R.0 tail, and negatives in the upper right
quadrangle; both have strain skewness strongly confine
the D50, R.0 tail, and both exhibit the dominance of th

FIG. 8. Enstrophy production density inR,Q plane for the tetrad model a
r/L50.5.

FIG. 9. Strain skewness density inR,Q plane for the tetrad model atr/L
50.5.
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
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strain skewness in the energy transfer. Furthermore, ther
a clear correspondence of the positive and negative regi
of tr s3 ~Fig. 9 and 13! and energy flux~Figs. 10 and 14!.

Much of this behavior can be understood by consideri
the ‘‘statistical geometry’’ of the flow~see Ashurstet al.,8

and Tsinoberet al.25! and is inherited from the RE dynamics
Most of the vortex stretching occurs forR,0, Q.0, where
the vorticity is aligned with the large positive eigenvector
the strain; this is immediately evident from the structure
the M matrix at the saddle point controllings(R,Q),

FIG. 10. Energy flux density inR,Q plane for the tetrad model atr/L
50.5.

FIG. 11. Enstrophy density inR,Q plane from the DNS,Rl585, at r/L
50.125@same value as in Figs. 3~c! and 4~c!#. The enstrophy is normalized
by 22^tr(V2)&.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Ms5S l D 0

2D l 0

0 0 22l
D , ~24!

where59 l,0, since the off-diagonal elements of~24! define
the vorticity along the direction with the strain eigenval
22l.0. The tetrad dynamics then takes theM field into the
R'0, Q.0 region, wherel, and hence the stretching rates

FIG. 12. Enstrophy production density inR,Q plane from the DNS,Rl

585, at r/L50.125. The enstrophy production is normalized
u^tr(M2M †)&u. Solid lines correspond to positive values, dashed lines
negative values.

FIG. 13. Strain skewness density,2tr(S3) in R,Q plane from the DNS,
Rl585, at r/L50.125. The strain skewness density is normalized
u^tr(M2M †)&u. The same convention as in Fig. 12 is used.
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
vanishes before changing sign. The magnitude of vortic
reaches a maximum. In the peak vorticity region, theM ten-
sor has the form

Me5S l Deg 0

2De2g l 0

0 0 22l
D , ~25!

with l!D andg!1, so that the flow is essentially two d
mensional with vorticity aligned with the nearly neutr
strain direction.

The alignment of intense vorticity with the intermedia
strain axis is well known7,8,12,25,51and its reappearance in th
model is encouraging. The fate of the typical 2D vorticity
to implode under the action of the contracting strain~brought
about by the low pressure of the vortex!.60 The energy is
transferred to larger scale.

To conclude, we examine the geometry ofM in the D
50 tail. Here the predominantM configuration is

Ms5S l 0 v

0 l 0

0 0 22l
D , ~26!

which leads to the strain eigenvalues

sa5l; sb5
3

2
lA11

v2

9l22
l

2
, ~27!

andsg52sa2sb . The vorticity is aligned with the interme
diate strain axis, which is stretching since thesb.0 consis-
tent with the negative strain skewness Trs353sasbsg . The
normalizedb-strain8,39 ^(sb /usu)ul& as a function ofl along
the D50 line increases aŝ(v2/l2)ul& goes down with in-
creasingl, as it is shown above and confirmed by Figs. 15~a!
and 15~b! for the DNS. To the extent thatPr(R,Q) is peaked

o

FIG. 14. Energy flux density, tr(M 2M †) in R,Q plane from the DNS,Rl

585, at r/L50.125. The energy flux density is normalized b
u^tr(M2M †)&u. The same convention as in Fig. 12 is used.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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at R5Q50 and hence atl50, the most probable configu
rations haves1@s2;0 and are close to plane shear or 2
vorticity. Note that these most probable configurations h
Tr M2'0 or Trs2'(1/2)v2, which means approximate lo
cal homogeneity—a much stronger statement than the ho
geneity on average, i.e.,^Tr M2&50! This must have seriou
implications for the pressure.

The exagerated non-Gaussianity~i.e., Vieillefosse tail!
of the deterministic model aside, there are also other qu
tative differences between the results of the model and
DNS: e.g., the vorticity density in the DNS peaks at t
origin and is skewed in the upper half plane, towardR,0.
This effect is even stronger for the vorticity distribution me
sured in the dissipative range: an asymmetry also visible
P(R,Q) shown on Fig. 3~a!. This can be understood as
result of enstrophy dissipation by viscosity which shifts t
locus of null enstrophy growth and hence maximal enstro
to configurations where vorticity is still aligned with positiv
strain.

FIG. 15. ~a! Normalized intermediate eigenvalue of the strain,s*
[A6sb/usu, as a function ofl along the Vieillefosse tail as observed in th
DNS, Rl585, r52h; ~b! same for normalized enstrophy,e*
[^v2ul&/l2, as a function ofl.
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
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Let us further explore the results of the determinis
approximation. The exact solution on theD50 line ~see Ap-
pendix! exhibits strong asymmetry: even though the PDF
Gaussian along theD50 line both for R.0 and R,0,
ln P(l);2l2(r/L)4(12a)h6(b), the characteristic exponents o
the two sides are different,h1(b).h2(b). It is theh2 ex-
ponent which controls the behavior of low moments inclu
ing the 3rd, and in order to impose constant energy flux
must require (12a)h2(b)52/3, which forces K41 scaling
on the ‘‘head’’ of the PDF in Figs. 5~a! and 5~b!. The con-
stant flux condition thus fixes a specific relation~determined
in the Appendix! between the model parameters: asb in-
creases from 0 to'.3, a decreases from 1/3 to 0.

However, while the scaling in the bulk of the PDF
K41, the scaling in the Vieillefosse tail is anomalous. Intr
ducing rescaled variablel̃5lr 2/3, D̃5Dr 2/3, andṽ5vr 2/3

we find that theD̃ dependence of the action in the hyperbo
vicinity of the tail ~which determines its width in theR,Q
plane! has the asymptotic form

S1~ l̃,D̃,v50!;l̃2r 2g11D̃2r 22h f DS D̃

l̃
r 2h2g1D ,

~28!

where the scaling functionf D(0)5const andf D(x);xz for
x@1 with h5g1z/(22z). Similarly, the vorticity distribu-
tion on theD50(R.0) line is governed asymptotically by

S1~ l̃,D̃50,ṽ !;l̃2r 2g11ṽ2r 22h8 f vS ṽ

l̃
r 2h82g1D , ~29!

where f v(x);xd for x!1 and f v(x);xd23 for x@1 with
h85g1(32d)/(d21). The anomalous exponents depe
on b: g1[2(12a)(h1(b)2h2(b)) varies from 0 atb
50, (a51/3) to 1/2 atb'.3, a50. Over the same rangeh
varies from 1 to 3/2. The exponents as a function ofb are
tabulated in the Appendix.

It follows that the conditional enstrophy in the Vieille
fosse tail behaves for largel as

^ṽ2ul̃&;~l̃ !~2d/~21d!r 2g1d/~21d!12h8, ~30!

implying an interesting nontrivial scaling relation betwe
the strain and vorticity of the velocity gradient sheets as
ciated with the high energy transfer regions.

We can also compute the contribution of theD50, R
.0 tail to the moments of the velocity gradient. We com
pute, e.g.,

^l̃2& tail5NE dl̃3E dD̃2E dṽl̃ne2S1~ l̃r g1,D̃r 2h,ṽr 2h8!

;r 2h13h82~n13!g1, ~31!

where the normalization factorN;1 because it is dominate
by the ‘‘head’’ of the PDF with K41 scaling, already facto
ized explicitly. Thus we conclude that the tail contribution
important only for sufficiently largen, when n.nc5(2h
13h8)/g123 and the anomalous scaling becomes do
nant over the normal contribution of the bulk of the PDF. W
find that in the limit ofb→0 anda→1/3, nc→` and the
shape of the PDF, although non-Gaussian, becomes inde
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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dent of the scale. This limit recovers the Kolmogorov
theory. The intermittency effect is maximized asb→.3 and
a→0, where anomalous scaling appears forn.6.

It is clear that although the PDF found in the prese
deterministic approximation of the model is on the whole
from Gaussian~imposed on integral scale!, the approxima-
tion underestimates the intermittency effects. It predicts, e
no deviations from K41 in the vorticity dominatedQ.0
region, in contrast to the DNS result which in that regi
exhibitsr-dependence associated with the development o
exponential~or subexponential! tail on smaller scales. It is
equally clear that the description of such a tail is beyond
currently employed approximation. After all, the asympto
behavior of the PDF, i.e., the statistics of large fluctuatio
is dominated by fluctuations. One does, however, expec
find the exponential asymptotics41 once the fluctuations ar
accounted for via a proper semiclassical calculation. Th
thus appears to be two mechanisms contributing to the in
mittency: ~1! the deterministic nonlinear interactions in th
energy transfer region as indicated by our present calc
tion, and~2! the effect of small scale fluctuations responsib
for the exponential asymptotics of the PDF. The lat
mechanism is analogous to the one responsible for the in
mittency of the Passive Scalar.18–20

VI. CONCLUSIONS

In the preceding sections we have introduced and be
to analyze the phenomenological model of inertial scale
locity fluctuations defined through the velocity gradient te
sor coarse-grained over a region specified by a tetrad
points. The dynamics of this field was decomposed into
nonlinear deterministic component representing local sa
scale interactions and a Gaussian stochastic component
embedded K41 scaling representing interactions nonloca
space and the incoherent contribution of the velocity fluct
tions from scales smaller than that of the tetrad. The de
ministic component is closely related to the RE dynamics
the Vieillefosse33 model. The latter, although marred by th
unphysical finite time singularity,61 has been an appealin
candidate description for the dynamics of the local veloc
gradient.8,10,39 A novel aspect of our model is the elevatio
of the velocity gradient dynamics to the coarse-grained le
and the introduction of the tetrad tensor~r! dynamics which
explicitly introduces the scale and the measure of anisotr
generated through the strain induced distortion of the
grangian volume. This allows us to construct an anisotro
model of the coarse-grained pressure Hessian which el
nates the finite time singularity from the deterministic d
namics by suppressing the work done by the pressure on
distorted fluid element. Furthermore, the explicit appeara
of the current scale allows us to build in K41 spectrum in
stochastic component67 of the dynamics. An important rea
son for working with the coarse-grained field is that in t
dynamics of the purely inertial range fields the direct con
bution of the viscosity can be neglected.69 Instead, the ulti-
mately viscous dissipation is incorporated through the ef
of the incoherent small scales acting through the eddy da
ing Dnl1D' terms in the model. The deterministic dynami
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plays the key role in transferring energy down scale. T
transfer occurs due to the volume preserving distortion of
fluid element which leads to the reduction of at least one
its principal axes.

Our heuristic derivation of the model was fortified by th
numerical test of~3a! through the construction of the cond
tional flow for the invariants ofM . The deterministic part of
~3a! appears to be quite close to the conditional flow at le
for isotropic tetradsr51r . It will be important to extend the
numerical study to anisotropicr and to find a way of exam-
ining the stochastic contribution to the dynamics. The val
ity of the local approximation of the pressure Hessian10 and
the neglect of nonlocal correlations remain the key issue

The tetrad model respects K41 scaling (M→bM , r
→b23/2r), both on the operator~7! and the integral scale
boundary condition~16! levels. Yet, as illustrated by ou
crude deterministic approximation, the resulting PDF h
nontrivial, model parameter dependent anomalous sca
The Kolmogorov scaling has to be reimposed on the leve
the 3rd moment by choosing the parameters so as to m
the energy flux scale independent. Except for one partic
limit ( b→0, a→1/3) where the PDF has K41 behavio
high moments exhibit anomalous scaling. Remarkably, wh
this anomalous scaling has little to do with the Kolmogoro
Obukhov arguments,1,26 it does originate in the domain o
energy transfer: the Vieillefosse tail.

The deterministic approximation employed in Sec.
grossly overestimates the extent of the Vieillefosse tail
P(Q,R) but it does bear resemblance to the PDF observe
the DNS. It also generates plausible distributions of ens
phy, enstrophy production, and strain skewness. The pre
analysis provides a clear dissection of the high enstrophy
the high enstrophy production regions, identifies the diff
ence in the vorticity-strain alignment in the two regions25

and exhibits their dynamical connection. As explained
Sec. III, much of this sensible phenomenology was inheri
from the RE dynamics.8 The elimination of the Vieillefosse
finite time singularity was, however, essential in order
have a model with stationary statistics.

The energy transfer for isotropicr configurations occurs
via the nonlinear eddy damping39,46tr M2M† term ~9!, which
combines contributions of strain skewness and vor
stretching. Within our present crude deterministic appro
mation, the energy transfer occurs largely in the Viellefos
tail and is due to large negative trs3. In this region strain has
two positive eigenvalues and Lagrangian volumes are
formed into pancakes or ribbons, i.e., this is the region
sheet formation.50 In contrast, the vortex filaments are ge
erated in theQ.0, R,0 quadrant where enstrophy produ
tion is peaked. This region does not contribute as much
the energy flux. Furthermore, the maximal vorticity region
characterized by nearly 2D configurations and does not c
tribute at all—a notion consistent with recent numeric
results.12 Yet, whereas we are optimistic about correct d
scription of the high2tr s3 tail in the model, the correc
description of the highs region may be more difficult be
cause of the importance of long-range strain in vor
stretching.

In order to enable a more quantitative comparison of
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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model and the DNS, the treatment of the model must incl
the effect of the fluctuations which control the asympto
behavior of the PDF. Our present, deterministic approxim
tion overestimates the PDF in the narrow Vieillefosse t
while underestimating the asymptotic behavior of the P
elsewhere in theQ,R plane. Both effects are due to the n
glect of the fluctuations. Since the relevant Fokker–Pla
equation lives in thed2211d(d11)/2514 dimensionalM ,
r space, the direct numerical approach seems out of the q
tion. However, one may hope to make progress with
semiclassical analysis of the path integral representation~20!
along the lines of Refs. 41 and 53. This approach is valid
the calculation of the PDF tails and associated anoma
scaling. We expect that the fluctuation effects will chan
the Gaussian decay of the PDF tails found in the determ
istic approximation to the exponential,70 e.g.,l2ae2clr b

.
An interesting simplification appears in the limit o

strong transverse diffusionC'@1 which corresponds to th
physically sensible regime of strong reisotropization of
tetrads arising from the action of incoherent small scale fl
tuations. In that limit, the PDF becomes nearly uniform ov
the r25const shells and can be projected onto thes and d
representations of SO~9! acting onr i

a ,

P~M ,r!'C~M ,r2!1
1

2d2C'

3S r i
ar j

b2
1

d2 r2dabd i j DF i j
ab~M ,r2!. ~32!

Curiously, this nearly isotropic approximation doubl
as a d@1 expansion19,28,29 because thed-wave mode of
SO(d2) is suppressed by thel ( l 1d222) total angular mo-
mentum factor withl 52. This expansion allows a conside
able simplification of~7! and ~20!.

Several related models are worth mentioning. T
present model appears to be the real space, Lagrangian c
terpart of the momentum space, Eulerian ‘‘shell’’ model pr
posed by Siggia.72 Yet, the geometrical and statistical impl
cations of that model have not been fully explored and we
not at present understand the relative merits of the assu
tions involved in the two models. The logic which led to~3a!
and~3b! can and has been applied to the Passive scalar p
lem, in which case one would replaceM by a Gaussian ran
dom field. This would lead to a PS model of the type co
sidered in Refs. 20 and 73 closely related to t
Kraichnan’s24 model. It would be interesting also to explo
whether the 2D version of~3a! and ~3b! could provide a
sensible description of 2D turbulence where the physic
very different. In that case the deterministic left-hand side
~3a! would vanish for isotropic ‘‘triads,’’ and the nonlinea
energy transfer term in~9! would dissappear. The energy flu
then would be dominated by theChe term, the diffusion in
M , which has the opposite sign suggestive of inverse c
cade. Finally, if the tetrad model provides a reasonable
scription of turbulent fluctuations in the homogeneous ca
it will be interesting to attempt to generalize it to the inh
mogeneous and anisotropic case: e.g., one could study
statistics of tetrads moving away from the wall in the boun
ary layer.
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Last but not least, two remarks concerning the relat
with the experiment. The traditional approach to turbulen
and most of the existing data involves velocity difference
two points. This two-point statistics can be extracted fro
the tetrad statistics by averaging over ‘‘unobserved’’ va
ables P(v,r1)5*dr2*dr3*dMd(r1

aMab2vb)P(M ,r).
Conversely, it would be very interesting to study tetrad s
tistics experimentally. For that we need a velocity measu
ment at four points in the inertial range, which can be o
tained from three~crossed wire! probes@say a fixed probe a
the origin and two movable probes at (x,y,z)5(0,A3/2r ,
61/2r )] in a flow with ^vx&Þ0. The time lag~on the static
probe! then can be used to provide the four
measurement.74,75 The PDF of the coarse-grained veloci
gradient may then be obtained. Quite independently of
predictions of the present model, the~R,Q!-plane density of
the second- and third-order invariants~e.g., Figs. 8–14! are
very useful in dissecting the role of vorticity and strain
intermittency and the possible difference in their anomalo
scaling.

We conclude finally that despite its relative simplici
the tetrad model is surprisingly rich in physics, offering
insight both into the geometry and dynamics as well as
statistical and scaling properties of the inertial range fiel
Many nontrivial statistical objects can be calculated in ter
of the three parameters of the present model. Further w
and detailed comparison with the DNS and the experim
will establish the degree of success and failure of this mo

Note added. After this manuscript had been submitte
for publication the authors learned of the work of Mart
et al.76 who investigated the validity of the Restricted Eul
dynamics numerically and constructed the conditional fl

^ṘuQ,R& and^Q̇uQ,R& in the dissipative range. Our Fig. 4~a!
is in agreement with their result.
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APPENDIX: SCALING IN THE DETERMINISTIC LIMIT

Consider Lagrangian dynamics ofM̂ andĝ described by
~21a!, ~21b! for the following class of matrices forming
subspace in the Elliptic region (D>0):

M̂5S l D 0

2D l 0

0 0 22l
D , ĝ5S x 0 0

0 x 0

0 0 y
D . ~A1!

We arrive at the system of equations

d ln@l#

ldt
5~12a!

z242m2z

z12
, ~A2!

d ln@m#

ldt
5~12a!

z181m2

z12
, ~A3!

dz

ldt
526z1sgn@l#

b

3
A612m2~112z!~12z!, ~A4!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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d ln@G#

ldt
5

4~12z!

112z
, ~A5!

with m[D/l, z[x/y (z(0)51), G[tr@ ĝ#52x1y. This
system is integrable in quadratures if eitherb50 or D(0)
50 @and therefore,D(t)50, for any othert#. We shall now
calculate the effective actionS[2 ln@P(M ,g)# @ see~22!# for
these two cases.

1. Elliptic region, b50

Integration of the system~A2!–~A5! gives

l825F 3x82r 2

x8312r 6G12a S l22D23a21F S r 2

x8D
12a

32F1S 12a

3
,a,

42a

3
,

22r 6

x83 D
22F1S 12a

3
,a,

42a

3
,22D G D , ~A6!

D85DS r 2

x8D
12a

, y85
r 6

x82 , ~A7!

where the ‘‘8’’ notation stands to mark the (2T) preimage.
These expressions allow us to rewrite the effective action
e
al
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terms of r, l, and D, providing T is fixed by tr@ r̂(2T) r̂1

(2T)#52x81r 6/x8253L253. There are two solutions fo
x8 realized separately depending on the sign ofl8.

First, consider the region withl being positive during
the all-Lagrangian evolution. Atr !1, the respective value o
the effective action is

l8.0, S→3l2S r 2

2 D 12a

1D2S)r D 2~12a!

. ~A8!

We find that the action becomes infinite atr→0 in the do-
main.

If l(t) is negative~at least at the final stage of the bac
ward in time evolution! and r !1, the effective action is

l8,0, S→Fl21D23a21
2F1S 12a

3
,a,

42a

3
,22D G

3S 3r 2

2 D 12a

. ~A9!

The transition region between~A8! and ~A9! shrinks withr
→0. The crossover occurs at the intersection of thel5mD
line in thel, D ~Q,R! plane.m depends on botha andr and
has the following asymptotic form:
mur→0→H 3a21F2@a21#/3GS 42a

3 DGS 4a21

3 D Y @23G~a21!#22F1S 12a

3
,a,

42a

3
,22D G , a.1/4;

31/22a~12a!r 4a21/@2a11~124a!~2a11!#, a,1/4.

~A10!
e

le
lu-
Therefore, a sector in the right part of theQ,Rplane bounded
by the D50 line from below and thel5mD one from
above forms a low probability gulf of the PDF.

2. Zero discriminant line: D50

For the d5D50 line, the integration of~A2!–~A5!
yields

lnF G8

3r 2G54E
z8

1 ~12 z̃!dz̃

@6z̃2b~112z̃!~12 z̃!A2/3 sgn@l##~112z̃!
,

lnF l

l8G5~12a!

3E
z8

1 ~42 z̃!dz̃

~6z̃2b~112z̃!~12 z̃!A2/3 sgn@l#!~21 z̃!
.

~A11!

The dynamics~on D50 line! does not change the sign ofl,
so that sgn@l# is constant.

For positivel, l(t) is monotonically decreasing whil
G(t) grows andz(t) decreases. For small enough initi
G(53r 2!1), z approachesz1 ,
z1[
b23A61A5426bA619b2

4b
. ~A12!

For z8 close toz1 , one finds

l8

l
→const* @z82z1#C1

1
~12a!, G8→

const* r 2

@z82z1#C2
1 , ~A13!

where

C1
15A3/2

42z1

~21z1!A5426bA619b2
, ~A14!

C2
15A24

12z1

~112z1!A5426bA619b2
. ~A15!

We get the following asymptotic behavior for the effectiv
action forD50 andR,l.0:

S;lL
2;l2r 4~12a!h1, ~A16!

with h1[C1
1/C2

1 .
If l is negative,l(t) increases in absolute value whi

z(t) decreases at the initial stage of backward in time evo
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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tion. The dynamics changes~r is supposed to be very smal!
oncez crosses 4 andl(t) starts moving toward the origin.z
keeps growing to approachz2 ,

z25
3A61b1A5416A6b19b2

4b
. ~A17!

For z close toz2 , one finds

Ul8

l U→const3@z82z2#C1
2

~12a!, G8→
const3r 2

@z82z2#C2
2 ,

~A18!

where

C1
25A3/2

z224

~21z2!A5416A6b19b2
, ~A19!

C2
25A24

z221

~112z2!A5416A6b19b2
. ~A20!

Finally, we get the following asymptotic behavior for th
effective action forD50 andR,l,0:

S;lL
2;l2r 4~12a!h2, ~A21!

with h2[C1
2/C2

2 . Note, thath2<h1 .
Remarkably, the numerical study of the action sho

that this scaling found analytically for theD50, R,0 line
holds everywhere in theQ,Rplane except for the Vieillefoss
tail, D50, R.0. Hence the main body of the PDF, whic
determines the low moments, scales according to~A21!. In
order to impose constant energy flux we fix the scaling of
low moments~including the 3D! to the K41 value, which
requires

a512
1

3h2
, ~A22!

thus relatinga andb parameters of the model.a decreases
with b increase from 1/3 atb50 ~an exceptional case whe
tail and the body of the PDF scale the same way! to 0 atb
'0.3. We keepb as a free parameter in the interval@0,
'0.3# and calculate the respective values of other expon
numerically in Table I.
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