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Propagation of a Huygens Front Through Turbulent Medium

M. ChertkoV and V. Yakhot
'Physics Department, Princeton University, Princeton, New Jersey 08544
’Department of Aerospace and Mechanical Engineering, Boston University, Boston, Massachusetts 02215
2and Programm in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544
(Received 25 September 1997

The dynamics of a thin Huygens front propagating through a turbulent medium is considered.
A rigorous asymptotic expression for the effective velocity proportional to the front area is
derived. The small-scale fluctuations of the front position are shown to be strongly intermittent. This
intermittency plays a crucial role in establishing a steady state magnitude of the front velocity. The
results are compared with experimental data. [S0031-9007(98)05738-X]
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The problem of propagation of a thin passive frontat time: = 0 is defined at thec-y plane, it will prop-
(of flame, phase transition, etc.) through turbulent flowagate with a constant speeg and constant are§, =
has attracted much attention since the early 1940s [1,2]onst in thez direction. The role of the random field
when it was realized that velocity fluctuations tend tov is in the generation of a strongly convoluted (“wrin-
generate a strongly convoluted front, thus dramaticalljkled”) front with a substantially increased arga > Sj.
increasing their area. In premixed combustion processé&/henv = 0 the mass of the reactants consumed per unit
the flame front area is related directly to the speed of théime is dm/dr = uypSy = const and does not change in
front propagation. The first expression for the flame frontime. If i, is constant (the laminar flamelet model), then
velocity up « vy, valid in the limit vy,s > ug, Wwhere  dm/dt = ugSt = urSy, whereSy is the area of the wrin-
Ums IS the root-mean-square velocity of the integral eddykled front. This gives a definition of a turbulent or ef-
anduy is the laminar flame speed depending on the detailfective front velocity,ur = uoSr/So. Assuming that a
of chemical kinetics, was proposed by Schelkin [2] (seesteady (bothur and Sy do not depend on time after a
Refs. [3—5] for modern reviews on the theory of turbulentlong evolution) regime is realized, we introduce a new
combustion). The problem is also important for describingvariable,G(¢,r) = urt — z + h(z,r). Then, (1) reads
light propagation in a medium with fluctuating dielectric .
constant, shock wave fronts, etc. [6]. The renormalization *"* * (Vor)h = v; + ”0‘/(arh)2 1= 20:h = ur.
group approach [7], which included some theoretically 2)
unjustified steps, yielded an expression, differing from thdn the moving frame the fluctuations of the front position
Schelkin result by a logarithmic factor, which agreed with’ are assumed to be in a statistically steady state that fixes
experimental data [8—10] over a wide range of parametethe value of the front speedr which, in the turbulent
variation. Still, despite substantial activity, no rigorousregime discussedif > uo, when|d, h|> > o,k > 1),
derivation of the front speed appeared, and the question @ given by
the dependence af: on bothu, and the Reynolds number ur = up{larhl) ~ uoll8h(ro)l)/ro. 3)

Re remained open. It is shown in this paper that recenyare | 55(,)| is the magnitude of the velocity difference

ad\k/)allwces in thiltheory of a pass:ve scalar,fad\fcted ?ﬁf the scaler, where the “chemical” £, dependent)
turbulence, enable one to accurately account for the smally,y a4vective contributions to (2) balance each other.

scale intermittency of a scalar field, which is crucial for theAveraging over the turbulent velocity is assumed in (3).
description of the front fluctuations and derivation of theginca ) ~ s 1o . ro < L, whereL is the scale of the
rms ’ L]

effective velocityu . turbulence source. This means that the scalar, injected

We consider a problem of propagation of a passivey e gcaler, is dissipated at the propagating front
front through turbulent flow. The front can be described,g 5 result of the generation of very sharp cusps of

by the. equation for a passive scalar [3,11] (so-calléd * the radiusry < L. Formation of such cusps has been
equation) observed in numerical simulations [12,13]. Derivation of
9,G + (vd,)G = ugla, G|, (1) the characteristic widthy, magnitude|6h(ro)| of these

] ] cusps, and, as a resuly is the goal of the theory.
where G(z,r) is a scalar field whose level surface, say The presence of the three characteristic scales,

G = 0, represents thg thin front position. The statistics(integra| scale)y (Kolmogorov viscous scale), and,
of turbulent velocityv is presumed to be known. Equa- jefines three possible flame regimes:

tion (1) withv = 0 describes a front propagating with the
constant speed, (laminar front speed) normally to the
local orientation of the front. For example, if the front C: L>»>n>r. (€]

A L=mn>r, B: L>ry>»n,
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Generation of the small-scale scalar fluctuations (direcpresent in a real flow where all macroscopic character-
cascade) [14,15] takes place in both inertial-convectiveistics, including the Lyapunov exponents are slightly

L >r >, and dissipative-convectiveyy > r > ry  modulated on the integral scale. Accounting for this spa-
(which is valid in theA, C cases but noB), intervals. tial variation gives an estimate following directly from (6):
Thus, the problem is naturally divided into two: First, we

need to describe scalar (height of the flame brush) corre- . /

lations in both convective rangds> r > ry. Once the 10hn| ~ LD/ yINL/ro]. ©
solutions in the convective intervals are found, we will
be ready to resolve the second and principal part of th ) .
problem}:, to calculate the value of the F()jissiri))ativ}cé segle 2Veraging, will be deno_ted hereafter,by

and, matching dissipative and convective intervals, find Re_glme B.—_Pure '”ert'?‘"con"?c“"e range. An
turbulent speed of the fronty. Therefore, naturally, Inertial-convective range is realized at the scales
we are starting from the first task, considering all of the” > 1 > 7o .Wh?fe one cannot neglect small-scale ad-
regimes(A—C) one at a time. vection contribution. In the case of a general nonsmooth

Regime A—Batchelor (a pure viscous-convective) velocity, one finds strongly intermittent behavior, man-
regime Casé& corresponds to a well-studied situation ifested in the anomalous scaling of the scalar structure
first discussed by Batchelor [16] and developed further ir{unctlons,

Refs. [17—1_9]. Without loss of ge_neral!ty and following Son(r) = ([h(r;) = h(rp) ") ~ L2 rl%n’ (10)
[19], we will consider the velocity difference to be

g’he modified regimeA, accounting for the large-scale

Gaussian in the case valid at the separations, << L. The fundamental origin
D " of the anomalous scalind;, < n{;, was discovered re-
(5v&(1)8vP (1)) = - [26%Fr2 — r“rﬁ]exp{—;}, cently [20—22]. It was understood that the anomalous ex-

ponents originate from zero modes of the eddy-diffusivity
(5) operator: £», are universal numbers, solely defined by the
wherer is the turnover time of the integral.{size) eddy. velocity statistics and independent on the properties of the
The pair correlation function of the scalar obeys the famougpumping term. The exponents were analytically calcu-
logarithmic law in the convective interval of scalds>  lated for the case of the velocity field, rapidly varying in
r > ro[17-19], time, introduced by Kraichnan [23] iYd, 2 — &, and{,
— 2 expansions [20—22], respectively. An instanton approach
<h1h2_> bL In[L/m]_//\’ © [24] yields yet another large (n > d) asymptotic for
where DL? describes the fluctuation of the “source” Oon — Lo, d) Wwhenn — «. The constant(¢y, d) was
function v, while A stands for the Lyapunov exponent gypicitly calculated. The saturation of exponeitswas
corresponding to the rate of Lagrangian stretchingpredicted also in [25]. The instanton consideration, ap-
Correlation between the source and convective termsjiaq to a general passive scalar problem, always results in
in (2) does not contribute to (6). Accounting for theseine collapse of exponents, — . < o, with the asymp-
correlations slightly modifies the higher-order momentsyiic values.. to be a complicated functional of the veloc-
generating subleading contributions and a mere renormaky field statistics. It can be easily understood: Theh

ization of bare coefficients. The Lyapunov exponant moment of the scalar can be represented as a path integral
as a function ofr, D was found for the two-dimensional qoyer 2, fluid particles. The dominant contribution into

version of the model (5) in [19]. Asymptotics of the large e high @ath) order structure function originates from
and smallr Were.de_scrlbed explicitly in [19]. Generally, the most probabl@n-particle trajectory. In the incom-
the problem of findingd was reduced in [19] to a well- ressible world it is impossible to avoid a divergence of
defined auxiliary quantum mechanics problem which wagyaticles in at least one of the directions and it has been
easy to solve numerically. An interpolation formula for shown in [24] that a contribution to the path integral from
A, fitting well all of the known asymptotical formulas is 5 single diverging trajectory is sufficient to cause satura-

— | Iy tion of the exponentg),. This effect has a very strong
A D/7 tanhvDr]. 7
/7 tanfivD7] Q) and important influence on the parametric dependence of

This formula, valid in the space of arbitrary dimensionality an effective front speed; calculated below.
d > 2, holds up toO (d) corrections. The statistics of the  Regime G—Consecutive inertial-convective and
scalar fluctuations in the convective interval are shown t@issipative-convective ranges. The description of the
be Gaussian [19]. Therefore, the typical fluctuation of thescalar correlations in the inertial-convective regime (ICR)
heighth at ro, estimated by the second moment (6), is  does not deviate from the one considered above for Base
[ However, in the dissipative-convective interval (DCR),

|8, ~ LyD/A. 8) L > n > r > ry, the behavior of the scalar is very
The expression (8) is derived without any spatial averagdifferent from that observed in the low-Reynolds-number
ing over the large-scale-L) structures, which are always Batchelor regime whe. = 7. The crucial difference
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stems from the essential non-Gaussianity and intermitthe convective and “dissipative” terms in (2) giving
tency of the scalar field on the velocity dissipation scale A UIN[L/ro], AL A/
n, where the solutions in both intervals have to match. |6h,(,’0”| ~upT, T ~ L/v 0 B’ C’
In this case, the scalg is an integral scale for the DCR ms T
ro < r < m, where a powerful injection of all higher- |t shows that the linear dimension of the flame brush, cal-
order integrals of motiof drh") takes place. The point culated on the dissipative scale, is defined by the turbulent
is that a2» — 2 moment defines a pumping for the next flame speed and the overall time of Lagrangian evolution
2nth order moment. Thus, considering a generalizationwhich is the typical time for Lagrangian separation, ini-
of the Kraichnan model for the case (and neglecting tially equal tor,, to reach the integral scale. In tieC
the correlations between the source and convective termggimes the overall time is, independent (note that the
which can slightly renormalize some constants), oneime of evolution fromr to 7 is neglected in compar-
obtains the exact equations for the multipoint correlatiorison with one describing the inertial-convective stage of
functionsFy,(ry, . .., 12,) = (h(r1)h(ry) - - h(r,)), evolution, fromy to L). Which numbenm is essential for
LFy, = VY (r12)Fan_(rs,...,12,) + permutations definingur via (14) is yet to be discussed. One should add
(11) (3) to (13) and (14). All of the relations are collected in
here = ~30in TV, vesi) = gosq) — Telel, As as ot bolorg2n] 0 a respec
K*P(r), and K(r) ~ r>" YD at L >r > n, while Y P  S1l = M, ' ’
2 - tency of the scalar is growing downscale from the scale of
K(r) ~ r*n~YD atn > r. The operatol. has the—vy ; ; g )
. . L o o k the pumping, the higher the ratio of the integral scale to
dimensionality (it scales as ”) in the inertial-convective R .
S\ 0N : o . the dissipative one (of the turbulent velocity to the chem-
range while it is O(rY) in the dissipative-convective . X .
L ical one), the higher the moment-numbermentering the
range. As a result, th@nth moment F,,, explicitly

depending on al2nth points, is dominated by the forced actual stationary velocity of the flame (which is de(fi?ing
“logarithmic” solution of (11) in the DCR. In the ICR, the actual width of the front). The highest value&ir,
however, it is a zero mode of the operathr which is reached at — . In other words, the stationary speed
dominates the solution. Therefore, theth moment of Of the front is defined by such optimal and rare (instan-
the scalar differenceSs,(r) = (8h2") is estimated by ton) configurations which give the dominant contribution
Sou(r) = a,L[r/ro]San—2, Where a’n are dimensionless iNnto the highest moments of the scalar fiéld The op-

n-dependent constants. On the another hand, at the scdlmal configurations define the maximal spreading of the
7 (13), this expression should match the anomalous strudlame brush and control (mainly) the dissipation and, fi-

ture functions (10) from the upper (inertial-convective) Nally, the stationary velocity of the brush. The neces-
interval giving sity for accounting for the highest moments of thé,,

has a simple Lagrangian explanation. The point of cru-
i . cial importance is a failure of an-particle description of
n"[n/rol the 2n-order correlation function of the scalar at scales

Let us proceed now with the second task and estimatémaller than the dissipative ones. This fact can be eas-
the value of the dissipative scale, required for the cal- ily illustrated by a numerical procedure attempting to de-
culation of the front velocityu;. The point of crucial scribe the initially plane front in terms of the collection
importance is a necessity to distinguish between the difof n Lagrangian particles [26], each moving with veloc-
ferent moments of the front fluctuations at the dissi-ity uon + v(x,t), wheren is a unit vector in the; di-
pative scale,8h,,. Usually one estimates the typical rection. The initial( = 0) distance between these par-
fluctuations as a root-mean-square value of the corresponticles isly = 1/n. Very soon after beginning the simu-
ing variable. This is fine in the case of “normal scaling” lation the sharp cusps started to form, and one has to add
or if the small-scale intermittency is not too strong (casegnore and more particles to preserve continuity of the front.
A andA’). However, in the caseB andC, intermittency ~ The development of these very sharp gradients drives the
in the convective intervals is extremely strong: Estimategiecessary number of particlas— « (any regularization

for a typical front fluctuation based on various momentsf the cusps, for example, through a weak dependence of

S ~ (8h™)\/", are very different. As a result, we get “0 on the local curvature of the front would replagedy

from (8)—(10) and (12) the following-dependent estimate & _finite but still very large number). We WOl_JId_ like to
at the dissipative scale: reiterate a very important and profound peculiarity of the

situation: Table I, taken at the largestcorresponds to a

(14)

In"
Szn(i’) —~ n{:nLZn—s“zn M (12)

\/—Vl)/i Ne i; very rare optimal (instanton) configuration, responsible for
|5h§;’)| ~L D/ {N/E[L/r‘)]’ ’ (13) the highest moments of the scalar difference. This means
H;)//f]]l /n} REW lé that to describe the small-scdle < ry) dynamics of the
! 0l )

front heighti(z; r ), one has to evaluate contributions from
for the casesi, A’,B, and C, respectively. On the other these configurations. We postpone the more accurate in-
hand, the value ofs4,,| is defined by the equilibration of vestigation (which requires some further development of
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TABLE I. Summary of all relationsg, =[1 — & + £,/n]™!

A Al B C
“r nL[LJAD/?Jo] nIE;/)tD/?)o] Vo [ ] Vims [ o ]Z" Pt -1 [ %(“U—O )B" ]
ro  In[LA/ve] S IN[LA/vo] L[?—“]Bn L[U—O}B”
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