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Propagation of a Huygens Front Through Turbulent Medium
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The dynamics of a thin Huygens front propagating through a turbulent medium is considered
A rigorous asymptotic expression for the effective velocityyF proportional to the front area is
derived. The small-scale fluctuations of the front position are shown to be strongly intermittent. Thi
intermittency plays a crucial role in establishing a steady state magnitude of the front velocity. Th
results are compared with experimental data. [S0031-9007(98)05738-X]

PACS numbers: 47.27.–i, 82.40.Py
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The problem of propagation of a thin passive fron
(of flame, phase transition, etc.) through turbulent flo
has attracted much attention since the early 1940s [1
when it was realized that velocity fluctuations tend t
generate a strongly convoluted front, thus dramatica
increasing their area. In premixed combustion process
the flame front area is related directly to the speed of t
front propagation. The first expression for the flame fro
velocity uF ~ yrms, valid in the limit yrms ¿ u0, where
urms is the root-mean-square velocity of the integral edd
andu0 is the laminar flame speed depending on the deta
of chemical kinetics, was proposed by Schelkin [2] (se
Refs. [3–5] for modern reviews on the theory of turbulen
combustion). The problem is also important for describin
light propagation in a medium with fluctuating dielectric
constant, shock wave fronts, etc. [6]. The renormalizatio
group approach [7], which included some theoretical
unjustified steps, yielded an expression, differing from th
Schelkin result by a logarithmic factor, which agreed wit
experimental data [8–10] over a wide range of parame
variation. Still, despite substantial activity, no rigorou
derivation of the front speed appeared, and the question
the dependence ofuF on bothu0 and the Reynolds number
Re remained open. It is shown in this paper that rece
advances in the theory of a passive scalar, advected
turbulence, enable one to accurately account for the sm
scale intermittency of a scalar field, which is crucial for th
description of the front fluctuations and derivation of th
effective velocityuF .

We consider a problem of propagation of a passiv
front through turbulent flow. The front can be describe
by the equation for a passive scalar [3,11] (so-called “G”
equation)

≠tG 1 sv≠rdG ­ u0j≠rGj , (1)

where Gst, rd is a scalar field whose level surface, sa
G ­ 0, represents the thin front position. The statistic
of turbulent velocityv is presumed to be known. Equa
tion (1) with v ­ 0 describes a front propagating with the
constant speedu0 (laminar front speed) normally to the
local orientation of the front. For example, if the fron
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at time t ­ 0 is defined at thex-y plane, it will prop-
agate with a constant speedu0 and constant areaS0 ­
const in thez direction. The role of the random field
v is in the generation of a strongly convoluted (“wrin
kled”) front with a substantially increased areaST . S0.
Whenv ­ 0 the mass of the reactants consumed per u
time is dmydt ­ u0S0 ­ const and does not change
time. If u0 is constant (the laminar flamelet model), the
dmydt ­ u0ST ; uFS0, whereST is the area of the wrin-
kled front. This gives a definition of a turbulent or e
fective front velocity,uF ­ u0ST yS0. Assuming that a
steady (bothuF and ST do not depend on time after
long evolution) regime is realized, we introduce a ne
variable,Gst, rd ; uFt 2 z 1 hst, rd. Then, (1) reads

≠th 1 sv≠rdh ­ yz 1 u0

q
s≠rhd2 1 1 2 2≠zh 2 uF .

(2)
In the moving frame the fluctuations of the front positio
h are assumed to be in a statistically steady state that fi
the value of the front speeduF which, in the turbulent
regime discussed (uF ¿ u0, whenj≠rhj2 ¿ j≠zhj ¿ 1),
is given by

uF ­ u0kj≠rhjl , u0kjdhsr0djlyr0 . (3)
Here,jdhsr0dj is the magnitude of the velocity differenc
at the scaler0 where the “chemical” (u0 dependent)
and advective contributions to (2) balance each oth
Averaging over the turbulent velocity is assumed in (
Sinceurms ¿ u0 , r0 ø L, whereL is the scale of the
turbulence source. This means that the scalar, injec
at the scaleL, is dissipated at the propagating fro
as a result of the generation of very sharp cusps
the radiusr0 ø L. Formation of such cusps has bee
observed in numerical simulations [12,13]. Derivation
the characteristic widthr0, magnitudejdhsr0dj of these
cusps, and, as a result,uF is the goal of the theory.

The presence of the three characteristic scalesL
(integral scale),h (Kolmogorov viscous scale), andr0,
defines three possible flame regimes:

A: L * h ¿ r0, B: L ¿ r0 ¿ h,

C: L ¿ h ¿ r0 . (4)
© 1998 The American Physical Society 2837
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Generation of the small-scale scalar fluctuations (dire
cascade) [14,15] takes place in both inertial-convectiv
L . r . h, and dissipative-convective,h . r . r0

(which is valid in theA, C cases but notB), intervals.
Thus, the problem is naturally divided into two: First, w
need to describe scalar (height of the flame brush) cor
lations in both convective rangesL . r ¿ r0. Once the
solutions in the convective intervals are found, we w
be ready to resolve the second and principal part of
problem: to calculate the value of the dissipative scaler0
and, matching dissipative and convective intervals, fi
turbulent speed of the front,uF . Therefore, naturally,
we are starting from the first task, considering all of th
regimessA Cd one at a time.

Regime A.—Batchelor (a pure viscous-convective
regime. CaseA corresponds to a well-studied situation
first discussed by Batchelor [16] and developed further
Refs. [17–19]. Without loss of generality and followin
[19], we will consider the velocity difference to be
Gaussian in the case

kdya
r stddyb

r stdl ­
D
t

f2dabr2 2 rarbg exp

∑
2

t
t

∏
,

(5)

wheret is the turnover time of the integral (L-size) eddy.
The pair correlation function of the scalar obeys the famo
logarithmic law in the convective interval of scales,L ¿
r ¿ r0 [17–19],

kh1h2l ­ DL2 lnfLyr12gyl , (6)

where DL2 describes the fluctuation of the “source
function yz while l stands for the Lyapunov exponen
corresponding to the rate of Lagrangian stretchin
Correlation between the source and convective ter
in (2) does not contribute to (6). Accounting for thes
correlations slightly modifies the higher-order momen
generating subleading contributions and a mere renorm
ization of bare coefficients. The Lyapunov exponentl

as a function oft, D was found for the two-dimensiona
version of the model (5) in [19]. Asymptotics of the larg
and smallt were described explicitly in [19]. Generally
the problem of findingl was reduced in [19] to a well-
defined auxiliary quantum mechanics problem which w
easy to solve numerically. An interpolation formula fo
l, fitting well all of the known asymptotical formulas is

l ­
q

Dyt tanhf
p

Dtg . (7)

This formula, valid in the space of arbitrary dimensionali
d . 2, holds up toO sdd corrections. The statistics of the
scalar fluctuations in the convective interval are shown
be Gaussian [19]. Therefore, the typical fluctuation of t
heighth at r0, estimated by the second moment (6), is

jdhr0 j , L
q

Dyl . (8)

The expression (8) is derived without any spatial avera
ing over the large-scales,Ld structures, which are always
2838
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present in a real flow where all macroscopic characte
istics, including the Lyapunov exponentsl, are slightly
modulated on the integral scale. Accounting for this sp
tial variation gives an estimate following directly from (6):

jdhr0j , L
q

Dyl

q
lnfLyr0g . (9)

The modified regimeA, accounting for the large-scale
averaging, will be denoted hereafter byA0.

Regime B.—Pure inertial-convective range. An
inertial-convective range is realized at the scale
r ¿ h ¿ r0 where one cannot neglect small-scale ad
vection contribution. In the case of a general nonsmoo
velocity, one finds strongly intermittent behavior, man
ifested in the anomalous scaling of the scalar structu
functions,

S2nsrd ­ kfhsr1d 2 hsr2dg2nl , L2n2z2n r
z2n

12 , (10)

valid at the separationsr12 ø L. The fundamental origin
of the anomalous scaling,z2n , nz2, was discovered re-
cently [20–22]. It was understood that the anomalous e
ponents originate from zero modes of the eddy-diffusivit
operator: z2n are universal numbers, solely defined by th
velocity statistics and independent on the properties of t
pumping term. The exponents were analytically calcu
lated for the case of the velocity field, rapidly varying in
time, introduced by Kraichnan [23] in1yd, 2 2 z2, andz2

expansions [20–22], respectively. An instanton approa
[24] yields yet another largen sn ¿ dd asymptotic for
z2n ! z`sz2, dd whenn ! `. The constantz`sz2, dd was
explicitly calculated. The saturation of exponentszn was
predicted also in [25]. The instanton consideration, a
plied to a general passive scalar problem, always results
the collapse of exponentsz2n ! z` , `, with the asymp-
totic valuez` to be a complicated functional of the veloc-
ity field statistics. It can be easily understood: The2nth
moment of the scalar can be represented as a path inte
over 2n fluid particles. The dominant contribution into
the high (2nth) order structure function originates from
the most probable2n-particle trajectory. In the incom-
pressible world it is impossible to avoid a divergence o
particles in at least one of the directions and it has be
shown in [24] that a contribution to the path integral from
a single diverging trajectory is sufficient to cause satur
tion of the exponentszn. This effect has a very strong
and important influence on the parametric dependence
an effective front speeduF calculated below.

Regime C.—Consecutive inertial-convective and
dissipative-convective ranges. The description of th
scalar correlations in the inertial-convective regime (ICR
does not deviate from the one considered above for caseB.
However, in the dissipative-convective interval (DCR)
L ¿ h ¿ r ¿ r0, the behavior of the scalar is very
different from that observed in the low-Reynolds-numbe
Batchelor regime whenL ø h. The crucial difference
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stems from the essential non-Gaussianity and interm
tency of the scalar field on the velocity dissipation sca
h, where the solutions in both intervals have to matc
In this case, the scaleh is an integral scale for the DCR
r0 ø r ø h, where a powerful injection of all higher-
order integrals of motions

R
drhnd takes place. The point

is that a2n 2 2 moment defines a pumping for the nex
2nth order moment. Thus, considering a generalizatio
of the Kraichnan model for the caseC (and neglecting
the correlations between the source and convective term
which can slightly renormalize some constants), on
obtains the exact equations for the multipoint correlatio
functionsF2nsr1, . . . , r2nd ; khsr1dhsr2d · · · hsr2ndl,

L̂F2n ­ V 11sr12dF2n22sr3, . . . , r2nd 1 permutations,

(11)
where L̂ ; 2Kabsrijd=a

i =
b
j , V absrd ­ KabsLd 2

Kabsrd, and Ksrd , r22gD at L . r . h, while
Ksrd , r2h2gD at h . r. The operator̂L has the2g

dimensionality (it scales asr2g) in the inertial-convective
range while it is Osr0d in the dissipative-convective
range. As a result, the2nth moment F2n, explicitly
depending on all2nth points, is dominated by the forced
“logarithmic” solution of (11) in the DCR. In the ICR,
however, it is a zero mode of the operatorL̂ which
dominates the solution. Therefore, the2nth moment of
the scalar difference,S2nsrd ­ kdh2n

r l is estimated by
S2nsrd ­ anL2fryr0gS2n22, where an are dimensionless
n-dependent constants. On the another hand, at the sc
h (13), this expression should match the anomalous stru
ture functions (10) from the upper (inertial-convective
interval giving

S2nsrd , hz2n L2n2z2n
lnnfryr0g
lnnfhyr0g

. (12)

Let us proceed now with the second task and estima
the value of the dissipative scale,r0, required for the cal-
culation of the front velocityuT . The point of crucial
importance is a necessity to distinguish between the d
ferent moments of the front fluctuations at the diss
pative scale,dhr0. Usually one estimates the typical
fluctuations as a root-mean-square value of the correspo
ing variable. This is fine in the case of “normal scaling
or if the small-scale intermittency is not too strong (case
A andA0). However, in the casesB andC, intermittency
in the convective intervals is extremely strong: Estimate
for a typical front fluctuation based on various moment
dh

snd
r ø kdhn

r l1yn, are very different. As a result, we get
from (8)–(10) and (12) the followingn-dependent estimate
at the dissipative scaler0:

jdhsnd
r0

j , L

8>><>>:
p

Dyl, A,p
Dyl

p
lnfLyr0g, A0,

fr0yLgznyn, B,
fhyLgznyny

p
lnfhyr0g, C,

(13)

for the casesA, A0,B, andC, respectively. On the other
hand, the value ofjdhr0j is defined by the equilibration of
it-
le
h.
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the convective and “dissipative” terms in (2) giving

jdhsnd
r0

j , uFT , T ,

(
l21 lnfLyr0g, A, A0,

Lyyrms, B, C. (14)

It shows that the linear dimension of the flame brush, c
culated on the dissipative scale, is defined by the turbul
flame speed and the overall time of Lagrangian evoluti
which is the typical time for Lagrangian separation, in
tially equal tor0, to reach the integral scale. In theB, C
regimes the overall time isr0 independent (note that the
time of evolution fromr0 to h is neglected in compar-
ison with one describing the inertial-convective stage
evolution, fromh to L). Which numbern is essential for
defininguF via (14) is yet to be discussed. One should ad
(3) to (13) and (14). All of the relations are collected i
Table I. As was cited before,z2nyf2ng ! 0 and respec-
tively, bn ! 1yf1 2 z1g . 0, atn ! `. Since, intermit-
tency of the scalar is growing downscale from the scale
the pumping, the higher the ratio of the integral scale
the dissipative one (of the turbulent velocity to the chem
ical one), the higher the moment-numbern entering the
actual stationary velocity of the flame (which is definin
the actual width of the front). The highest value ofdh

snd
r0

is reached atn ! `. In other words, the stationary spee
of the front is defined by such optimal and rare (insta
ton) configurations which give the dominant contributio
into the highest moments of the scalar fieldh. The op-
timal configurations define the maximal spreading of th
flame brush and control (mainly) the dissipation and,
nally, the stationary velocity of the brush. The nece
sity for accounting for the highest moments of thedhrd

has a simple Lagrangian explanation. The point of cr
cial importance is a failure of a2n-particle description of
the 2n-order correlation function of the scalar at scale
smaller than the dissipative ones. This fact can be e
ily illustrated by a numerical procedure attempting to d
scribe the initially plane front in terms of the collection
of n Lagrangian particles [26], each moving with veloc
ity u0n 1 vsx, td, wheren is a unit vector in thez di-
rection. The initialst ­ 0d distance between these par
ticles is l0 ø 1yn. Very soon after beginning the simu
lation the sharp cusps started to form, and one has to
more and more particles to preserve continuity of the fro
The development of these very sharp gradients drives
necessary number of particlesn ! ` (any regularization
of the cusps, for example, through a weak dependence
u0 on the local curvature of the front would replace` by
a finite but still very large number). We would like to
reiterate a very important and profound peculiarity of th
situation: Table I, taken at the largestn, corresponds to a
very rare optimal (instanton) configuration, responsible f
the highest moments of the scalar difference. This mea
that to describe the small-scalesr ø r0d dynamics of the
front heighthst; r d, one has to evaluate contributions from
these configurations. We postpone the more accurate
vestigation (which requires some further development
2839
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TABLE I. Summary of all relations;bn ; f1 2 z1 1 znyng21

A A0 B C

uF
L

p
Dl

lnfLlyy0g
L

p
Dl

lnfLlyy0g
yrms

£
y0

yrms

§znbnyn
yrms

h
y0

yrms

izn bnyn
ln21y2

h
n
L

≥
yrms
y0

¥bn
i

r0
y0
l lnfLlyy0g y0

l lnfLlyy0g L
h

y0
yrms

ibn

L
h

y0
yrms

ibn
r

r

i

f

,

,

.

i.

,

the instanton technique of [24] accounting for the enti
dynamics of the front surface) for a future publication.

One of the principal results of this work, given in Ta
ble I at n ! `, is that turbulent front speed strongly
depends on the ratioG ­ r0yh, which is a novel dimen-
sionless parameter of the problem [notice a differen
betweenr0 and the so-called Gibson scale, where th
convection and front propagation velocities are compa
ble [3]; for example, in the regimeC and z1 ­ 1y3, the
Gibson scale isLsu0yyrmsd3 while r0 is Lsu0yyrmsd3y2].
Therefore, in order to compare experimental data w
theoretical predictions, we must first estimateG and de-
termine the front propagation regime. Recent experime
tal studies of a passive front propagating in turbule
media were performed in the flows generated by vibra
ing grids, capillary waves, Taylor-Couette flow, and Hele
Shaw cells. All experiments (for the turbulent regime
yrms ¿ u0) corresponded to the caseC. For example,
in the vibrating grid experiments [10] the values ofurms ø
1 cmysec,L ø 1 10 cm, Re ø 102 103, andu0yyrms ø
1022 1023. (In the case of the Kolmogorov turbulence
one has an estimationh ø 10L Re23y4, whereR is the
Reynolds number and the factorc ø 10 agrees with avail-
able experimental data). For the experimental conditio
of [9], one getsG ø 1023 1024. The expression for the
front velocity, following from Table I, evaluated atr0 cor-
responding ton ! `, is

uF ,
urmsq

2
3 lnfhyLg 1 lnfUg

U!`

!
urmsp
lnfUg

, (15)

where U ; urmsyu0. The right-hand side of (15) (a
similar formula was derived in [7], see also [27], wher
the dynamic renormalization group has been used
evaluation of the turbulent flame speeduF) agrees very
well with experimental data onuF in a variety of turbulent
flows in a wide range of variation of the dimensionles
turbulent intensityU # 20 500. This universality can be
readily understood: In all of the experimental situation
the OslnfhyLgd contribution is not large and can be
neglected in comparison with theOslnfUgd term. In
a typical case,U ø 20 100, the transitionalurms-based
Reynolds number is Rec ø 103 104, which is very high.
This explains the relatively broad applicability of the larg
U asymptotic of (15) and, therefore, motivates a higher R
experiment to test the general answer.
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