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Instanton for random advection

Michael Chertko?
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
(Received 27 June 1996

A path integral over trajectories ofri2fluid particles is identified with a 2h order correlation function of
a passive scalar convected thydimensional short-correlated multiscale incompressible random velocity flow.
Strong intermittency of the scalar is described by means of an instanton cakatigde point plus fluctuations
about iy in the path integral abt>d. The anomalous scaling exponent of th&t2 scalar’s structural function
is found analytically[S1063-651X%97)00703-4

PACS numbds): 47.10+q, 47.27—i, 05.40+]

I. INTRODUCTION functional introduced ih14,15. The extremum of the effec-
tive action is given by a coupled field-force configuration

The problem of scaling behavior in Kraichnan’s model (instanton, varying in space and time. The method was ap-
of a white-advected passive scaldf attracts a great deal plied recently to Burgers’s turbulen¢&6,17. Generally, it
of attention[2-7]. In the wide range of scales, called the is very difficult to solve the coupledield-force instanton
convective interval, structural functions of the Lagrangianequations.
tracer ¢, passively advected byd-dimensional short- In the present paper we generalize the idef99ffor the
correlated in time multiscale incompressible flow, possesgase of a nonlinear velocity profilé4>0). £, is calculated
a scaling behavior. The anomalous scaling expon@nt  for n peing the largest number in the problem. The method is
of the nth order structural function{(6;—0,)*")=r,  paseq on a very special feature of the problggh there
has been calculated in the following casé@$:large space gyiqis 5 closed differential equation connectingtt® and
d:lmefnsmnli':lllt)l/lgzdi(Z—.gz)n, for n=2 in [4], and ge/nde.r- (2n—2)th simultaneous correlation functions of the scalar.
Zi)y al(r)nro:t s?ngg\tlﬁ scr:]allgr 1Ei6e]l,d—§22§n_<;in(dn>_21)ﬁ()f:1£2; ir'1 The 2nth correlation function is expressed via the convolu-

2= . tion of the resolvent of the eddy-diffusivity operator with a

[5] and generally for n(2—¢,)<d, d>n in [7], . .
: source function constructed from then22)th correlation
— - - +2). . . .
ban—2n(n—1)(2~p)/(d+2). The perturbation methods unction. To prepare a path integral for the instanton calcu-

yield the scaling exponents in the limits where the respectiv% : lici £ 1h iqinal bl f
bare approximations are strictly Gaussian and the anomalotdS: We perform an explicit map of the original problem o

corrections are small. calculation of the &th order correlation function to the prob-
Instanton (steepest-descenformalism after perturbation !€m of calculation of a matrix element in an auxiliary
expansion is the second quantitative method that could béh-particle quantum mechanics. The resolvent of the eddy-
applied to a general statistical problem. The method workéliffusivity operator is expressed in the method via the path
when a large parameter causes some very special rare cdpiegral over trajectories ofr2fluid particles moving from
figuration to have an exponentially large weight. Such a@n initial geometry(at which we are aimed to describe the
large parameter may be a high ordeof correlation function scalar's correlationswith a characteristic scale to a fln_al_
(") of fluctuating fielde. The bare instanton approximation large-scale £-L) geometry. The tensor of eddy diffusivity
is obviously strongly non-Gaussian. The idea was originallyp|ay3 the rple of tensor of inverse mass for the particles from
introduced and successfully applied in field thef@yalmost ~the associated quantum mechanics. The tensor depends ex-
20 years ago, but introduced to the turbulence theory onlplicitly on relative distances between the particles.
very recently. An instanton calculus in a Lagrangian path Itis the large number of particles that makes the auxiliary
integral was used to find an exponential tail of the scalar'§luantum mechanics almost “classical"semiclassical’). A
probability distribution function(reflected intermittent, non- classical d-particle configuration is the desirable rare event
Gaussian behavior of higher momerits the casef,=0 of  that describes both the intermittency ohtd moments of
linear velocity profile[9] (later on it was shown that the limit Scalar differences and intermittency of thiééa moment of the
turns out to be solvable exactig0—17). A general method dissipation fields = x(V6)? [it is proven in[6] that they are
for finding the non-Gaussian tails of probability distribution related to each other, if scale invariance of the structural
functions (PDP for solutions of a stochastic differential function and of the correlation function of the dissipation
equation, such as the convection equation for a passive sceld is valid: (")~ (L/rg)*2n, Ayy=n{,~ {2q; « andrq are
lar, random driven Navier-Stokes, etc., was formulated irthe diffusion coefficient and scale, respectijelgalculation
[13]. The initial idea of the method is to look for a saddle- of the “classical” (saddle-pointcontribution into{e") gives
point configuration in the path integral for the generatingthe scale-invariant answekS,—n¢, atn—. The classical
anomalous behavior shows the highest level of intermittency
possible:gfo'zo. Therewith exist a wide set of classical tra-
*Present address: Department of Physics, Princeton Universitjectories(realizing themselves separately, for different initial
Princeton, NJ 08544, displacements of the points and different forms of the sca-
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lar's source responsible for the classical answer. To extractequations are derived and studied in Sec. Ill. The contribu-
an optimal trajectory(that gives the lowest possible contri- tions of different saddle points te") are calculatedAp-
bution of fluctuationsfrom the set of the classical ones and pendix A and compared with each other in Sec. Ill B. To
thus to get a finite asymptotic faf,,, we must account for improve the saddle-point calculations and to extract among
the fluctuations about the saddle points. the saddle points an optimal one we study Gaussian fluctua-
It is shown that, at 8:£,<1, the optimal trajectory is tions about the saddle points in Sec. IV and Appendixes B
defined as a relative dispersion of two grodgopg of par-  and C. The anomalous exponefit, for the optimal saddle
ticles: there is one distandgeparation between the drops point is calculated there in Sec. IV. In the concluding Sec. V
being stretched while all the other distandsies of the we discuss the results from the points of view of criteria of
drops are being contracted dynamically. They are Gaussiafheir applicability, restrictions imposed, possible generaliza-

fluctuations about the Optlmal trajectory that should giVe thqions’ and Comparison with other results and methods.
true value of{,,. Accounting for the relative longitudinal

(along the “classical” stretching directigrGaussian fluctua- Il. FEORMULATION OF THE PROBLEM
tions of the drops gives the dominant contribution into the _ _ _
n-independent asymptotic fdp,, at n—c. The exponent is The advection of passive scalar is governed by the equa-

finite, it grows linearly withd and decreases monotonically tion
with an increase i,. The finite limit for £,,, at {,— 0 along _ _ _
with the non-anomalous answef,,=0 for the strictly (0t v Vo= kB)O=1, V..=0, 2.0
“logarithmic™ limit £,=0 [9,10] show together a disconti- \yheref(t;r) is the external sourcai(t;r) is the advecting
nuity of {5, at {,=0. There exists a simple physical picture q_gimensional velocity, and is the diffusion coefficient.
that explains the origin of this discontinuity. In the first Casef(t:r) andv(t;r) are independent random functionstaind
of a linear velocity profile, distances between all the fluid, ' hoih Gaussian and correlated in time. The source is
particles are stretched by Iinear diffe_omorphisms: there is NQpatially correlated on a scale of the pumping.e., the pair
way for two groups of partlcles_to diverge from each other g ra|ation function(f (t1;r1) f(ty:r2))= 8(t;—t,) x(r12) as
and to keep the inner group distances contra¢edeven 5 fnction of its argument decays on the sdaléThe value
intach simultaneously. On the contrary, in the case of finiteofX(O): P is the production rate of2. The eddy-diffusivity

{2 (yet ¢, should be smaller than unitythe two-point tra-  gnsor a8, which describes the Gaussian velocity correla-
jectory, with the sizes of the drops of particles being con+;,q

tracted dynamically whereas the distance between the drops
being increased, is allowed. (vt r)vP(t:r,)) = 8(t—ty) [V 8*P— K*B(r—r1,)],
Most non-Gaussian fluctuations about the saddle-point 2.2
configuration can be dropped in comparison with the Gauss- '
ian ones ifn>Pe (Peclet numbey, d (we should only worry KB(r) = [
about the explicit calculation of the non-Gaussian fluctua- (2=y)r?
tions corresponding to a soft rotation mgd&his method is 2.3
not applicable for Pe being of the order @he more so as
being larger thann. However, making use of an overall
observation(concerning the linearity of the problem and the
scalg-mvanarjce feature of different terms entered in the COlsmoothness of the velocity field.
relation functions one can extend the anomalous resghlit Averaging Eq. (2.1) over the statistics ofu(t;r)
not the method used for its derivatjoto the limit Pen>d and f(t;r), one gets the closed equation for the simul-
too. . . L taneous correlation functions of the scaldf; o
The two-point configuration is not relevant a%,<2 —(6(ry) o(r.)) [9]: AR
(repulsion of particles inside of a drop is no longer weak to AL ’

(d+1—1y)8%r2— (2= yrerf],

depends on two parametei®; which defines the level of
turbulence, andy, 0<vy<2, which measures a degree of

make the configuration stable dynamicall@nly trajectories ~LonF1i  m=X1 . s (2.4
with many (~n) distances being diverged should be taken 77 ooy
into account. However, calculation of fluctuations about such X1,... m=Xx12F3 . . T permutations, (2.5
trajectories shows a strong renormalization of the saddle-

N P . n n
point answer: it is a product of-n algebraic termgeach - B o
responsible for fluctuation of a distandbat makes the con- Lo= _E K (ri—rp) Vivi+ "Z A (2.6

tribution of fluctuations competitive witior even larger 7
than the classical value. The resulting contributioq4d) is ~ The dependence of the source functjps(rij~L) onL at
negligible in comparison with the normal scaling term, thatr;; <L is estimated as- L("=17; the function decays alge-
always exists. To conclude, the instanton calculus is not abraically fast at the largest scalgs>L. It is the major in-
appropriate tool in this case. formation abouty,, required for further consideration.

The material in this paper is organized as follows. In Sec. Equation (2.5 for the pair correlation functionn=2)
I, after a detailed and formal definition of the problem we was solved explicithf1]. The pair correlation function in the
introduce path integral representation for thet2order cor-  convective interval,ry<r,,<L, where r; 7=2(2— y)«/
relation function of the passive scalar. We present the pathp(d—1)], gets the form
integral for(e") too. It completes preparation for delivering
an instanton(steepest-descenformalism for calculation of
(e") atn>d in the two forthcoming sections. Saddle-point

2y 7
<0102>_P7(d—1)0(d—f€)' 27
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Thus the pair structural function is shown to have a simple2n-particle quantum mechanics we can rewrite the resolvent
scaling  behavior in the convective interval, in the Hamiltonian form of the standard Feynman-Kac path
{((6,— 6,)%)~Pr?ID, {,= 1y, to provide the constancy of the integral

flux of 2 there. The scaling exponent Bfis — v, the func-

2n
tion y,, does not depend on, deep inside the convective ooy [PODTR _ _
interval so that its exponent is 0, the solution of E2.7) R(Tir.R) p(0)=r; H Dpi(1)Dpi(1)
thus may be presented in the foffg, .+ Z, where we sepa-
rated the so-called “forced” part of the solutiqwith the Xexd —S(p(t);p(H)], (2.10
scaling exponeny) from the zero modéthat is constant in _—
this case It is the forced part that contributes the second :f T 1 @BrB_
order structural function. The separation for “forced” terms S 0 dt 2 PILEL Py =P (213

and zero modes is valid for higher order correlation functions

as well. It has been recognized independently by the authoWhere[fC] is defined as

of [4,5,1 that there are zero modesthat may provide for

an anomalous scaling. A zero mode, possessing the slowest [IC];}B=IC“ﬁ(pi—pj)—2K5“56”. (2.12
down scale decrease among the ones built mp@ints (that

is not reduced to a sum of zero modes each built on a leSetarded regularization of the “mass’[IAC] term) in the

number of points gives the major contribution into the action is considered, that means the following discretization
2nth order structural function of the scalar, for>1 [6].  procedure: t,=ke, e=T/M, k=0,... M, Dpi(t)

Scaling of such a zero mode should grow withio provide — =11M-1dp (t,), pi(to) =T, p(tw) =R, Dp;(t)
the convexity of{,, as a function of (it is an immediate :Hlyl—ldpi(tk)- M — o0,

consequence of the Holder inequality, see, for example,
[19]). There are two Gaussian limits where there is no M-1
anomalous scaling and it is easy to make a classification of S= Z

zero modes of operat(fr there:(a) limit of large space di- k=0
mensionality,d=«; (b) so-called “diffusive” limit of the

smooth scalar fieldy=2" [to be precise it was done even in X[Pia(tk-%—l)_Pia(tk)]}: (213

a more restrictive case, whéd/(2— vy) is finite]. It was a

recent breakthrough in the analytic theory of turbulence\yhere the path integral for the associated quantum mechan-
when the anomalous exponefy, was calculated perturba- jcs could be understood as explaining a rand@rownian
tively in the leading non-Gaussian order in the respectivanotion of 2n particles possessing a very special dependence
small_ parameters: d/in [4,6] and_2— yin [_5’7]' One em- f the tensor of inverse massg] on displacements of all
phasmgs. that both the perturbative techniques do not war e particles. The resolvent represents the probability for the
for s_ufﬂmently large momentsr, when the anomalous €O 5n fluid particles to diffuse from the initial geometry to
rections are O.f the order of the normal scaling exponent, o fina| oneR; for time T. Notice that another r2-particle

ny. To deal with{,, for the largest moments, we shall de- representatio20] was used to analyze the pumping-free

liver nonperturbapve Instanton techmqug. . (decaying turbulenge two-dimensional case of a linear
The basic equatiofR.4) can be rewritten in the following (y=0) anisotropic velocity profile

evolution form [Qne step back from the derivation of Eq. " 4,4 representatiof2.10—(2.13 is useless if we aim to
(2.4) presented 4]} calculate the functional integral explicitly: it would reduce

" 1 one to calculation of the resolvent d@f, which is already
Fi.  om= dTexp{T( _Z IC{]-‘BVi”vaL K>, Ai” stated as a generally unsolved problem. Our aim is modest,
0 2 i we are going to study the higher correlation functions, or
many-particle problemr(>d) in the language of a “quasi-

€
> P (s DIKTP () PP (ts 1) — P (tis 1)

XX1...m classical” approximation for the associated quantum me-
@ chanics. The large parameter should allow us to evaluate the
=f dTJ IT dRR(T;ri . R)x1,. (R path integral from the integrand of E(.10 (or its spatial
0 ! derivatives, see belowin a saddle-pointinstanton manner.
(2.8 F,, is not scale invariant. The integrations owerand

T in Eq. (2.8) give rise to a huge set of zero modes, describ-
Here and everywhere below summation over the repeatei@g not only the ath structural function but all the lowest
particle and dimensional indexes will be assumedones too(for details of the zero-mode ideology spe-7]).
R(T:r;,R)) is the resolvent of the operatd,,, To separate zero mode giving the dominant contribution into
the 2nth structural function, which is subleading in the zoo
of the zero modes, we suggest another oblique way of solv-
(t%‘zzn{f})R(tiri R)= 5(t)H Sri—R). (2.9 ing the problem. The idea is to use an exact scaling relation
i between thenth order moment of the dissipation field
e=«k[V6]? and hth order structural function of the scalar
Considering the differential operator under the exponenthat was proved ir{6] by means of the ultraviolet fusion
from the first line of Eq.(2.8) as a Hamiltonian of a rules discovered ip4]:
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it (61— 602)2"~r12(L/rp)A2n, then (")~ (L/rq)*an, n
(2.14 seﬁ=8—k§1 IN(kPak—2P2k—1)—IN(x2n),  (2.17)

if it is known additionally that ") is scale invariant. Let us
emphasize that the relatiof2.14 between structural func-
tion and respective correlation function efis based cru-
cially on the expected scale invariance of both the objects. At
n, considered to be the largest number in the theory, the scale

over all the allowed trajectorig®ver p;(t),p;(t) for all the
t from O<t<T] in the next section.

IIl. SADDLE-POINT APPROXIMATION

invariance over/L does not need to be valal priori. An instanton is defined by extremum of the effective ac-
We will construct an instanton for the correlator of the tjon (2.17) with respect to fluctuating coordinates(t) and
dissipation field itself, momentap;(t) of all the 2n particles:
n np ” H . " B B a aln(XZn)
(eM~«"lim| | dT[ [ dRR.(T:ri,Ri)x2n(Ri) |, P+ plplKET = 8(T—t) —— o, (3.9
ri—0[ /0 i api'(T)
(2.15
2n N afB_ p'();
p(T)=R; pi —[KLii"py =~ Dip:» a(t), (3.2
RATRY=| 1L Doty Dpit) P
i (0)=Tj . L
? where summations over the particjeindex and repeated
" spatial indexes are supposgdandj* are indices of conju-
><k1:[1 [P2k-1(0)p2k(0)] gated particles from a paisay 1 and 2 or @—1 and );
xex —S(p(t;p(t)]. (216 Bria(py= b
ke (p)=- pa/C (p)

It is easy to check by means of direct Gaussian integrations
that the discretization conditioi2.13 reproduces the correct
gradient structure of the correlation function(the Hamil-
tonian form of the path integral allows it to be easily
checked. A kind of pairing of the space indexes in the —5%pP 4y
p—p integrand of Eq(2.16) is arbitrary (for example, one
could make the integrand symmetric with respect to all per- : . . . .
mutations of all the particles The discrete variant of the instanton equations is
There are two different specifications that we are free to aB B app \_ a _
fix in the problem’s set. It concerns initial and final condi- el KTii"(t) py (k1) + o (t) = pi* (k1) =0, (3.4
tions imposed. The initial condition is defined by the initial 7 nBia B @ ot ) —
r, geometry. The final condition is defined by the source " (e ) ()P (e ) P (T ) =P (tk)_o(’?, 5
function y», . However, scaling exponents do not depend on '
a concrete form of thee function in accordance with the

= ﬁ (d+1- y)pagﬁn_ 5aﬁpﬂ

a B
PP pﬁ). 3.3

general zero-mode ideolog¢—7]. One can use the freedom et p'*—(é) =pf(ty) (3.6)
to make an appropriate choice of the initial geometry and the "opi(e)pix(e) T ’
source function.
It is evident that integration oveR; in Eq. (2.15 cannot wn « 9IN[x2n]
pi(tm)=——% 3.7

be performed in the saddle-point manner, if the source func-
tion is, for example, a uniform constant inside the circle
R<L: All the values ofR satisfied R”<DT (the rough ob- wherek, the temporal index in Eq$3.4) and(3.5), is run-
servation will be improved later on give comparable ning from 1 toM—1;t,=€e=0". Equationg3.6) and(3.7),
weights in the integrand of Eq2.15. However, one can appearing fromdSeq/dp(t1)=0, and dSx/dp{(tm) =0,
force a particular final geometriR~L to be preferable, respectively, explain the rule of parametrization of the
choosing the source function to get a sharp maximum aboutinctions from the right hand sides of Eq8.2) and (3.1).
R~L, whereR is an average size, sy= \/(EiR?)/(Zn). To study the saddle-point trajectories at the fixed initial ge-
Then one can include the variation ovey in the common ometryr; and a fixed form of the source functigp, one
variation procedure adding the termin(y,,) to the action. should solve the following classical equations of motion:
The formal trick is justified by the general expectation to get

api'(ty)

the dominant contribution into the correlation function P+ piﬁpj”lcﬁ”;“zo, (3.8
from a zero mode of operatdr. It is the universal scaling of .
a zero mode that defines univergaidependent on a con- p{=[K1Fpf, 3.9

crete shape of,,) scaling of thes correlation function.
Thus we are going to raise both the-p and source terms in the boundary conditions
from the integrand of Eq(2.16 into the exponent to vary
hereafter the effective action pi(0)=r{, p(T)=R;, (3.10
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wherer{=pi(¢€) is related tor; and the initial momentum Here in Eqs.(3.14—(3.16), considering all the distances to
pi(e—0) via Eq.(3.6); Rj=p;(ty) depends on the final mo- be much larger thamy we dropped diffusion for a while.
mentump;(ty,) via Eq. (3.7). Therefore the problem is re- One accounts for diffusion in a special symmetrical case
duced to resolving Eqg3.8) and (3.9) with the boundary (Appendix A 1) aiming to show that to get the principal de-
condition(3.10 fixed and with the constraint8.6) and(3.7)  pendence of an ultraviolet divergent quantity og it is
imposed afterwards. enough, generally, just to replace all the separations going to
The classical Hamiltonian equations of moti8) and 0 by ry (see alsd4]).
(3.9 possess the standard set of integrals of motion. First of We consider two very symmetrical cases in Appendix A:
all, due to the independence of the Lagrangdifue integrand (1) the uniform expansion of a8, sphere (2 points uni-
part of the actionS) on time, the energythat coincides with  formly distributed on the spherethe m=d; (2) divergence

the Lagrangiahis the conserved quantity of two drops, withn, and 2n—n_ particles merged in the
first and second point&lrop9, respectively. One can sepa-
E—_ } wa_ " 31 rate all the possible trajectories into two different types de-
= 7 ppiPi=const. (311 pendent on howy(n) behaves witn going toc. Most of

the trajectories, we will call them “typical,” correspond to a
Second, due to the invariance of the action with respect to #inear growth ofa(n) with n. To specify, the trajectory is
uniform shift of all the particles, the momentur¥=Xp{*is  “typical” if the volume bounded by a smooth
conserved too. Third, due to the invariance of the action with(d— 1)-dimensional manifold built on ther2points is not
respect to uniform rotation, the angular momentum temporarily increased. Relative divergence of the two-point

geometry(see Appendix A B the same as expansion of the

Mas: - dd=pilel: - dp*2=const,  (3.12 S, geometry withm<d—1, are typical. An example of

“nontypical” trajectory is expansion of th&, sphere(see
which is a @—2)-dimensional antisymmetric tensor Appendixes A1, A2 for an explanation &, geometry.
(e*1>--%d is the d-dimensional absolutely antisymmetric 4(n)/n decreases with going toe for a nontypical trajec-

tensoy, is the last globally conserved quantity. tory.
For a specific kind of source functiog (possessing a
A. Semiclassical analysis for correlation functions sharp maximumchosenR appears to be-L. There are two

Let us consider a particular instanton solution describingdffferem+ intervals over the integral timeT. First,
dynamical dispersion of particles from a geometry with! =P(0 )/2 %overned by Eq.(3.6) is about r at
pij~t’ at the initial moment of time 0, to a final geometry O<T<L” ”W{[Bza(”)]; For the largest values of the inte-
of a common type; with at least one of the distanpgéT) g,ral t|m</92, L™ /[Dg((zrl)])<T, one getsp(0)=1/r and
being of the order oR~L. The major saddle-point contri- "' ~{rL”*/[DTa(n)]}***". By substituting the saddle-
bution into thes correlator is point values, governed by Eq8.14—(3.16), into Eq.(3.13

one gets a divergence in the integral at the largest times. The

o0 o divergence is formal: it should be stabilized by the normal-

fo dT exp(—Se) | (313 jzation factor, accounting for an algebraic decay of the resol-

vent with T. We will see below(in Sec. I\V) that the alge-
braic factor in fact comes into the game via accounting for
fluctuations to cut the temporal integration in Eg.13 at
T~L?/[a(n)D]. Thus the classical action scales linear with
n. Thus for all the values of except some vicinities of the
“diffusive” y=2 and “logarithmic” y=0 limits one gets

(&M~ k"lim
r—0

where 8 is the effective actionSe, (2.17) taken on the
classical trajectorp”. The law of temporal evolution of any
such trajectory is

t

'y/2_r/'y/2~ Ry/Z_’ 3.1

g T (314 (eM~(LIrg)". (3.17
R Equation (3.17) accounts for the principal dependence of
NV (3.19 (e" on the Pelet number only. It is the second interva¥
the largest valugsof T that gives the dominant contribution

| nRY in Eq. (3.17: All the significant dependence an[or onry
S~ (n)TD’ (3.16  after taking the limit on the right-hand side of E8.13] in

the integrand of Eq(3.13 comes from thepé” term via the
where 0" <t<T, anda(n) will be defined in the next para- Mmultiplier r?". Finally, accounting for the dependence wof
graph. The proportionality signs- in Egs. (3.14—(3.16  on the diffusion scale results in the anomalous reQult7).
stand to point out that Eq$3.14—(3.16 are correct up to Note that the saddle-point resyB.17) is generic for all the
constant multipliers, depending on the details of the geomspace dimensiong=2.
etry. Still, there are no extra scale andlependences inthe ~ What is specific about some vicinity ofy=2" is an ex-
explicit version of Eqs(3.149—(3.16. The universalwith ~ pected inapplicability of the saddle-point approximation
respect to the geometry’s variatjorscaling behavior, there: A growth ofSS, with a growth inn is diminished by
p~12", follows from equationgany one of (3.8) and(3.9), decay of the action ag goes to 2. Note that in the naive
by substituting there scalin@ver time ansatz for bothp diffusion limit, D=0 [or in the special limit y=2",
andp fields supported by the energy conservation (8wt1). D/(2— y)=const, see[5]] a balance between different
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terms in Eq.(3.6) differs strongly from the general case: = The anomalous answéB.17) is scale invariant. In the
there ther term can be dropped in comparison with leading “classical” approximation the anomalous scaling is
r-independent ones.’ turns out to be of the order of the extraordinarily large: The normal contribution g, is fully
pumping scaleL, that results in the absence of anomalouscompensated by the anomalous o, —ny at n—oo.
scaling(as it should be: the diffusion case is Gauskiamn However, the result gives no possibility for answering the
infinitesimally small deviation ofy from 2~ in the special Major questions: Is thes correlator scale invariant at
limit of [5] makes the,~ 1/r anomalous solution preferable N—7? And if it is scale invariant, what is the asymptotic of
in comparison with the nonanomalopg~ 1/L one. Thus the {2n at the largesh? Indeed, it is obvious to expect that the
y—2~ limit is indeed very peculiar. The logarithmig=0 small parameter of the theo(;he parameter that allows one
limit is very specific too. What is written above in the gen- 1 trn down non-Gaussian fluctuations on the ground of
eral scheme is valid if (r'/L)"2—(r'/L)?]/y<1 is satis- Gaussian ongss ~1/_\/ﬁ. However, it is not obvious to ex-
fied. However, the inequality ceases to be true at some verect that the expansion of the anomalous exponent about the
tight vicinity of y=0: The second term from the left-hand Saddle-point valuedz,=nvy is a series in Nn. The only

side of Eq.(3.6) could be dropped therthe condition is way to resolve this problem is to account for fluctuations
opposite to' thé one which resulted in §8.17)]. directly, following dependence of the fluctuation factor on

. N . . the Pelet number.

The anomalous answéﬁ.l?} IS generic. t_he scale invarn It was established in the present section that the variety of
ance holds true for the classical trajectories of both typical . . ; .

q woical kinds. It ts for thed dent saddle-point solutiongfor differentr; andy) gives the same
and nontypica’ kinds. 1t accounts for tiredependent pre- ..o dependences.17). It supports the general statement
factor in the integrand of Eq3.13, discriminating between [4,6] that the dominant contribution t¢e™ stems from a
the two kinds of instantons. AR and T considered to be

fixed. ther-independent term af°- gets non dependence in scale-invariant zero mode df,,. However, it follows from
! P {erm @etr 9 pen the same general statement too, that the dominant contribu-
the first case of the typical instantdsee Appendixes A 2,

o ; tion can be lacking for a special kind of source function and
A3 forr] th_e :wo-pomt_twr;s;agtor{/.and Appent?]lx A 1tfor_ thle initial geometry. It is along this pathways that one should
.SmtSpt er'.(;"’.l caseh wi | ). I_i_::]_vgrsfa, € noln ypltca optimize the problem with respect tpand they function, to
instanton((t is a spherical case witn=d, Tor examp ¢ gets find the dominant zero-mode contribution: We must not only
n dependence from the bare acti@16. a(n) goes to zero

0% in thi T lude. th o Ifind a contribution of fluctuations ife") (which should be
asn goes ftox= In this case. 1o conciude, the nontypical g, 4 \yith respect ta in comparison with the saddle-point
instanton 4 ong is suppressed In comparison with the_ typi- solution but show it is maximal with respect to Pe.
cal ones. However, we cannot distinguish between different

typical instantongthe S, instanton withm>d and the two-
point instantoh on the classical level. The suppression of a
nontypical instanton ind dimensions has a clear physical  |et us study in the path integré?.16 Gaussian fluctua-
explanation. It follows from the conservation of the volumetions about an as yet unspecified classical trajectpf&/g(nd
of a fluid element, prescribed by the incompressibility COI’]-pCI are Supposed to be knowThe quadratic with respect to

dition. It is a very rare trajectorfthat means it has a small fjyctuated fieldssp,5p, a correction to the classical action
weigh) that stretches ther? points forming theS; sphere Sglﬁ is

and conserves simultaneously the volume enveloped by a
d—1 surface built on the 2 points. The surface cannot be 1(T wr-aBy ch s « gafs B
smooth in this case, it is very fractal. 5Seff:§f0 dt(Spi*Kii™{p°} 6pf +26p;* Ajj” op;
Note that at K y<2 andd=2 there is not another sym-
metrical instanton of the type discussed above except the ) 1
S, one. The two-point instanton that works pretty well at +8pBP spl'—28popf) — §5Pf(0)gﬁﬁ5pjﬁ(0)
0<y<1 turns out to be unstable at>1: particles being
initially dropped together into a group try to diverge from 1, B s B
each other hereafter. Most probably it is reasonable to study + §5Pi (TCii"opy(T), (4.2)
another symmetrical instanton with all the particles being
elongated into a straight line in this case. Such an instanton . ) . )
could be preferable in comparison with tg one. We do AP =8> K PLp g — Ke P ppt,
not yet consider the straight-line instanton in the present pa- K
per, postponing it for a future study.

IV. ACCOUNTING FOR FLUCTUATIONS

For any solution(already discussed or anothesf the af_ s cl”ivusaBy o ACl_ Sl pvpaBy el o Cl*
auxiliary problems(3.8—(3.10 one can design such an ap- Bi 5”; PR PP P KT TR
propriate initial geometryr; and a particular form of the (4.2
source functiony,, that the trajectory turns out to be a 5
unique solution of the full system of the saddle-point equa- ap_ 9 In(x2n) Gb— _ 5P 55
tions (3.1) and (3.2): Fixing r/ and p;(0) one arrives at a T apfopf - T pf0)p%(0)
unique[due to constraint3.6)] initial geometry. Via explicit i 4.3

dynamics and the second constrait7), one finds an ap-
propriate form of the source function to make the saddlewhere there is no summation over repeajdddices in Eq.
point solution self-consistent. (4.2); the pair of the particles’ indices andi* describe a



2728 MICHAEL CHERTKOV 55

conjugated pair of particlegc®#” and K*#* stand for the V=W (0;5=D/TRMT /1’74, (412
first and second spatial derivatives /6f” [see explicit ex-
pression for the first derivative8.3)]. Performing the Gauss-
ian integrations ovebp,0p one arrives at the following ex-
pression for thee correlator accounting for the Gaussian

A o B
L= Kiv5ve + 2 s VE - STB )

fluctuations: 477 aga
uctuations -, SOV, 413
<8n>~r”—>r?d Lfo dT EXF(—Sglﬁ)Zﬂ}, Zﬂ=<\1f0|\lf-|—>, _ 1 | . DTp'y/Z
(4.9 /Cf;ﬂ=pT,y/c;;B{p°}, AR =—sm AR,
1
(¥ |=<H 8(T) exp[— GEPVEVE |, (4.5 ~., D?T%p%

o\ At T 270 Tt B =——7— Bl (4.14

~ T ~ ~ ~
|WT>:TGXF{f 5Zdt}|5x(’r")), where all the new dimensionless matrix€sA,5 are time

0 (7) independent. If we exclude divergent degrees of freedom

(we should worry about uniform rotation of the classical tra-

, (4.6) jectory, that is a soft mode, separajelgom L', it becomes

a Hamiltonian of a well posed quantum mechanics. It is the
guantum mechanics ¢fGaussian oscillator$=2nd. There

is thus seen to be a gap in the spectrum of the reduced op-
erator. There are two essentidbr present consideration
characteristics of the energy spectrum: the value of the gap

" 1~a a
5X(r)=ex;{— 5T CiPry

- 1
SLitTy=—5 % (KiPL™y Ve V% + ZAﬁ”’Fi“V»?j

~TPBIrY), (4.7) A and the level spacinge between the ground state and the
lowest excited state. Both the energetic characteristics are
[B]=B- ATk 1A. (4.8)  positive functions ofn,d, y. Stretching timer= yIn(L/r")/2

is a big parameter due to Pd.
Here in Eq.(4.4), we use the canonical qguantum mechanical There exist two different situations depending on how
notations for matrix elements. The operator in Eg5) isthe 5 behaves at the largest First, 75¢ is a large parameter if
descendant of the momentum’s term from the integrand obg does not decay asgrows. Then, it is the evolution of the
Eq. (2.16; the diffusivelike state(4.5 is well defined. ground statel ,{s} giving the major contribution to¥',
Texp in Eq.(4.6) stands for an antichronological ordered 1
exponential. Thus we came full circle at this stage of the W=V { VDT R /r' 174}
calculations, returning back to a problem in the operator rep- yAE/2
resentation form[compare_: the time-ordered exponential X <\pgr{$}| Sx(s Rl’7’2~/TD)). (4.15
from Eq. (4.6) with the original operator exponent, say from

the first line of Eq.(2.9)]. It follows from Eq. (4.6) that - - . . .
V¥ can be understood as a solution for the differential equa--rhe multiplier 2 is getting smaller witlr algebraically,

!

R

tion ~ar S 1a
2 ‘J T @, SR 152
- _ —_ -t i - T
(0+ L)V (T) = 8(t—T) Sx(T), 4.9 ¢ i V|def ]|
at an initial moment of timeP(r) =¥ (0;7). AR =CI S 2N
Let us consider fluctuations about a typical saddle-point ~|— —
trajectory with all the distances stretched somehow similarly L rL
(we will specify the concrete form of the considered instan- P\ 1280 Y2=NT 2 yioy 1] 712 )
tons later on Performing rescaling of temporal and spatial ~<_)
variables in Eq(4.9) one simplifies it. In the new dimension- L L” '
less 7,5 variables (4.16
12 14z ~
R™ (tdt vy _ R (410 Where a typical matrix element o0 113 is estimated as

T Jop™ 2 InCplr"), 5 JDTpt 74’ [p%(t=0)]2~r"2, T is considered to be smaller than
L?/D, andl counts the number of the stretched degrees of
wherep(t) is a typically stretched, Eq3.14), classical tra- freedom. The second possibility is realizedsif is getting
jectory, Eq.(4.9) gets the refined form smaller withn going to«. Hence it follows that one gets an
evolution of a mixed wave packet built from some amount of
the lowest eigenstates: The wave function of the ground state
W in Eq. (4.15 must be replaced by the wave function of
the packet. However, the multiplieF" is algebraic again and
O=7<In(R/r"), (4.1 the characteristic size of the packet has the same parametric

(9,+ L) (7;5)= 5( T— %In(R/r’)) Sx(sR*"2TD),
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dependence as before. The parametric estimafidi6) thus It should be stressed once again that the result derived for
remains intact. The number of the stretched degrees of fre®@< y<1 is not a consequence of a specially chosen initial
dom and the value of the gap need to be specified in Eqgeometry and source term—it is generic. For a majority of
(4.16 to describe the anomalous exponent quantitatively. appropriate initial geometries and source functions, there is a
We start the quantitative analysis from discussion of thespecial optimal configuratiofthat still may be difficult to
two-point instanton that is realized at-1y>0 only. Itis an  find) of values and orientations of the initial momenta, mak-

example of an instanton of the first type with baih and  jhg one distance diverge but all the rest converge dynami-
Ag being of the order of unitywith respect ton). The dy- ¢4y,

namics of the two-point instanton is characterized by the aq it is shown in Sec. Ill A and Appendix A 3, at>1
relative d|vergenc_:e of fthﬁ po_ln(dro]E)Shalc:jng with a simul- there exist no alternatives to the common-type stretching of
;nde%Spgr)]gti:(a?%n 'I(?hits emSeI;?‘ISS (ih;r: azg@?ﬁrsgcdilf:‘le'ra\e &l the degrees of freedom: contraction of any distance
types of fluctuation degrees of freedom in this case. First Ogmergmg of any particles in a pointeads to a singularity,

all they are longitudinal fluctuations of the stretched degre(\a'\/hICh is_forbidden. And yet among all the generally

of freedom; second, fluctuations of the poifitghole drops Stretched instantons it is preferable to get ones characterized
in thed—1 directions transversal to the stretched one; andPy a it_retcfhmg with at Ieasrt].or.]e dr']reCt'w'mﬁns"P') kep;t
third, fluctuations of all the rest (- 1)d contracted degrees Strétching-fre¢contractedt This is what we call a “typica

of freedom(intrinsic fluctuations of the dropsOne can cal- instanton. Typical symmetrical instantons explained in Sec.

culate relative fluctuations of the drops and inner fluctuationd!! A @nd Appendix A 3 areS;, spherical instantons with
of the drops themselves independertilyis easy to check m<d. Thus let us apply the conducted above analysis for the

afterwards that nondiagonal terms are negligib®aussian  ¢ase. Then dependence of the potential term from the
integrations account for relative longitudinal fluctuations of2N-Particle quantum mechanics, E@.13, is estimated as

the point forms Bij~ 1/n? for all the values of the particle indgx except for
ones from a small vicinitfon the spheneof i (every mo-
. (Wi a8y p| N2 VDT THETY) mentum is_proportional to &/in the dimensionless vari-

Zgy~ (r/L) F L7 , ables. Fori andj being the nearest neighbors on t8g

(4.17  sphere one getsB];~n”(™" D=2 One can drop all the
terms beside the nearest neighborsyl{m—1)>1. Vice

with A" as calculated in Appendix B 1. One finds that theversa, if y/(m—1)<1 one can replace all the matrix ele-
d—1 transversal fluctuations cannot be considered as Gaussients by~ 1/n? terms. All the kinematic matrix elements
ian ones(attempts to restrict their study by a Gaussian levelK;; are n independentstrictly speaking fori and j being
leads to divergence, see Appendix B Hopefully, one can close to each other the matrix elements are even getting
calculate the transversal non-Gaussian fluctuations explicitlysmaller with n—o than a constant,~n~(2~?/(m=1))
First, accounting for the relative fluctuations of the pointsHence aty/(m—1)<1 the energy characteristics are esti-
(drop9, at the initial ¢=0") and final geometries fixed, is mated assz=~n~1, andA¢ as a constant, respectively. In the
performed by the method described in Appendix C. Secondppposite casey/(m—1)>1 (that is realized only ifm=2,
one can account for the transversal fluctuationRpfand  y>1) one getssg~n?2(M=VI=1 A~ nY[2(M=DI Calcula-
ri explicitly too, calculating a variety of rotating classical tion of the n dependence of thel term does not change
trajectories withT, R, andr’ taken from the rotationless the principal dependence anof the energy characteristics.
trajectory, whereas the angular moment(8rl2 is nonzero There is the extra parametewhich enters the anomalous
[the trajectories are found from the auxiliary classical prob-answer and counts the number of typically stretched
lem, Egs(3.8) and(3.9), but not from the full one, Eq$3.1)  degrees of freedom. For thé, instanton one gets
and (3.2, with a fixed form of the source function corre- |=2(m—1)n. To conclude, contribution of fluctuations
sponding to the rotationless configurafjoAs a result, the about the S, instantons, d—1>m=2, is estimated
trajectories with nonzero angular momentums give the samgs ~ (r/L)[2e* (M-Dn1Y/(2=y)(n2=y2Tp/v)~2M-1)n/(2=7)
value of the classical action in the leading order inThis means the Gaussian correction appears to be of the
(r'/L)?, as for the directly stretched rotationless cé&see  same order ageven larger thanthe saddle-point value
explicit calculation ford=2 in Appendix A. In brief, ac-  (3.17), rendering theS,, saddle points smoothed out by the
counting for the contribution of strongly non-Gaussian transGaussian fluctuations. Particularly, at-1 the contribution
versal fluctuations, results in theindependent multiplier of the S, instanton(saddle point plus Gaussian fluctuatipns
(volume of the angular groupWe discuss fluctuations of the to the(e") correlator is getting smaller with Pe increase. The
drops themselvefthe rest (h—1)d fluctuating degrees of contribution is of no interest since it is negligible in compari-
freedon] in Appendix B 2. The fluctuations are short corre- son with the forced term contributidpossessing the normal
lated, which results im independence of the respective con- scaling that was dropped in the saddle-point approach from
tribution 2§ to 2". However, the contributiofB7) shows an  the very beginning. One recognizes that the saddle-point cal-
essential dependence on bdthand n. Making substitution  culus is not an appropriate tool for calculations of the
of Egs.(4.17), (B7) (2"= 2" 2", and(3.16 into Eq.(4.4,  anomalous exponent at>1.
and performing the integration ovér in the saddle-point It was thus shown in the present section that aty6<1
manner, one finally gets that the characteristic value of théhe contribution of Gaussian fluctuations(td") is algebraic
integral time is getting smallelT~LY/(nD)<L?/D, with  (scale invariant with respect to the R#et number
n—oo, (Pe=L/ry) and it is small with respect ta in comparison
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with the classical valu€3.17). The scaling exponent,, of There existed two different expectations o, at n suf-
the scalar's structural function shows a finite limit at ficiently large. Decoupling of the molecular-diffusion term in
n—o, The exponent is calculated explicitly the equationthat is not closed originallyfor the structural

function of the Zth order gives{,,—+2nd¢{, [2,3]. An-
other prediction is that,, tends to am-independent con-

gac:% stant determined somehow lyand ¢, [21,2,23. Thus the
(2=7) recent work[22] is based on an extension onto the passive
42 scalar case of the method of operator product expansion sug-
n 232+ 16— 16v+ 17724 gested recer_wtly in the context of. Burgers’s .turbuleﬁbﬂ.
2(2— y)[ v+ 4 /4] Our calculations contradict the first prediction and support

the prediction for{,, to approach a constant at—o if
0<¢,<1. It is worth noting that an extended prediction of
[22] gives us even more than an asymptotic constant behav-
ior for the exponent at larga: {,, was predicted to be a
There are relative fluctuations of the points in the two-pointconstant for all the numbers having been larger than some
geometry that are responsible for the answérl8. At  n, We cannot exclude or confirm the extended prediction
y>1 all the saddle-point solutions discussed in Sec. Ill arehere. It will require accounting for corrections to the saddle-
smoothed out by the Gaussian fluctuations: The instantopoint solution of the next non-Gaussian order explicitly. Let
calculus does not work in this case. us stress that the equivalent problem in the Burgers turbu-
lence has also not yet been solved.

A comparison of the first-quantized formalistiquan-
tum” particles presented in the paper with a second-
It was stated in the Introduction that the idea of thequantized ong"“quantum” fields), that hopefully will be de-

saddle-point calculus is to makethe largest number in the Veloped in accordance with the general sch¢@#, would
problem. However, to establish the criterion of applicability b€ very instructive.

of the saddle-point approximation akOy<<1 explicitly one It was argued phenomenologicall$8,24 and confirmed
should estimate contributions of non-Gaussian fluctuation§uantitatively atd>n by means of direct expansion over
about the instanton and compare them with the already founfinite velocity’s correlation timg25], that the scalar’'s expo-
Gaussian corrections. If following the general schemehents{,, are nonuniversal, they are crucially aware of the
Eqgs.(4.4—(4.14), to keep a nonlineafsay, third order over Velocity’s temporal characteristics. In the present paper we
T term) one arrives at an extra factoryTD/  developed a theory for a peculiarly adoptéaithe analytical
[Rp(t)]”*<Pe&”¥\/n behind the dimensionlesss ® term in  Study case of thes-correlated Gaussian velocity field. Nev-
the nonlinear variant of Eq4.13. The factorialong with the ~ €rtheless, the starting technical idea of the paper to replace
integral timeT) is getting smaller witm— o (the smallness Vi In the operator representation by momentum of itie
makes the saddle point become instant, and the “classicalParticle in the path integral does not require any temporal or
action become, respectively, lajg&he observation is ge- Statistical restrictions on the Eulerian velocity field being im-
neric: all the higher order corrections to the quantum meP0sed. Hence it follows that it would be interesting to gen-

chanics describing the Gaussian fluctuations are small if €ralize the theory of finding,, atn>d for the more realistic
case of finite temporal correlations and generally for arbi-

trary degrees of non-Gaussianity of the velocity field. It re-

pe’ mains to be seen whether the scaling of the largest moments
<1 (5.9) is nonuniversal in the limit. It is hoped that quantitative com-

parison of the future theory with experimental degay, with

measurements of temperature structural functions, up to or-
[here in Eq.(5.1) we do not follow the precisey andd  der 12[26]; for review of experiments sg@7]) will be real
dependencdsThe object from the left-hand side of E&.1) some day.
is the small parameter, making the saddle-point calculations The theory prediction does not contradict simulations for
valid. Particularly, the method worksiif is the largest num- g=2, {,=1/2 reported in3] (there, the velocity field was
ber in the problem{>d,Pe). swept rapidly through the scalar to mimic the short-

However, it is remarkable that the anomalous scalecorrelated feature of Kraichnan’s mogeThe largest tenth

invariant result(4.18 has a wider criterion of applicability moment measured in the simulation givésy~1.6085,
than the method used for its derivation. Indeed, it is the zergyhich is smaller(as it should be due to the convexity in-
mode of the primary operatat that makes the major con- equality than our asymptotic result,~5.1.
tribution to the 2ith order structural function. Choosing the
scale invariance as the key for classification of zero modes,
one finds that onlyn, d, andy (but not Pe) can be entered
into the zero modes. Thus the anomalous regtlt8 is This work is a part of the extensive program on studying
valid even if P& is larger tham, howevern remains much  anomalous scaling in turbulence undertaken together with E.
larger thand. physically. It is important to note that Eq. Balkovsky, G. Falkovich, I. Kolokolov, and V. Lebedev at
(4.18 matches parametrically correctly the perturbative rethe Weizmann Institute. We greatly benefited from very
sults of the 1d [4,6] expansion ah, being of the order ofl. helpful numerous discussions with them. Useful remarks of

at O<y<1. (4.18

V. CONCLUSION

n
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Pli=o=— = (A9)
TVa;Dr'<=7+2«
APPENDIX A: SOURCE-FREE SYMMETRICAL
INSTANTONS Calculatinga, in the two-dimensional case &, geom-
o ) etry, one finds thata;=[(4— y)b,/4—(3—y)b.]/(2— )
1. S, sphere geometry ind dimensions and
Consider 2 points equidistantly distributed on the
[-dimensional sphere: for example, in the two-dimensional _ : o
case, d=1=2, we can use the polar representation bl_zk: [2sined/2)]77,
p=(p,o), o=(k—=1)m/n, k=1,...,X, for the points’
displacements. Let us consider the following set(ip:the 24T [(3= )12]
angular momentuni3.12) will be equal to zero{2) the ini- B1lnos ; (A10)
tial (t=0") spherical geometry will be preserved dynami- I(4=92]
cally. Then, all the vector objects defined for some particle
i, like p; or p;, are parallel tgp, . The system of equations b2=2 [2siN ¢ /2)]4 7
(3.9) and (3.9 is reduced to X ’
p—a,Dp?p'~7=0, (A1) ” 25T [(5- )/2] (ALL
. . 2= (6= /2]
p+a,;Dpp° "+ 2kp=0, (A2)
As n goes tox (and y being not too closed to 2 a; goes
B 1 a BE DB to zero an”” % If to replaceb, , in the definition ofa; by
Q=" Dplfy”i n; : e (= py) their asymptotic valuesA10) and (A11), a remarkable can-

cellation, that gets rid of the linear ovarterm in a,, takes
B 12 ) 27—y place. The cancellation occurs as a direct consequence of the
=32 [2sin(¢w/2)] incompressibility of the flowm(the divergenceless of thiE
matrix). Thus the major contribution inta, is estimated by
X[(2d—y)sirP(¢/2)—d—1+y]>0, (A3) the first term of the series over,

1, 28, aygln_o—n”Z7VED) (A12)
=" gz > nJﬁIC“B(pi—Pj)ZE. (A4)
. where it is calculated that the angular size of the elementary
Thus we arrive at the simple equation with the following C€!l. Which appeared after sectioning of tBg sphere into

boundary conditions imposed: n parts, is proportional ter/n*@~1)_ ConsideringS, geom-
etry in higher dimensiond>2, and generallys; geometry in
d b a,Dpl™7p? d>1, one finds a linear growth af; asn goes tow.
— = = =0, (A5)
2—y 2—y 2 '
dt|a;Dp "+ 2k| (a1Dp° "+2k) 2. S, geometry: The general two-dimensional case
p(0)=r', p(T)=R. (AB) Let us fix the initial and final vectors that define the sym-
metric geometnfsay,p;(0) andp,(T)] to be nonparallel to
Solution of Eq.(A5) fixed by the conditiongA6) is each other. The situation starts to be more complicated, if

one is going to solve the same instanton equat®d), as
p(1) dx t (R dx new parameters describing rotation of the vector come into
J —_—= —f ——————, (A7) the game. We consider here the two-dimensional case, which
' Nay DX 7+2x T a,Dx?" 7+ 2« is the simplest ondrotation is Abelian in this cageIn
_ ) ) d=2 the vectorsp, and p; can be parametrized as
in accordance with the energy conservation (@.1) [to g€t pep exdi(et+@)] pi—p exdi(y+o+e)], where sca-
the answe(A7) one could replace one of the basic equationg,,¢ p(t), p(t) and angleso(t), ¥(t) are time dependent.

(A1) and (A2) by the conservation law3.11]. On the o r equations describing the dynamical behavior are
present instanton solutiof7) the action(2.11) gets the

form . —4 |co
p+Dp°p" 7| [3— cog(#)]by+ %bz}%‘%o,
2
n R dx (A13)
SHT;r' \R) == f— . A8
( >2T( m) "8 s e
. —vy [sin(¢
1-vy _ N - =
The momentum of th&=0 particle at zero moment of time ¥+ ¢+ Dppt ™| [y cos(y) ~ 1]by + 4 bz} 2 0.

is (A14)
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. Dpp?” vy—4 the conservation laws of energ$.11) and the angular mo-
P="3-, (3= 7)by+ —,—b,|cod ) —2xp cody), mentum(3.12) (that is pseudoscalar in this cas€he system
(A15) of equations(A13)—(A16) can be analyzed in full glory.
Nevertheless, starting from the point one drops the diffusion
. Dppt™” y—4 _ p term responsible for the ultraviolet regularization only. Then
¢=—5_, | Prt —ba|sin ¢)—2K;SIH(¢), in the diffusion-free case, the system of equatioA$3)—

(A16) (A16) being rewritten in terms of the auxiliaryy variables,

(x,y)=p"(cog yel(2\n)],si v¢/(2\(n)]), describes a
whereb, andb, were introduced in EqA10) and(A11).  uniform motion of a particle with constant speed in thg
The equations of motiofA13)—(A16) are compatible with  plane:

t
x(t)=r""2+ ={cof ye, [(2Vn)]VRY— 2R ' "2coq yo, [(2\7)]+r' 7= 1"}, (A7)

t
y(O)=Fsinye, 12\ ) INRY=2R"?r ' "2cog yo, 1(2\7)]+1'7, (A18)

where

_ [(4=)bald—by]
T [(4=y)by/a— (3= y)by]’

and the following initial and final conditions fop,¢ dynamical fields are imposedi(0)=r’, p(T)=R and ¢(0)=0,
¢o(T)= ¢, . The solution(A17) and(A18) means, particularly, that there are no equivalent trajectorieg falaken from the
interval | ¢, |<2m+/5/y. Thus, considering the final values @f, and ¢, +27n from the interval to be equivalent, one

observes\/ 7/ y-fold degeneracyall those trajectories from the degenerate set differ in the values of eferapd angular
momentumM).

The actionS on the “classical” trajectory gets the following form:
. 4(2—y)n RY—2r""2R"2cod yo, 1(2\/n)]+1"”
~ Y1(4=7)byl4—(3—y)by]D T '
The momentum of th&=0 particle at zero moment of tinfghe object entered the self-consistency conditi®) and the

preexponent terin has the following dependence on the initial and final conditions impospdt=0)
= poexdie(0)+ ¢+ o],

(A19)

(A20)

2(2—)

= — _ 1y12pyI2 ’ _ptyl2yryl2—-1
pocoidIO) 7[(4_ 'y)b2/4_(3_')’)b1]DT{\/Ry 2r'7eR” COE{’ygo* /(2\/7])]4‘[' ycoq’y(P* /(2\/;)] r }r y
(A21)
Posin( o) = — 227) VRY=2r " Y2RY2c0q ye, 1(2\7) ]+ 1" 7SIy, [(2\n)]r V272
* )
Yl (4= y)byl4— (3~ 7)b DT
(A22)
|
3. Two-point geometry: O<y<1 in a point with a positiorp, (t) or p_(t), respectively. In-

The saddle-point system of equatioi®8) and (3.9 has  deed, there exists a solution of the saddle-point equations
some reduction feature a&0y<1: if we merge a group of (3-8 and (3.9 that preserves the symmetry dynamically.
particles in a point and choose the momefequal for the ~That is specific abouty<1, it is an algebraic decay of
particles pasted togethep be parallel to the vector connect- Kr”*” whenr goes down scales; one can put the particles in
ing the points at the initial moment of time, the problem getsa point without any divergences appearing. The number of
rid of those superfluous degrees of freedom at all the lateglynamical degrees of freedom is reduced fromd4o 2d.
times too—the group can be replaced by one particle. Wé&ne gets
will check the general observation for the two-point case in ) .
the present appendix. pe+n.pfp?KL7e=0, p=p,—p_-, (A23)

Here we consider a geometry formed by two grolps )
beled by+ and—) of particles g, +n_=2n) each merged pl+2kn.pt—n.KsPfpf=0. (A24)
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Coming from p.,p~ variables to collective ones Sp, () 7\ 2=mi2(d-1)]
p=n,p.=—n_p_, p (the full momentum is constantone 50 (00 <—> : (A28)
: p(07) \p
gets the system of equations that does not depend on the
numbers of+ and — particles at all,
. , op(t) p |12
pa_pﬁlcfﬂvap”: 0, (AZS) 5p”(0+) = r_/ 3 (A29)

pY+Akp®+2KpP=0. (A26) o
’ wheredp, | are transversal and longitudin@lith respect to

Notice that the rotationless variant of Eq825) and (A26) the direction of the classical stretchirgjzes of the drops. To

is transformed to Egs(Al) and (A2) and the two- conclude, the ratios of the drops’ sizes to the distances be-
dimensional variant of Eq$A25) and (A26) is transformed tween the drops are getting smaller with time and the two-
to Egs. (A13)—(A16), if one performs a reduction point geometry is indeed preserved dynamically. Note that
a;—2(d—1)/(2—y), andk— 2« and 5— y?/4 there. Thus Ed. (A28) is a classical manifestation of the law of volume
the formulas for the classical actiéA8) and the initial mo- ~ conservation valid aty=0 (the respective law of area con-
mentum(A9) are valid with appropriate changfthe multi- ~ servation allows solving the problem a=2 explicitly
plier (2n) ~* should be accounted for additionally in the ac-[12,18): p(8p,)? * does not depend on time. In other
tion] in the case of the two-point geometry too. One findswords, Eq.(A28) is a statistical descendant of the volume
that the effective classical actid®.17) is n independent in  conservation lawincompressibility conditionvalid for any
this case, if the values df andR are considered to be fixed. particular flow.

To check the dynamical stability of the two-point geom- ~ Considering the dumbbell geometry @t~1, one finds
etry let us consider a “dumbbell” geometi§loated variant that it is destroyed dynamically: The size of the drops and
of the two-point ongwith the characteristic size of the drops Separation between them, in the initially served two-point
of the dumbbell being initiallfatt=0") much smaller than geometry, turns out to be of the same order at the latest
the relative distance between them. The major question tBmes.
ask is; will the dumbbell geometry be preserved dynami-
cally? To answer the question, let us go back to the classical
equation(3.9). Introduce a small excursion of a partighg
from the drop’s center. Then, keeping the leadifoyer
dplp) term in the right-hand side of E¢3.9) one arrives at 1. Relative fluctuations of the points
the following equation forsp:

APPENDIX B: GAUSSIAN FLUCTUATIONS
ABOUT THE TWO-POINT INSTANTON

Consider quantum mechanics, E¢s11)—(4.14), that ap-
pears when accounting for the relative fluctuations of the
drops only. There aral essential distances in the case:

Substituting the already known law of the basic two-pointt="T;;— Tz . Operatorl’ Eq. (4.13, rewritten in terms of

Sp*=pp' [op"~d(sp-inl.  (A27)

stretching, one gets s [related tor via Eq.(4.10], is
|
- d+1-—vy 1 4—vy 2(2—7y) 2(2—y)d
| " saB_hanBluevBi | _ @ . @ a
7= 6 —n“n VSVS+7 ( 5 + ) -1 (n-s)n“|Vg
(2—y)? 1 1 5 1 )
m §+d+Ty s°t+| 2 7/2+C|+Ty (n-s)~|, (B1)

wheren=p%/p®. It is seen clearly from Eq(B1) that the In the long time ¢>1) asymptotic the major contribution
transversal part of the effective potential is not bound from
below. Accounting for nonlinear terms is required to regu-
larize the divergencésee Sec. IV and Appendix C for an
explanation of how to avoid an explicit calculation of the
termg. By this means, to describe the longitudinal fluctua-
tion one should makse parallel ton in Eq. (B1) and so deal a2

\Pg,~ex;{ )

into ¥ stems from the lowest eigenstate[df. The eigen-
function of the ground state is an exponential of the qua-
dratic form

with the reduced operator

5 (B3)

d 4-3y d
_+ —S—
ds 2y “ds

., d=1d*> (d+2—-y)(d-1)1
2—,d2t T 2= s

(3=ye—?,
2y%(d—1)

In the Heisenberg representation the eigenfunction appears
as expQe7) V., where the ground state energy for the eigen-

(B2) value problem gets
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& 2td—y 3 5 T . N1y 0B
A== (2= 3 v 2=3v27 22= (3= ) |. AS= | T0[07*]1*ppfdt. (c2)
(B4)
To fix the gauge quasi-invariance we will use a general
2. Inner fluctuations of the points method[28] that is popularly known in field theory. To in-
tegrate over the soft mode we will put under the functional

K, A, and B responsible for the inner fluctuations of a integration(2.10 the unity

point (disk) are estimated as

Ks~0p*"7, As;~pop*™7, Bs~p®sp~7, (BDH) 1=f DU 5[ (Upy) xUpy1/p2)

where 8p(t) is related top(t) via Egs.(A28) and (A29).
Thus instead of Eq4.10 one has to perform the following
transformation to the dimensionless,s; variables:

xde{ 5[ (Upy)’' xUp,/p71/ 503, (C3

wheren,;=p,/p, and X stands for the antisymmetric vector
product ofd-dimensional vectors. Thus, we use a require-

pdp [ Sp\ 17 RY4F, ment for one of the particledabeled by 1), to not rotate
Y p|op i . .
Ts= x| —|— , si———=——=—=>, (B6) over the origin, as a gauge conditiomithout loss of gener-
2)ep\p JTDoppI "™ i : irecti i
r pp ality one can choose an arbitrary direction, characterized by

the trajectory, to be nonrotatipgFor the sake of simplicity,

to get rid of the temporal dependence of the Hamiltonianjet us consider the two-dimensional version of Eg3),
The resulting quantum mechanics will yield positive spec-

trum with a constant gap. The dependenced pfand 6 on

n are estimated as const and~ 1/n, respectively(the po- _ SPRYITS 2

tential K term has an extra smallnessl/n?, while the num- ! f Do) o (Upy)"xUp.llp1)

ber of elementary excitations is'n). The dimensionless

time of evolution is short~[8p(0™)/p(07)]* "/[1— ] xdef s[(Upy)' X Up,/p3]l 8¢}, (C4)
<1, if y is not too close to 1. These collected observations
result in the following asymptotic for¥ s [analog

of Eq. (4.19]: ¥ 5r— Sx[T(L/r")*~ 2] [we have calculated
Eq. (A29) herd. The respective contribution of the fluctua-
tions is thus scaler( independent,

cosp  Sing

U(t)z(

—sing Ccosp

Direct calculation gives

exp( TG 1PTI2) Jpe) X0 Ay
Zi';~f I1 o |de(§]; ) (Upy)' x0py/p2= @+ (prX py)lpZ. (CH)

_ Thus the determinant from the right-hand side of Eg4)
X SY[T(L/r" )72 ~qg2d, does not depend on the dynamical fipid and we can drop
the determinant. As a next step let us perform the change of
variables(C1) in the original functional integral2.11) [with
the unity (C4) substituted into the integrahdThe Jacobian
of such a transformation is unity. The function from the
We USRght-hand side of Eq(C4), describing the gauge condition,
N the  y,ms out to bep independent. We get finally that the only
factor calculated integration over the s@jauge mode is

g=max{1;L?/(nDT)], (B7)

where, accounting for scale dependence only,
Sx[T(L/r")*=72], as a function of, and it decays o
scaler’t=72LY2~rL7/(nDT).

APPENDIX C: INTEGRATION OVER THE SOFT i
ROTATION MODE f Do ex —AS[¢}], AS= fo e Bpepldt,

The measure of functional integration in E@.10 is (Co)
guasi-invariant with respect to a slight rotation of the fields,

wheree is the antisymmetric X2 tensor. Further, the inte-
p(H)=0"1tpt), p()—=U0 L)1), gration overDe, being performed, reduces E{6) to the
6 function

defU()]=1, U(M=0(0)=1, (CD ([ ppP]"). 7

whereU(t) is a unitary matrix realizing thex d represen- The condition under thé function, which is satisfied on a
tation of SU@). Quasi-invariance means that an extra termsaddle-point solution as describing conservation of the angu-
appears at the transformation of the act{@rill) lar momentum(3.12), is thus valid for fluctuations too.
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