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On how a joint interaction of two innocent partners „smooth advection
and linear damping … produces a strong intermittency
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Forced advection of passive scalar by a smoothd-dimensional incompressible velocity in the
presence of linear damping is studied. Acting separately advection and damping do not lead to an
essential intermittency of the steady scalar statistics, while being mixed together produce a very
strong non-Gaussianity in the convective range: 2n-th moment of scalar difference,̂@u(t;r )
2u(t;0)#2n& is proportional tor j2n, j2n5min$2n,Ad2/412adn/@(d21)D#2d/2%, where a/D
measures the rate of the damping in the units of the stretching rate. The probability density function
~PDF! of the scalar difference is also found. ©1998 American Institute of Physics.
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Advection of passive scalaru(t;r ) by an incompressible
velocity field is a classical problem in turbulence theo
Kraichnan pioneered analytical study of the problem inve
ing the temporal short-correlated but spatially nonsmo
model of velocity for which the simultaneous pair correlati
function of the scalar was found.1 However, the question o
possible anomalous behavior of higher order (n.1) struc-
ture functions S2n(r )5^(u(t;r )2u(t;0))2n&;r j2n was
posed only 25 years later.2 Next, the anomalous scalin
D2n[nj22j2n , describing the law of the algebraic grow
with L/r ~whereL is the scale of the scalar pumping! of the
dimensionless ratioS2n(r )/@S2(r )#n, was shown to exist
generically.3–5 The anomalous exponent was calculated p
turbatively in expansions of about three nonanomal
(D2n50) limits, of large space dimensionalityd,3,6 of ex-
tremely nonsmooth4,7 and almost smooth5 velocities, respec-
tively. A strong anomalous scaling~saturation ofj2n to a
constant! was found for the Kraichnan model at the largesn
by a steepest descent formalism.8 Although the restricted
asymptotic information about an anomalous exponent in
model is available a future possibility to establish rigorou
the complete dependence ofj2n on n, d and degree of ve-
locity nonsmoothness seems very unlikely~in a sense, recen
Lagrangian numerics9 compensates the lack of rigorous i
formation!.

In the present Brief Communication I discuss yet anot
passive scalar model with nontrivial anomalous behav
z2n,nj2, which is possible to resolve explicitly for all th
values of the governing parameters. The model descr
generalization of the smooth~Batchelor! limit of the Kraich-
nan model on the case of a linear damping of the scalar.
pure Batchelor model~no damping!, studied in detail in Refs
10–15, shows nonanomalous behavior. The advection
limit is also nonanomalous. However@see~5!, ~6!#, a strong
intermittency does exist generically: the scaling exponent
pears to be a nontrivial function ofn, d and a paramete
standing for the damping-to-convection ratio. Notice th
scaling of convective and damping contributions coinc
and there is no Kolmogorov like argument to predict t
3011070-6631/98/10(11)/3017/3/$15.00

Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
.
t-
h

r-
s

e

r
r,

es

he

ee

p-

t
e

scaling of all the orders structure functions in the proble
Besides, the problem gives an example of a turbulent si
tion when the dissipative anomaly is absent~zero diffusivity
allows a stationary solution! while a strong intermittency
(D2nÞ0) takes place.

Consider advection of the passive scalaru(t;r ) by a
smooth incompressible velocity field,u(t;r )5ŝ(t)r , in the
presence of linear damping and diffusion,

] tu1smn~ t !r m
“ r

nu5kD ru2au1f. ~1!

It is known that the small scale features of scalar are univ
sal with respect to variation of the pumpingf(t;r ) ~see, for
example, Ref. 3!; therefore for the sake of simplicity th
pumping will be considered to be Gaussian thus fixed una
biguously by ^f(t1 ;r1)f(t2 ;r2)&5x(ur12r2u)d(t12t2),
wherex(r ) decays fast enough ifr exceeds the integral scal
L. The velocity is smooth downscale fromLu , which is sup-
posed to be the largest scale in the problem (Lu@L). Aiming
for simplicity and compactness of the derivation I consider
this Brief Communication only the Gaussian statistics ofŝ
fixed by

^shm~ t !sbn~ t8!&
D~d11!

5Fdmndhb2
dmhdnb1dmbdnh

d11 Gd~ t2t8!.

Generalization of the theory for the case of a finite tempo
correlations of velocity will be published elsewhere@it does
not change the general structure of all the answers, i.e.,~3!,
~5!, ~6! derived below, and shows itself only in renormaliz
tion of the dimensionless coefficienta/D].

The model describes forced advection of a scalar pol
ant in the viscous-convective range (LuAD/k@1) absorbed
instantly and homogeneously, for example, via a chem
reaction with other species presented in abundance in
flow. Linear damping of the pollutant concentrationu is
fixed here by the reaction ratea. Another physical situation
governed by~1! is turbulent thermoadvection in a cell a
tached to a thermal bath. Thena is the heat transfer coeffi
cient andu(t;r ) measures local deviation from the bath tem
perature.
7 © 1998 American Institute of Physics
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We start studying the pair correlation function of th
scalar field:F(r 12)5^u(t;r1)u(t;r2)&. Averaging two repli-
cas of~1! one gets

F2r 12d] r r
dS D~d21!r 1

2k

r D ] r12aGF5x. ~2!

Consider the case of a step-like pumping function, wh
x(r )5P5const at r ,L, and zero otherwise. Introduce
forced solution of this equation,F f(r )5Pq(L2r )/@2a#.
Two different zero modes of the operator from the lhs of~2!
should be added toF f(r ), at the upper (r .L) and lower
(r ,L) intervals, respectively, to guarantee the continuity
F(r ) and its derivative atr 5L. If the dissipative scale,r d

5Ak/D, is small enough, one gets

F~r !5
P

2a H 12
j2

j22j1
S r

L D j1

, r d!r ,L,

j1

j12j2
S r

L D j2

, r .L@r d ;

~3!

where j6[6Ad2/412ad/@(d21)D#2d/2. Dominant, at
r !L, the contribution into the second order structure fun
tion stems from a zero mode of the operator on the rhs of~2!,
S2(r );r j2.

Come to the study of the scalar difference station
PDF,P[^d(x2du r)&. Generally, at zero diffusion (k→0)
the stationary limit is perfectly achieved via the direct b
ance between the pumpingf and thea-damping. The scala
pumped at a large scaleL and advected downscale
‘‘eaten’’ by damping much before it reaches the dissipat
range. Therefore, there is no dissipative anomaly in the c
~see below for the proof! and one may derive the Fokker
Planck equation out of~1! neglecting diffusion,

D~d21!r 12d] r r
d11] rP1a]x~xP!1x̃~r !]x

2P50, ~4!

where x̃(r )[x(0)2x(r ). Even without solving the equa
tion one may get closed equations for the structure functi
by means of the integration of~4! against the respective mo
ments ofx. The equations supplied by the zero condition
r→0 give the following small scale asymptotics for the ev
moments~odd moments are constrained to be zero due
isotropy and Gaussianity of the pumping!, S2n /@uL

2n#
;@r /L#j2n,

j2n5minH 2n,Ad2

4
1

2adn

~d21!D
2

d

2J , ~5!

whereuL;P/max$a,D% stands for the amplitude of a scal
typical fluctuation at the integral scaleL andx̃(r ) is assumed
to have a regular expansion inr 2 about the origin. Here~5!
holds for anyd, n, anda. According to~5! all the moments
are anomalous ifa is small enough, otherwise the lowe
moments are normal. Notice that the continuous depende
of the anomalous exponents on the damping rate origin
from the coincidence of the scaling dimensions~zero in the
Batchelor case of smooth velocity! of the bare eddy diffusiv-
ity operator and the damping-dependent correction to it.

Although the calculation of anomalous exponents w
our main goal,P solving ~4! may also be found. Conside
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such a moderatea, a,ac5(d21)D, that the pumping term
in ~4! can be neglected atr !L. Then, all the information
about the pumping enters into consideration only through
boundary condition at the integral scale. For example,
solution of~4! giving the Gaussian PDF at the integral sca
is

P~x;r !5
ln@L/r #

pxAa
S L

r D d/2

QS x

uL
; ln@L/r # D ,

~6!

Q~y;z![E
0

ln[1/y]

expF2
z2

4at
2

d2a

4
t2y2 exp@2t#G dt

t3/2
,

wherea[D(d21)/a. At L@r , P(x;r ) shows a change in
behavior atxc[uL@r /L#1/(da): Q(y;z) is finite at the origin,
Q(0;z);(r /L)d/2/ ln@L/r#; further, the algebraic inx decay at
x!xc , Q(0;z)2Q(y;z);yd2a/4, turns into Q(y;z)
;yd2a/4exp@2z2/(a ln@1/y#)# at x@xc . One gets particularly
that ata.ac , the anomalous result~5! is applicable for all
the positive moments ofudu r u. All the negative moments are
divergent.

The possibility of the two-point consideration explaine
above is based on the absence of the dissipative anomaly
prove this and also to clarify the dynamical origin of anom
lous behavior I consider Lagrangian multi-point represen
tion and show how does it lead to~5!. Here~1! is equivalent
to

u~ t;r !5E
0

`

dt8exp@2at8#f~ t8;r~ t2t8!!, ~7!

d

dt
r~ t !5ŝ~ t !r~ t !1j~ t !, r~0!5r , ~8!

where j(t) is the Langevin noise,̂ ja(t)jb(t8)&52kd(t
2t8). Averaging the simultaneous product of 2n different
replicas of~7!, following trajectories of 2n particlesr i fixed
by ~8!, one getsF2n[^u1•••u2n&. The k→0 limit is well
defined for the general object. Indeed, very small but fin
diffusion tends to separate otherwise coinciding particl
however it does not affect the evolution of particles se
rated initially. Another point, for the purpose of the 2n-th
structure function calculation, it is utmost enough to consi
F2n at the colinear configuration,r i5nr i . The observations
allow, first, to integrate~7! at k→0 and, second, to reduc
the 2n3(d21) parametric average to the following singl
parametric one:

F2n5 (
$ i 1, . . . ,i 2n%

$1, . . . ,2n% K )
k51

n E
0

`

dtke
2atkx@eh~ tk!r i k ; i k11

#L ,

~9!

where r i j [ur i2r j u. The longitudinal stretching rate,h(t)
[ lnuŴ(t)nu, is the only fluctuating quantity left;Ŵ(t) satis-
fiesdŴ(t)/dt5ŝ(t)Ŵ(t). Thea50 version of~9! was cal-
culated in Ref. 14 for thed52 case and generalized for an
d>2 in Ref. 15 via a change of variables and a furth
straightforward transformation of the path integral stand
for the average overŝ(t). Theh measure, known from Ref
15 and applied to~9!, produces
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



e

er
y

m
n

e

u
la

he

g

the
g a

an
cay
ate
se.

n
v-
re
H.

by

ca-

d
ly

ca-

r in

te-

he

ca-

m-

s of

rm

s in

a
eld:

-
-

3019Phys. Fluids, Vol. 10, No. 11, November 1998 Brief Communications
F2n

n!
5E F)

i 51

n

dtidh i GexpFd

2
h12

D~d21!d

4
t1G

3 (
$ki , . . . ,k2n%

$1, . . . ,2n%

)
i 51

n

@e2at ix~eh i r k2i ,k2i 11
!

3G~ t i 21,i ;h i 21,i !#, ~10!

whereh i integrations are not restricted, 0<tn<•••<t1<`,
tn115hn1150, t i ,k5t i2tk , with equivalent notations for
h, and G(t;h)[@Apd/4(d21)tD#exp@2 dh2/4(d21)tD#.
The integrand of~10! decays exponentially in time with th
major contribution into the integral formed att i;1/a. There-
fore, it does not depend on anyr i j and gives no contribution
into the structure function. The first actualr-dependent con-
tribution stems fromn21 temporal integrals formed att
;1/a, and one att i;t r; ln@L/r#/max$a,D%. This special in-
tegration brings a spatial dependence into the object, th
fore, on a single distance. Generally, there exists a variet
terms with all the possible combinations, like term withk
integration formed att, while n2k ones att r , and therefore
dependent explicitly on 2(n2k) points. However, we are
looking exclusively for a term dependent on all the 2n points
since only such a term contributesS2n(r ). It is really simple
to calculate the scaling of this term making use of the te
poral separation,t r@t. Indeed, the large time contributio
may be extracted out of~10! in a saddle-point calculation. A
variation of all the exponential terms in~10! with respect to
t i gives a chain of saddle equations. Thex
functions in the integrand of~10! limits the h integrations
from above by ln@L/r#. Therefore, the desirabl
2n-points contribution forms at t i

5Ad/@4(d21)D(2an1D(d21)d/4)# ln@L/r#, and h i

5 ln@L/r#. Substituting the saddle-point values oft i and h i

into ~10! we arrive at the anomalous part of~5!.
The basic physics of nonzeroj2n ~means deviating from

the naive balance of pumping and advection! and generally
anomalous (D2nÞ0) scaling ata.0 can be stated quite
clearly. According to~9! the advection changes scales b
not the amplitude, while the amplitude of the injected sca
field decays exponentially from the time of injection at t
constant ratea. The temporal integrals in~10! forms at the
mean time to reach a scale which is proportional to the ne
Downloaded 18 Jan 2002 to 128.165.156.80. Redistribution subject to A
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tive log of the scale. However, the effective spread in
factor by which the amplitude has decayed, upon reachin
given scale, increases as the scale decreases. It is whyj2n

.0. Also there is more room for fluctuations about the me
time due to the interference between the exponential de
of the scalar amplitude and fluctuations of the stretching r
h. Thus intermittency increases with a scale size decrea
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