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On how a joint interaction of two innocent partners (smooth advection
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Forced advection of passive scalar by a smodttimensional incompressible velocity in the
presence of linear damping is studied. Acting separately advection and damping do not lead to an
essential intermittency of the steady scalar statistics, while being mixed together produce a very
strong non-Gaussianity in the convective range-tB moment of scalar differencd] 6(t;r)
—6(t;0)]?") is proportional tor¢2n, &, =min{2n,\/d?/4+2adn/[(d—1)D]—d/2}, where a/D
measures the rate of the damping in the units of the stretching rate. The probability density function
(PDP of the scalar difference is also found. ®98 American Institute of Physics.
[S1070-663(98)02811-9

Advection of passive scala(t;r) by an incompressible scaling of all the orders structure functions in the problem.
velocity field is a classical problem in turbulence theory.Besides, the problem gives an example of a turbulent situa-
Kraichnan pioneered analytical study of the problem inventtion when the dissipative anomaly is absé&zgro diffusivity
ing the temporal short-correlated but spatially nonsmoottallows a stationary solutionwhile a strong intermittency
model of velocity for which the simultaneous pair correlation (A,,#0) takes place.
function of the scalar was fourfdHowever, the question of Consider advection of the passive scal{t;r) by a
possible anomalous behavior of higher order-(1) struc-  smooth incompressible velocity field(t;r):a-(t)r, in the
ture functions 32n(r)=<%0(t;r)— 0(t;0))>™~réx was  presence of linear damping and diffusion,
posed only 25 years latérNext, the anomalous scaling Y v
A, =né,— &5, describing the law of the algebraic growth O+ T OV 6= 1A 0= a b+ ¢. @
with L/r (whereL is the scale of the scalar pumpingf the It is known that the small scale features of scalar are univer-
dimensionless ratidS,,(r)/[S,(r)]", was shown to exist sal with respect to variation of the pumpirgt;r) (see, for
generically’>~° The anomalous exponent was calculated perexample, Ref. B therefore for the sake of simplicity the
turbatively in expansions of about three nonanomalougumping will be considered to be Gaussian thus fixed unam-
(A,,=0) limits, of large space dimensionality>® of ex-  biguously by (¢(t1;r1)(to:r2))=x(Ir1—r2l)8(t1—1p),
tremely nonsmooth’ and almost smoothvelocities, respec- Wherex(r) decays fast enoughifexceeds the integral scale
tively. A strong anomalous scalingaturation ofé,, to a L. The velocity is smooth downscale froy, which is sup-
constantwas found for the Kraichnan model at the largest Posed to be the largest scale in the problén®tL). Aiming
by a steepest descent formaliémilthough the restricted for simplicity and compactness of the derivation | consider in
asymptotic information about an anomalous exponent in th¢his Brief Communication only the Gaussian statisticssof
model is available a future possibility to establish rigorouslyfixed by
the_ complete dependence §&f, on n, d a_nd degree of ve- (o (1) B (1) 511 VB + SHB s
locity nonsmoothness seems very unlikélya sense, recent ——————— =| §*"§7F— — [ 5(t—t").
Lagrangian numeriéscompensates the lack of rigorous in- D(d+1) d+1
formation). Generalization of the theory for the case of a finite temporal

In the present Brief Communication | discuss yet anothercorrelations of velocity will be published elsewhegiedoes
passive scalar model with nontrivial anomalous behaviornot change the general structure of all the answers,(8g.,
{on<né,, which is possible to resolve explicitly for all the (5), (6) derived below, and shows itself only in renormaliza-
values of the governing parameters. The model describen of the dimensionless coefficieat D].
generalization of the smooftBatcheloy limit of the Kraich- The model describes forced advection of a scalar pollut-
nan model on the case of a linear damping of the scalar. Thant in the viscous-convective range (/D/«x>1) absorbed
pure Batchelor modého damping, studied in detail in Refs. instantly and homogeneously, for example, via a chemical
10-15, shows nonanomalous behavior. The advection freeaction with other species presented in abundance in the
limit is also nonanomalous. Howevgsee(5), (6)], a strong  flow. Linear damping of the pollutant concentratighis
intermittency does exist generically: the scaling exponent apfixed here by the reaction rate. Another physical situation
pears to be a nontrivial function of, d and a parameter governed by(1) is turbulent thermoadvection in a cell at-
standing for the damping-to-convection ratio. Notice thattached to a thermal bath. Thenis the heat transfer coeffi-
scaling of convective and damping contributions coincidecient andé(t;r) measures local deviation from the bath tem-
and there is no Kolmogorov like argument to predict theperature.
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We start studying the pair correlation function of the such a moderate, a<a.=(d—1)D, that the pumping term
scalar field:F(r»)=(6(t;r,)6(t;r,)). Averaging two repli- in (4) can be neglected at<L. Then, all the information

cas of(1) one gets about the pumping enters into consideration only through the
5 boundary condition at the integral scale. For example, the
—r1-dg.rd D(d—1)r+ K 9, +2a|F=y. (2)  solution of(4) giving the Gaussian PDF at the integral scale
r is
Consider the case of a step-like pumping function, when dar2
. In[L/r](L X
x(r)=P=const atr<L, and zero otherwise. Introduce a P(X;r)= —| Q| —=:In[L/r]],
forced solution of this equationk¢(r)=PJ(L—r)/[2«]. mxya \ ! o
Two different zero modes of the operator from the Ihg2)f - ) 5 (6)
should be added t&(r), at the upper (>L) and lower ) — Nl _z__d_a —\2 ﬂ
: : S Q(y;2) ex t—y” exd2t]|—,
(r<L) intervals, respectively, to guarantee the continuity of 0 4at 4 1372

F(r) and its derivative at=L. If the dissipative scaleg

— /D, is small enough, one gets wherea=D(d—1)/a. At L>r, P(x;r) shows a change in

behavior atx,= 6, [r/L]¥@®: Q(y;z) is finite at the origin,
é ( r )f+ . Q(0;2) ~(r/L)¥%/In[L/r]; further, the algebraic ix decay at
, rg<<r<iL,

§ —¢.\L X<, Q(0;2-Q(y;)~y***, tums into Q(y;2)
Fin =5, £, [r\& () ~yt®aexd—Zl(aln[1ly])] atx>x.. One gets particularly
F ¢ (E) , I>L>ry; that ata> a,, the anomalous resulb) is applicable for all
+ p—

the positive moments 466, |. All the negative moments are

where &, =+ \/d%/4+ 2ad/[(d—1)D]—d/2. Dominant, at divergent.

r<L, the contribution into the second order structure func-  The possibility of the two-point consideration explained

tion stems from a zero mode of the operator on the rii@)pf above is based on the absence of the dissipative anomaly. To

Sy(r)~ré-. prove this and also to clarify the dynamical origin of anoma-
Come to the study of the scalar difference stationarylous behavior | consider Lagrangian multi-point representa-

PDF, P=(&8(x— 86,)). Generally, at zero diffusion{—0)  tion and show how does it lead {6). Here(1) is equivalent

the stationary limit is perfectly achieved via the direct bal-to

ance between the pumpirfyand thea-damping. The scalar "

pumped at a large scale and advected downscale is a(t;r)zf dt’exd — at’]o(t";p(t—t")), 7)

“eaten” by damping much before it reaches the dissipative 0

range. Therefore, there is no dissipative anomaly in the case

(see below for the propfand one may derive the Fokker— —p()=a(t)p(t)+ &), p(0)=r, (8)

Planck equation out ofl) neglecting diffusion, dt

where £(t) is the Langevin noise{&%(t)&P(t")) =2k d(t
—t'). Averaging the simultaneous product of ifferent
where ¥(r)= x(0)— x(r). Even without solving the equa- replicas of(7), following trajectories of & parti_cle_sm fixed
tion one may get closed equations for the structure functionfY (8, 0ne getsFon=(0; - - - 62n). The k—0 limit is well
by means of the integration ¢#) against the respective mo- defined for the general object. Indeed, very small but finite
ments ofx. The equations supplied by the zero condition gtdiffusion ftends to separate otherW|sg commdmg particles,
r—0 give the following small scale asymptotics for the evenNOWeVer it does not affect the evolution of particles sepa-

moments(odd moments are constrained to be zero due td@t€d initially. Another point, for the purpose of thezh
isotropy and Gaussianity of the pumpingS, /[afn] structure function calculation, it is utmost enough to consider
n

D(d—1)rt=99,r4* 25, P+ ady (xP) + x(r)a>P=0, (4)

~[r/L]én, F,, at the colinear configuratiom;=nr;. The observations
allow, first, to integrat€7) at k—0 and, second, to reduce
_ \/m d the 2nx (d—1) parametric average to the following single-
&on= mm[ 2Nt d=0p 2|’ () parametric one:
~ ; {1, ..., T} n -
l/vh_ere o, P/n?a>{a,D} s'Fands for the amglltud_e of a scalar e S Il f due o fentr, ).
ypical fluctuation at the integral scdleandx(r) is assumed i, i \k=1 Jo kilk+1
to have a regular expansion iR about the origin. Her¢5) ' 9)

holds for anyd, n, anda. According to(5) all the moments
are anomalous itx is small enough, otherwise the lowest . ] ; ) b )
moments are normal. Notice that the continuous dependencilnw(t)m* is the only fluctuating quantity leftv(t) satis-
of the anomalous exponents on the damping rate originatefies dW(t)/dt= o (t)W(t). The @=0 version of(9) was cal-
from the coincidence of the scaling dimensidasro in the culated in Ref. 14 for thel=2 case and generalized for any
Batchelor case of smooth velodityf the bare eddy diffusiv- d=2 in Ref. 15 via a change of variables and a further
ity operator and the damping-dependent correction to it.  Straightforward transformation of the path integral standing
Although the calculation of anomalous exponents wagor the average over(t). The » measure, known from Ref.
our main goal,P solving (4) may also be found. Consider 15 and applied t¢9), produces

where ri;=|r;—r;|. The longitudinal stretching ratexp(t)
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n _ tive log of the scale. However, the effective spread in the
Fon d D(d—-1)d . ) '
o H dt;d»; |ex M~ u factor by which the amplitude has decayed, upon reaching a
' =1 given scale, increases as the scale decreases. It iséyhy

{1,...n} n >0. Also there is more room for fluctuations about the mean
X E H [ezati,\/(e’?irkz_ 'k2'+1) time due to the interference between the exponential decay
(ki kon} 1=1 e of the scalar amplitude and fluctuations of the stretching rate
XG(ti_qim-1)], (10 7 Thus intermittency increases with a scale size decrease.

where 7; integrations are not restrictedsQ,<- - - <t;<x,
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