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Instanton for random advection

Michael Chertkov*
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

~Received 27 June 1996!

A path integral over trajectories of 2n fluid particles is identified with a 2nth order correlation function of
a passive scalar convected byd-dimensional short-correlated multiscale incompressible random velocity flow.
Strong intermittency of the scalar is described by means of an instanton calculus~saddle point plus fluctuations
about it! in the path integral atn@d. The anomalous scaling exponent of the 2nth scalar’s structural function
is found analytically.@S1063-651X~97!00703-4#

PACS number~s!: 47.10.1g, 47.27.2i, 05.40.1j
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I. INTRODUCTION

The problem of scaling behavior in Kraichnan’s mod
of a white-advected passive scalar@1# attracts a great dea
of attention @2–7#. In the wide range of scales, called th
convective interval, structural functions of the Lagrangi
tracer u, passively advected byd-dimensional short-
correlated in time multiscale incompressible flow, poss
a scaling behavior. The anomalous scaling exponentz2n
of the 2nth order structural function,̂ (u12u2)

2n&}r z2n,
has been calculated in the following cases:~i! large space
dimensionalityz2d@(22z2)n, for n52 in @4#, and gener-
ally for all allowed n in @6#, z2n→2n(n21)(22z2)/d;
~ii ! almost smooth scalar field 22z2!1, d.2 for n52 in
@5# and generally for n(22z2)!d, d.n in @7#,
z2n→2n(n21)(22z2)/(d12). The perturbation method
yield the scaling exponents in the limits where the respec
bare approximations are strictly Gaussian and the anoma
corrections are small.

Instanton~steepest-descent! formalism after perturbation
expansion is the second quantitative method that could
applied to a general statistical problem. The method wo
when a large parameter causes some very special rare
figuration to have an exponentially large weight. Such
large parameter may be a high ordern of correlation function
^wn& of fluctuating fieldw. The bare instanton approximatio
is obviously strongly non-Gaussian. The idea was origina
introduced and successfully applied in field theory@8# almost
20 years ago, but introduced to the turbulence theory o
very recently. An instanton calculus in a Lagrangian p
integral was used to find an exponential tail of the scala
probability distribution function~reflected intermittent, non
Gaussian behavior of higher moments! in the casez250 of
linear velocity profile@9# ~later on it was shown that the limi
turns out to be solvable exactly@10–12#!. A general method
for finding the non-Gaussian tails of probability distributio
functions ~PDF! for solutions of a stochastic differentia
equation, such as the convection equation for a passive
lar, random driven Navier-Stokes, etc., was formulated
@13#. The initial idea of the method is to look for a saddl
point configuration in the path integral for the generati
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functional introduced in@14,15#. The extremum of the effec
tive action is given by a coupled field-force configuratio
~instanton!, varying in space and time. The method was a
plied recently to Burgers’s turbulence@16,17#. Generally, it
is very difficult to solve the coupled~field-force! instanton
equations.

In the present paper we generalize the idea of@9# for the
case of a nonlinear velocity profile (z2.0). z2n is calculated
for n being the largest number in the problem. The method
based on a very special feature of the problem@9#: there
exists a closed differential equation connecting 2nth and
(2n22)th simultaneous correlation functions of the scal
The 2nth correlation function is expressed via the convo
tion of the resolvent of the eddy-diffusivity operator with
source function constructed from the (2n22)th correlation
function. To prepare a path integral for the instanton cal
lus, we perform an explicit map of the original problem
calculation of the 2nth order correlation function to the prob
lem of calculation of a matrix element in an auxiliar
2n-particle quantum mechanics. The resolvent of the ed
diffusivity operator is expressed in the method via the p
integral over trajectories of 2n fluid particles moving from
an initial geometry~at which we are aimed to describe th
scalar’s correlations! with a characteristic scaler to a final
large-scale (;L) geometry. The tensor of eddy diffusivit
plays the role of tensor of inverse mass for the particles fr
the associated quantum mechanics. The tensor depend
plicitly on relative distances between the particles.

It is the large number of particles that makes the auxilia
quantum mechanics almost ‘‘classical’’~‘‘semiclassical’’!. A
classical 2n-particle configuration is the desirable rare eve
that describes both the intermittency of 2nth moments of
scalar differences and intermittency of thenth moment of the
dissipation field«5k(“u)2 @it is proven in@6# that they are
related to each other, if scale invariance of the structu
function and of the correlation function of the dissipatio
field is valid:^«n&;(L/r d)

D2n, D2n5nz22z2n ; k andr d are
the diffusion coefficient and scale, respectively#. Calculation
of the ‘‘classical’’ ~saddle-point! contribution into^«n& gives
the scale-invariant answer:D2n

cl →nz2 atn→`. The classical
anomalous behavior shows the highest level of intermitte
possible:z`

cl50. Therewith exist a wide set of classical tr
jectories~realizing themselves separately, for different initi
displacements of the points and different forms of the s
ty,
2722 © 1997 The American Physical Society
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55 2723INSTANTON FOR RANDOM ADVECTION
lar’s source! responsible for the classical answer. To extr
an optimal trajectory~that gives the lowest possible contr
bution of fluctuations! from the set of the classical ones an
thus to get a finite asymptotic forz2n , we must account for
the fluctuations about the saddle points.

It is shown that, at 0,z2,1, the optimal trajectory is
defined as a relative dispersion of two groups~drops! of par-
ticles: there is one distance~separation between the drop!
being stretched while all the other distances~sizes of the
drops! are being contracted dynamically. They are Gauss
fluctuations about the optimal trajectory that should give
true value ofz2n . Accounting for the relative longitudina
~along the ‘‘classical’’ stretching direction! Gaussian fluctua-
tions of the drops gives the dominant contribution into t
n-independent asymptotic forz2n at n→`. The exponent is
finite, it grows linearly withd and decreases monotonical
with an increase inz2. The finite limit forz2n at z2→0 along
with the non-anomalous answerz2n50 for the strictly
‘‘logarithmic’’ limit z250 @9,10# show together a disconti
nuity of z2n at z250. There exists a simple physical pictu
that explains the origin of this discontinuity. In the first ca
of a linear velocity profile, distances between all the flu
particles are stretched by linear diffeomorphisms: there is
way for two groups of particles to diverge from each oth
and to keep the inner group distances contracted~or even
intact! simultaneously. On the contrary, in the case of fin
z2 ~yet z2 should be smaller than unity!, the two-point tra-
jectory, with the sizes of the drops of particles being co
tracted dynamically whereas the distance between the d
being increased, is allowed.

Most non-Gaussian fluctuations about the saddle-p
configuration can be dropped in comparison with the Gau
ian ones ifn@Pe~Péclet number!, d ~we should only worry
about the explicit calculation of the non-Gaussian fluct
tions corresponding to a soft rotation mode!. This method is
not applicable for Pe being of the order of~the more so as
being larger than! n. However, making use of an overa
observation~concerning the linearity of the problem and th
scale-invariance feature of different terms entered in the
relation functions! one can extend the anomalous result~but
not the method used for its derivation! to the limit Pe,n@d
too.

The two-point configuration is not relevant at 1,z2,2
~repulsion of particles inside of a drop is no longer weak
make the configuration stable dynamically!. Only trajectories
with many (;n) distances being diverged should be tak
into account. However, calculation of fluctuations about su
trajectories shows a strong renormalization of the sad
point answer: it is a product of;n algebraic terms~each
responsible for fluctuation of a distance! that makes the con
tribution of fluctuations competitive with~or even larger
than! the classical value. The resulting contribution to^«n& is
negligible in comparison with the normal scaling term, th
always exists. To conclude, the instanton calculus is no
appropriate tool in this case.

The material in this paper is organized as follows. In S
II, after a detailed and formal definition of the problem w
introduce path integral representation for the 2nth order cor-
relation function of the passive scalar. We present the p
integral for^«n& too. It completes preparation for deliverin
an instanton~steepest-descent! formalism for calculation of
^«n& at n@d in the two forthcoming sections. Saddle-poi
t
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equations are derived and studied in Sec. III. The contri
tions of different saddle points tô«n& are calculated~Ap-
pendix A! and compared with each other in Sec. III B. T
improve the saddle-point calculations and to extract am
the saddle points an optimal one we study Gaussian fluc
tions about the saddle points in Sec. IV and Appendixe
and C. The anomalous exponentz2n for the optimal saddle
point is calculated there in Sec. IV. In the concluding Sec
we discuss the results from the points of view of criteria
their applicability, restrictions imposed, possible generali
tions, and comparison with other results and methods.

II. FORMULATION OF THE PROBLEM

The advection of passive scalar is governed by the eq
tion

~] t1va“a2kD!u5 f , “ava50, ~2.1!

where f (t;r ) is the external source,v(t;r ) is the advecting
d-dimensional velocity, andk is the diffusion coefficient.
f (t;r ) andv(t;r ) are independent random functions oft and
r , both Gaussian andd correlated in time. The source i
spatially correlated on a scale of the pumpingL, i.e., the pair
correlation function̂ f (t1 ;r1) f (t2 ;r2)&5d(t12t2)x(r 12) as
a function of its argument decays on the scaleL. The value
of x(0)5P is the production rate ofu2. The eddy-diffusivity
tensorKab, which describes the Gaussian velocity corre
tions

^va~ t1 ;r1!v
b~ t2 ;r2!&5d~ t12t2!@V0d

ab2Kab~r12r2!#,

~2.2!

Kab~r !5
D

~22g!r g @~d112g!dabr 22~22g!r ar b#,

~2.3!

depends on two parameters:D, which defines the level of
turbulence, andg, 0,g,2, which measures a degree
non-
smoothness of the velocity field.

Averaging Eq. ~2.1! over the statistics ofu(t;r )
and f (t;r ), one gets the closed equation for the sim
taneous correlation functions of the scalarF1, . . . ,2n
5^u(r1), . . . ,u(rn)& @9#:

2L̂2nF1, . . . ,2n5x1, . . . ,2n , ~2.4!

x1, . . . ,2n5x12F3, . . . ,2n1permutations, ~2.5!

L̂n52(
iÞ j

n

Kab~r i2r j !“i
a
“j

b1k(
i

n

D i . ~2.6!

The dependence of the source functionx2n(r i j;L) on L at
r i j&L is estimated as;L (n21)g; the function decays alge
braically fast at the largest scales,r@L. It is the major in-
formation aboutx2n required for further consideration.

Equation ~2.5! for the pair correlation function (n52)
was solved explicitly@1#. The pair correlation function in the
convective interval,r d!r 12!L, where r d

22g52(22g)k/
@D(d21)#, gets the form

^u1u2&5P
22g

g~d21!D S Lg

d2g
2
r g

d D . ~2.7!
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2724 55MICHAEL CHERTKOV
Thus the pair structural function is shown to have a sim
scaling behavior in the convective interva
^(u12u2)

2&;Prg/D, z25g, to provide the constancy of th
flux of u2 there. The scaling exponent ofL̂ is 2g, the func-
tion x12 does not depend onr 12 deep inside the convectiv
interval so that its exponent is 0, the solution of Eq.~2.7!
thus may be presented in the formF forc1Z, where we sepa-
rated the so-called ‘‘forced’’ part of the solution~with the
scaling exponentg) from the zero mode~that is constant in
this case!. It is the forced part that contributes the seco
order structural function. The separation for ‘‘forced’’ term
and zero modes is valid for higher order correlation functio
as well. It has been recognized independently by the aut
of @4,5,18# that there are zero modesZ that may provide for
an anomalous scaling. A zero mode, possessing the slo
down scale decrease among the ones built on 2n points~that
is not reduced to a sum of zero modes each built on a
number of points!, gives the major contribution into th
2nth order structural function of the scalar, forn.1 @6#.
Scaling of such a zero mode should grow withn to provide
the convexity ofz2n as a function ofn ~it is an immediate
consequence of the Holder inequality, see, for exam
@19#!. There are two Gaussian limits where there is
anomalous scaling and it is easy to make a classificatio
zero modes of operatorL̂ there:~a! limit of large space di-
mensionality,d5`; ~b! so-called ‘‘diffusive’’ limit of the
smooth scalar field,g522 @to be precise it was done even
a more restrictive case, whenD/(22g) is finite#. It was a
recent breakthrough in the analytic theory of turbulen
when the anomalous exponentz2n was calculated perturba
tively in the leading non-Gaussian order in the respec
small parameters: 1/d in @4,6# and 22g in @5,7#. One em-
phasizes that both the perturbative techniques do not w
for sufficiently large moments 2n, when the anomalous cor
rections are of the order of the normal scaling expon
ng. To deal withz2n for the largest moments, we shall d
liver a nonperturbative instanton technique.

The basic equation~2.4! can be rewritten in the following
evolution form @one step back from the derivation of E
~2.4! presented in@4##:

F1, . . . ,2n5E
0

`

dTexpFTS 2
1

2
Ki j

ab
“i

a
“j

b1k(
i

D i D G
3x1, . . . ,2n

5E
0

`

dTE )
i
dRiR~T;r i ,Ri !x1, . . . ,2n~Ri !.

~2.8!

Here and everywhere below summation over the repe
particle and dimensional indexes will be assum
R(T;r i ,Ri) is the resolvent of the operatorL̂2n ,

~] t2L̂2n$r%!R~ t;r i ,Ri !5d~ t !)
i

d~r i2Ri !. ~2.9!

Considering the differential operator under the expon
from the first line of Eq. ~2.8! as a Hamiltonian of a
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2n-particle quantum mechanics we can rewrite the resolv
in the Hamiltonian form of the standard Feynman-Kac p
integral

R~T;r ,R!5E
ri ~0!5r i

ri ~T!5Ri
)
i

2n

Dri~ t !Dpi~ t !

3exp@2S„r~ t !;p~ t !…#, ~2.10!

S5E
0

T

dtH 12 pia@K# i j
abpj

b2pi
aṙ i

aJ , ~2.11!

where@K̂# is defined as

@K# i j
ab5Kab~ri2rj !22kdabd i j . ~2.12!

Retarded regularization of the ‘‘mass’’ (@K̂# term! in the
action is considered, that means the following discretizat
procedure: tk5ke, e5T/M , k50, . . . ,M , Dri(t)
5)k51

M21dri(tk), ri(t0)5r i , ri(tM)5Ri , Dpi(t)
5)k51

M dpi(tk), M→`,

S5 (
k50

M21 F e

2
pi

a~ tk11!@K# i j
ab~ tk!pj

b~ tk11!2pi
a~ tk11!

3@r i
a~ tk11!2r i

a~ tk!#G , ~2.13!

where the path integral for the associated quantum mec
ics could be understood as explaining a random~Brownian!
motion of 2n particles possessing a very special depende
of the tensor of inverse masses@K̂# on displacements of al
the particles. The resolvent represents the probability for
2n fluid particles to diffuse from the initial geometryr i to
the final oneRi for time T. Notice that another 2n-particle
representation@20# was used to analyze the pumping-fre
~decaying turbulence! two-dimensional case of a linea
(g50) anisotropic velocity profile.

The representation~2.10!–~2.13! is useless if we aim to
calculate the functional integral explicitly: it would reduc
one to calculation of the resolvent ofL̂, which is already
stated as a generally unsolved problem. Our aim is mod
we are going to study the higher correlation functions,
many-particle problem (n@d) in the language of a ‘‘quasi-
classical’’ approximation for the associated quantum m
chanics. The large parameter should allow us to evaluate
path integral from the integrand of Eq.~2.10! ~or its spatial
derivatives, see below! in a saddle-point~instanton! manner.

F2n is not scale invariant. The integrations overR and
T in Eq. ~2.8! give rise to a huge set of zero modes, descr
ing not only the 2nth structural function but all the lowes
ones too~for details of the zero-mode ideology see@4–7#!.
To separate zero mode giving the dominant contribution i
the 2nth structural function, which is subleading in the zo
of the zero modes, we suggest another oblique way of s
ing the problem. The idea is to use an exact scaling rela
between thenth order moment of the dissipation fiel
«5k@“u#2 and 2nth order structural function of the scala
that was proved in@6# by means of the ultraviolet fusion
rules discovered in@4#:
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if ^~u12u2!
2n&;r 12

ng~L/r 12!
D2n, then ^«n&;~L/r d!

D2n,
~2.14!

if it is known additionally that̂ «n& is scale invariant. Let us
emphasize that the relation~2.14! between structural func
tion and respective correlation function of« is based cru-
cially on the expected scale invariance of both the objects
n, considered to be the largest number in the theory, the s
invariance overr /L does not need to be valida priori.

We will construct an instanton for the correlator of th
dissipation field itself,

^«n&;kn lim
r i→0

F E
0

`

dTE )
i
dRiR«~T;r i ,Ri !x2n~Ri !G ,

~2.15!

R«$T;r i ,Ri%5E
ri ~0!5r i

ri ~T!5Ri
)
i

2n

Dri~ t !Dpi~ t !

3)
k51

n

@p2k21~0!p2k~0!#

3exp@2S„r~ t !;p~ t !…#. ~2.16!

It is easy to check by means of direct Gaussian integrat
that the discretization condition~2.13! reproduces the correc
gradient structure of the« correlation function~the Hamil-
tonian form of the path integral allows it to be eas
checked!. A kind of pairing of the space indexes in th
p2p integrand of Eq.~2.16! is arbitrary~for example, one
could make the integrand symmetric with respect to all p
mutations of all the particles!.

There are two different specifications that we are free
fix in the problem’s set. It concerns initial and final cond
tions imposed. The initial condition is defined by the initi
r i geometry. The final condition is defined by the sour
functionx2n . However, scaling exponents do not depend
a concrete form of thex function in accordance with the
general zero-mode ideology@4–7#. One can use the freedom
to make an appropriate choice of the initial geometry and
source function.

It is evident that integration overRi in Eq. ~2.15! cannot
be performed in the saddle-point manner, if the source fu
tion is, for example, a uniform constant inside the circ
R,L: All the values ofR satisfied,Rg&DT ~the rough ob-
servation will be improved later on!, give comparable
weights in the integrand of Eq.~2.15!. However, one can
force a particular final geometryRi;L to be preferable,
choosing the source function to get a sharp maximum ab
R;L, whereR is an average size, sayR5A(( iRi

2)/(2n).
Then one can include the variation overRi in the common
variation procedure adding the term2 ln(x2n) to the action.
The formal trick is justified by the general expectation to g
the dominant contribution into the« correlation function
from a zero mode of operatorL̂. It is the universal scaling o
a zero mode that defines universal~independent on a con
crete shape ofx2n) scaling of the« correlation function.

Thus we are going to raise both thep2p and source terms
from the integrand of Eq.~2.16! into the exponent to vary
hereafter the effective action
t
le

s

r-

o

e
n

e

c-

ut

t

Seff5S2 (
k51

n

ln~kp2k22p2k21!2 ln~x2n!, ~2.17!

over all the allowed trajectories@over ri(t),pi(t) for all the
t from 0<t<T# in the next section.

III. SADDLE-POINT APPROXIMATION

An instanton is defined by extremum of the effective a
tion ~2.17! with respect to fluctuating coordinatesri(t) and
momentapi(t) of all the 2n particles:

ṗi
a1pi

bpj
hKi j

bh;a5d~T2t !
] ln~x2n!

]r i
a~T!

, ~3.1!

ṙ i
a2@K# i j

abpj
b52

pi*
a

pjpj*
d~ t !, ~3.2!

where summations over the particlej index and repeated
spatial indexes are supposed;j and j * are indices of conju-
gated particles from a pair~say 1 and 2 or 2n21 and 2n);

Kbh;a~r![
]

]raKbh~r!

5
D

rg S ~d112g!radbh2dabrh

2dahrb1g
rarbrh

r2 D . ~3.3!

The discrete variant of the instanton equations is

e@K# i j
ab~ tk!pj

b~ tk11!1r i
a~ tk!2r i

a~ tk11!50, ~3.4!

epi
h~ tk11!Ki j

hb;a~ tk!pj
b~ tk11!1pi

a~ tk11!2pi
a~ tk!50,

~3.5!

r i
a1

pi*
a

~e!

pi~e!pi* ~e!
5r i

a~ t1!, ~3.6!

pi
a~ tM !52

] ln@x2n#

]r i
a~ tM !

, ~3.7!

wherek, the temporal index in Eqs.~3.4! and ~3.5!, is run-
ning from 1 toM21; t15e501. Equations~3.6! and~3.7!,
appearing from]Seff /]pia(t1)50, and ]Seff /]r i

a(tM)50,
respectively, explain the rule of parametrization of thed
functions from the right hand sides of Eqs.~3.2! and ~3.1!.
To study the saddle-point trajectories at the fixed initial g
ometry r i and a fixed form of the source functionx2n one
should solve the following classical equations of motion:

ṗi
a1pi

bpj
hKi j

bh;a50, ~3.8!

ṙ i
a5@K# i j

abpj
b , ~3.9!

in the boundary conditions

ri~0!5r i8 , ri~T!5Ri , ~3.10!
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where r i8[ri(e) is related tor i and the initial momentum
pi(e→0) via Eq.~3.6!; Ri[ri(tM) depends on the final mo
mentumpi(tM) via Eq. ~3.7!. Therefore the problem is re
duced to resolving Eqs.~3.8! and ~3.9! with the boundary
condition~3.10! fixed and with the constraints~3.6! and~3.7!
imposed afterwards.

The classical Hamiltonian equations of motion~3.8! and
~3.9! possess the standard set of integrals of motion. Firs
all, due to the independence of the Lagrangian~the integrand
part of the actionS) on time, the energy~that coincides with
the Lagrangian! is the conserved quantity

E52
1

2
ṙ i

api
a5const. ~3.11!

Second, due to the invariance of the action with respect
uniform shift of all the particles, the momentumPa5( i pi

a is
conserved too. Third, due to the invariance of the action w
respect to uniform rotation, the angular momentum

Ma3 , . . . ,ad5r i
a1ea1 , . . . ,adpi

a25const, ~3.12!

which is a (d22)-dimensional antisymmetric tenso
(ea1 , . . . ,ad is the d-dimensional absolutely antisymmetr
tensor!, is the last globally conserved quantity.

A. Semiclassical analysis for correlation functions

Let us consider a particular instanton solution describ
dynamical dispersion of particles from a geometry w
r i j;r 8 at the initial moment of time 01, to a final geometry
of a common type; with at least one of the distancesr i j (T)
being of the order ofR;L. The major saddle-point contri
bution into the« correlator is

^«n&cl;kn lim
r→0

F E
0

`

dT exp~2Seff
cl !G , ~3.13!

where Seffcl is the effective actionSeff ~2.17! taken on the
classical trajectoryri

cl . The law of temporal evolution of any
such trajectory is

rg/22r 8g/2;Rg/2
t

T
, ~3.14!

p;
Rg/2

nDTr12g/2 , ~3.15!

Scl;
nRg

a~n!TD
, ~3.16!

where 01,t,T, anda(n) will be defined in the next para
graph. The proportionality signs; in Eqs. ~3.14!–~3.16!
stand to point out that Eqs.~3.14!–~3.16! are correct up to
constant multipliers, depending on the details of the geo
etry. Still, there are no extra scale andn dependences in th
explicit version of Eqs.~3.14!–~3.16!. The universal~with
respect to the geometry’s variation! scaling behavior,
r;t2/g, follows from equations~any one of! ~3.8! and~3.9!,
by substituting there scaling~over time! ansatz for bothr
andp fields supported by the energy conservation law~3.11!.
of

a

h

g

-

Here in Eqs.~3.14!–~3.16!, considering all the distances t
be much larger thanr d we dropped diffusion for a while.
One accounts for diffusion in a special symmetrical ca
~Appendix A 1! aiming to show that to get the principal de
pendence of an ultraviolet divergent quantity onr d it is
enough, generally, just to replace all the separations goin
0 by r d ~see also@4#!.

We consider two very symmetrical cases in Appendix
~1! the uniform expansion of anSm sphere (2n points uni-
formly distributed on the sphere!, them<d; ~2! divergence
of two drops, withn1 and 2n2n1 particles merged in the
first and second points~drops!, respectively. One can sepa
rate all the possible trajectories into two different types d
pendent on howa(n) behaves withn going to`. Most of
the trajectories, we will call them ‘‘typical,’’ correspond to
linear growth ofa(n) with n. To specify, the trajectory is
‘‘typical’’ if the volume bounded by a smooth
(d21)-dimensional manifold built on the 2n points is not
temporarily increased. Relative divergence of the two-po
geometry~see Appendix A 3!, the same as expansion of th
Sm geometry withm,d21, are typical. An example o
‘‘nontypical’’ trajectory is expansion of theSd sphere~see
Appendixes A 1, A 2 for an explanation ofSm geometry!.
a(n)/n decreases withn going to` for a nontypical trajec-
tory.

For a specific kind of source functionx ~possessing a
sharp maximum! chosen,R appears to be;L. There are two
different intervals over the integral timeT. First,
r 85r(01) governed by Eq. ~3.6! is about r at
0,T!Lg/2r g/2/@Da(n)#; For the largest values of the inte
gral time, Lg/2r g/2/@Da(n)#!T, one getsp(0)51/r and
r 8;$rL g/2/@DTa(n)#%2/(22g). By substituting the saddle
point values, governed by Eqs.~3.14!–~3.16!, into Eq.~3.13!
one gets a divergence in the integral at the largest times.
divergence is formal: it should be stabilized by the norm
ization factor, accounting for an algebraic decay of the res
vent with T. We will see below~in Sec. IV! that the alge-
braic factor in fact comes into the game via accounting
fluctuations to cut the temporal integration in Eq.~3.13! at
T;Lg/@a(n)D#. Thus the classical action scales linear w
n. Thus for all the values ofg except some vicinities of the
‘‘diffusive’’ g52 and ‘‘logarithmic’’ g50 limits one gets

^«n&cl;~L/r d!
ng. ~3.17!

Equation ~3.17! accounts for the principal dependence
^«n&cl on the Pe´clet number only. It is the second interval~of
the largest values! of T that gives the dominant contributio
in Eq. ~3.17!: All the significant dependence onr @or on r d
after taking the limit on the right-hand side of Eq.~3.13!# in
the integrand of Eq.~3.13! comes from thep0

2n term via the
multiplier r 2n. Finally, accounting for the dependence ofk
on the diffusion scale results in the anomalous result~3.17!.
Note that the saddle-point result~3.17! is generic for all the
space dimensionsd>2.

What is specific about some vicinity ofgd522 is an ex-
pected inapplicability of the saddle-point approximati
there: A growth ofSeffcl with a growth inn is diminished by
decay of the action asg goes to 22. Note that in the naive
diffusion limit, D50 @or in the special limit g522,
D/(22g)5const, see@5# # a balance between differen



e:
th
e
u

e

n-

ve
d

-
ica

,
e
l

al
i-
e

f a
al
e
n
ll

y
e

-
th
a

m
u
in
to

p

p-

a
ua

le

is

he
t
of
e
e
of

-
t the

ns
n

y of

nt

ibu-
nd
ld

nly

t

n

55 2727INSTANTON FOR RANDOM ADVECTION
terms in Eq.~3.6! differs strongly from the general cas
there the r term can be dropped in comparison wi
r -independent ones.r 8 turns out to be of the order of th
pumping scaleL, that results in the absence of anomalo
scaling~as it should be: the diffusion case is Gaussian!. An
infinitesimally small deviation ofg from 22 in the special
limit of @5# makes thep0;1/r anomalous solution preferabl
in comparison with the nonanomalousp0;1/L one. Thus the
g→22 limit is indeed very peculiar. The logarithmicg50
limit is very specific too. What is written above in the ge
eral scheme is valid if@(r 8/L)g/22(r 8/L)g#/g!1 is satis-
fied. However, the inequality ceases to be true at some
tight vicinity of g50: The second term from the left-han
side of Eq.~3.6! could be dropped there@the condition is
opposite to the one which resulted in Eq.~3.17!#.

The anomalous answer~3.17! is generic: the scale invari
ance holds true for the classical trajectories of both typ
and nontypical kinds. It accounts for then-dependent pre-
factor in the integrand of Eq.~3.13!, discriminating between
the two kinds of instantons. AtR and T considered to be
fixed, ther -independent term ofSeffcl gets non dependence in
the first case of the typical instanton~see Appendixes A 2
A 3 for the two-point instanton and Appendix A 1 for th
Sm spherical case withm.d). Vice versa, the nontypica
instanton~it is a spherical case withm5d, for example! gets
n dependence from the bare action~3.16!. a(n) goes to zero
as n goes to` in this case. To conclude, the nontypic
instanton (Sd one! is suppressed in comparison with the typ
cal ones. However, we cannot distinguish between differ
typical instantons~theSm instanton withm.d and the two-
point instanton! on the classical level. The suppression o
nontypical instanton ind dimensions has a clear physic
explanation. It follows from the conservation of the volum
of a fluid element, prescribed by the incompressibility co
dition. It is a very rare trajectory~that means it has a sma
weight! that stretches the 2n points forming theSd sphere
and conserves simultaneously the volume enveloped b
d21 surface built on the 2n points. The surface cannot b
smooth in this case, it is very fractal.

Note that at 1,g,2 andd52 there is not another sym
metrical instanton of the type discussed above except
S2 one. The two-point instanton that works pretty well
0,g,1 turns out to be unstable atg.1: particles being
initially dropped together into a group try to diverge fro
each other hereafter. Most probably it is reasonable to st
another symmetrical instanton with all the particles be
elongated into a straight line in this case. Such an instan
could be preferable in comparison with theS2 one. We do
not yet consider the straight-line instanton in the present
per, postponing it for a future study.

For any solution~already discussed or another! of the
auxiliary problems~3.8!–~3.10! one can design such an a
propriate initial geometryr i and a particular form of the
source functionx2n that the trajectory turns out to be
unique solution of the full system of the saddle-point eq
tions ~3.1! and ~3.2!: Fixing r i8 and pi(0) one arrives at a
unique@due to constraint~3.6!# initial geometry. Via explicit
dynamics and the second constraint~3.7!, one finds an ap-
propriate form of the source function to make the sadd
point solution self-consistent.
s
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The anomalous answer~3.17! is scale invariant. In the
leading ‘‘classical’’ approximation the anomalous scaling
extraordinarily large: The normal contribution toz2n is fully
compensated by the anomalous one,D2n

cl →ng at n→`.
However, the result gives no possibility for answering t
major questions: Is the« correlator scale invariant a
n→`? And if it is scale invariant, what is the asymptotic
z2n at the largestn? Indeed, it is obvious to expect that th
small parameter of the theory~the parameter that allows on
to turn down non-Gaussian fluctuations on the ground
Gaussian ones! is ;1/An. However, it is not obvious to ex
pect that the expansion of the anomalous exponent abou
saddle-point valueD2n

cl 5ng is a series in 1/An. The only
way to resolve this problem is to account for fluctuatio
directly, following dependence of the fluctuation factor o
the Péclet number.

It was established in the present section that the variet
saddle-point solutions~for different r i andx) gives the same
scale dependence~3.17!. It supports the general stateme
@4,6# that the dominant contribution tô«n& stems from a
scale-invariant zero mode ofL̂2n . However, it follows from
the same general statement too, that the dominant contr
tion can be lacking for a special kind of source function a
initial geometry. It is along this pathways that one shou
optimize the problem with respect tor i and thex function, to
find the dominant zero-mode contribution: We must not o
find a contribution of fluctuations in̂«n& ~which should be
small with respect ton in comparison with the saddle-poin
solution! but show it is maximal with respect to Pe.

IV. ACCOUNTING FOR FLUCTUATIONS

Let us study in the path integral~2.16! Gaussian fluctua-
tions about an as yet unspecified classical trajectory (rcl and
pcl are supposed to be known!. The quadratic with respect to
fluctuated fieldsdr,dp, a correction to the classical actio
Seffcl , is

dSeff5
1

2E0
T

dt~dpi
aKi j

ab$rcl%dpj
b12dpi

aAi j
abdr j

b

1dr i
aBi jabdr j

b22dpi
adṙ i

a!2
1

2
dpi

a~0!Gi jabdpj
b~0!

1
1

2
dr i

a~T!Ci jabdr j
b~T!, ~4.1!

Ai j
ab5d i j(

k
Kik

an;b$rcl%pk
cln2Ki j

an;b$rcl%pj
cln ,

Bi jab5d i j(
k

pi
clnKik

nm;ab$rcl%pk
clm2pi

clnKi j
nm;ab$rcl%pj

clm ,

~4.2!

Ci jab52
]2ln~x2n!

]r i
a]r j

b U
rcl~T!

, Gi jab52
dabd j i *

pi
cl~0!pi*

cl
~0!

,

~4.3!

where there is no summation over repeatedj indices in Eq.
~4.2!; the pair of the particles’ indicesi and i * describe a
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2728 55MICHAEL CHERTKOV
conjugated pair of particles;Kr
ab;n andKr

ab;nm stand for the
first and second spatial derivatives ofKr

ab @see explicit ex-
pression for the first derivative~3.3!#. Performing the Gauss
ian integrations overdr,dp one arrives at the following ex
pression for the« correlator accounting for the Gaussia
fluctuations:

^«n&; lim
r→r d

F E
0

`

dT exp~2Seffcl !ZflG , Zfl5^C0uCT&,

~4.4!

^C0u5K)
i

d~ r̃ i !UexpF12 Gi jab
“r i

a
“r j

b G , ~4.5!

uCT&5T̃expF E
0

T

dL̂dtG udx~ r̃ !&,

dx~ r̃ !5expF2
1

2
r̃ i

aCi jab r̃ j
bG , ~4.6!

dL̂$t; r̃ %52
1

2 (
i , j

~Ki j
ab$rcl%“ r̃ i

a
“ r̃ j

b 12Aj i
ba r̃ i

a
“ r̃ j

b

2 r̃ i
a@B# i j

ab r̃ j
b!, ~4.7!

@B̂#5B̂2ÂTK̂21Â . ~4.8!

Here in Eq.~4.4!, we use the canonical quantum mechani
notations for matrix elements. The operator in Eq.~4.5! is the
descendant of the momentum’s term from the integrand
Eq. ~2.16!; the diffusivelike state~4.5! is well defined.
T̃exp in Eq. ~4.6! stands for an antichronological ordere
exponential. Thus we came full circle at this stage of
calculations, returning back to a problem in the operator r
resentation form@compare the time-ordered exponent
from Eq. ~4.6! with the original operator exponent, say fro
the first line of Eq.~2.8!#. It follows from Eq. ~4.6! that
CT can be understood as a solution for the differential eq
tion

~] t1dL̂!C~ t; r̃ !5d~ t2T!dx~ r̃ !, ~4.9!

at an initial moment of timeCT( r̃ )5C(0;r̃ ).
Let us consider fluctuations about a typical saddle-po

trajectory with all the distances stretched somehow simila
~we will specify the concrete form of the considered insta
tons later on!. Performing rescaling of temporal and spat
variables in Eq.~4.9! one simplifies it. In the new dimension
lesst,si variables

t5
Rg/2

T E
0

t dt

rg/25
g

2
ln~r/r 8!, si5

Rg/4r̃ i
ADTr12g/4

, ~4.10!

wherer(t) is a typically stretched, Eq.~3.14!, classical tra-
jectory, Eq.~4.9! gets the refined form

~]t1L̂8!C~t;si !5dS t2
g

2
ln~R/r 8! D dx~siR

12g/2ATD!,

0<t< ln~R/r 8!, ~4.11!
l

f

e
-
l

-

t
y
-
l

CT5C~0;si5AD/T Rg/4 r̃ i /r 8
12g/4!, ~4.12!

L̂85
1

2
$2K̃i j

ab
“si

a
“sj

b12Ãj i
basi

a
“sj

b2si
aB̃i jabsj

b%

2
42g

2g
si

a
“i

a , ~4.13!

K̃i j
ab5

1

r22gKi j
ab$rcl%, Ãj i

ba5
DTrg/2

Rg/2 Aj i
ba ,

B̃i jab5
D2T2r2

Rg @B# i j
ab , ~4.14!

where all the new dimensionless matrixesK̃,Ã,B̃ are time
(t) independent. If we exclude divergent degrees of freed
~we should worry about uniform rotation of the classical tr
jectory, that is a soft mode, separately! from L̂8, it becomes
a Hamiltonian of a well posed quantum mechanics. It is
quantum mechanics ofl Gaussian oscillators,l&2nd. There
is thus seen to be a gap in the spectrum of the reduced
erator. There are two essential~for present consideration!
characteristics of the energy spectrum: the value of the
DE and the level spacingdE between the ground state and th
lowest excited state. Both the energetic characteristics
positive functions ofn,d,g. Stretching timet5g ln(L/r8)/2
is a big parameter due to Pe@d.

There exist two different situations depending on ho
dE behaves at the largestn. First,tdE is a large parameter i
dE does not decay asn grows. Then, it is the evolution of the
ground stateCgr$si% giving the major contribution toCT ,

CT5Cgr$ADT Rg/4r̃ i /r 8
12g/4%

3S r 8R D gDE/2

^Cgr$si%udx~siR
12g/2ATD!&. ~4.15!

The multiplierZfl is getting smaller withr algebraically,

Zc2t
fl 5E )

i
dr̃ i

exp~2 r̃ i
a@ Ĝ21# i j

ab r̃ j
b/2!

Audet@ Ĝ#u
CT

~1!

;F r 8
L
G gDE/2F r 812g/4ATD

rL g/4 G l

;S r
L
D ~ l /21DE!g/~22g!Fn22g/2DT

Lg G2 l /~22g!

,

~4.16!

where a typical matrix element of@ Ĝ21# i j
ab is estimated as

@pcl(t50)#2;r22, T is considered to be smaller tha
Lg/D, and l counts the number of the stretched degrees
freedom. The second possibility is realized ifdE is getting
smaller withn going to`. Hence it follows that one gets a
evolution of a mixed wave packet built from some amount
the lowest eigenstates: The wave function of the ground s
Cgr in Eq. ~4.15! must be replaced by the wave function
the packet. However, the multiplierZfl is algebraic again and
the characteristic size of the packet has the same param
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55 2729INSTANTON FOR RANDOM ADVECTION
dependence as before. The parametric estimation~4.16! thus
remains intact. The number of the stretched degrees of f
dom and the value of the gap need to be specified in
~4.16! to describe the anomalous exponent quantitatively

We start the quantitative analysis from discussion of
two-point instanton that is realized at 1.g.0 only. It is an
example of an instanton of the first type with bothdE and
DE being of the order of unity~with respect ton). The dy-
namics of the two-point instanton is characterized by
relative divergence of the points~drops! along with a simul-
taneous contraction of the sizes of the drops~see Sec. III A
and Appendix A 3!. This means there are three differe
types of fluctuation degrees of freedom in this case. Firs
all they are longitudinal fluctuations of the stretched deg
of freedom; second, fluctuations of the points~whole drops!
in the d21 directions transversal to the stretched one; a
third, fluctuations of all the rest (2n21)d contracted degree
of freedom~intrinsic fluctuations of the drops!. One can cal-
culate relative fluctuations of the drops and inner fluctuati
of the drops themselves independently~it is easy to check
afterwards that nondiagonal terms are negligible!. Gaussian
integrations account for relative longitudinal fluctuations
the point forms

Zstrfl ;~r /L !~1/21DE
st

!g/~22g!Fn22g/2DT

Lg G21/~22g!

,

~4.17!

with DE
st as calculated in Appendix B 1. One finds that t

d21 transversal fluctuations cannot be considered as Ga
ian ones~attempts to restrict their study by a Gaussian le
leads to divergence, see Appendix B 1!. Hopefully, one can
calculate the transversal non-Gaussian fluctuations explic
First, accounting for the relative fluctuations of the poin
~drops!, at the initial (t501) and final geometries fixed, i
performed by the method described in Appendix C. Seco
one can account for the transversal fluctuations ofRi and
r i8 explicitly too, calculating a variety of rotating classic
trajectories withT, R, and r 8 taken from the rotationles
trajectory, whereas the angular momentum~3.12! is nonzero
@the trajectories are found from the auxiliary classical pro
lem, Eqs.~3.8! and~3.9!, but not from the full one, Eqs.~3.1!
and ~3.2!, with a fixed form of the source function corre
sponding to the rotationless configuration#. As a result, the
trajectories with nonzero angular momentums give the sa
value of the classical action in the leading order
(r 8/L)g, as for the directly stretched rotationless case~see
explicit calculation ford52 in Appendix A!. In brief, ac-
counting for the contribution of strongly non-Gaussian tra
versal fluctuations, results in ther -independent multiplier
~volume of the angular group!. We discuss fluctuations of th
drops themselves@the rest (2n21)d fluctuating degrees o
freedom# in Appendix B 2. The fluctuations are short corr
lated, which results inr independence of the respective co
tributionZd

fl to Zfl. However, the contribution~B7! shows an
essential dependence on bothT andn. Making substitution
of Eqs.~4.17!, ~B7! (Zfl5Zstrfl Zd

fl), and~3.16! into Eq. ~4.4!,
and performing the integration overT in the saddle-point
manner, one finally gets that the characteristic value of
integral time is getting smaller,T;Lg/(nD)!Lg/D, with
n→`.
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It should be stressed once again that the result derived
0,g,1 is not a consequence of a specially chosen ini
geometry and source term—it is generic. For a majority
appropriate initial geometries and source functions, there
special optimal configuration~that still may be difficult to
find! of values and orientations of the initial momenta, ma
ing one distance diverge but all the rest converge dyna
cally.

As it is shown in Sec. III A and Appendix A 3, atg.1
there exist no alternatives to the common-type stretching
all the degrees of freedom: contraction of any distan
~merging of any particles in a point! leads to a singularity,
which is forbidden. And yet among all the general
stretched instantons it is preferable to get ones character
by a stretching with at least one direction~dimension! kept
stretching-free~contracted!: This is what we call a ‘‘typical’’
instanton. Typical symmetrical instantons explained in S
III A and Appendix A 3 areSm spherical instantons with
m,d. Thus let us apply the conducted above analysis for
case. Then dependence of the potential term from th
2n-particle quantum mechanics, Eq.~4.13!, is estimated as
B̃i j;1/n2 for all the values of the particle indexj , except for
ones from a small vicinity~on the sphere! of i ~every mo-
mentum is proportional to 1/n in the dimensionless vari
ables!. For i and j being the nearest neighbors on theSm
sphere one gets@B# i j;ng/(m21)22. One can drop all the
terms beside the nearest neighbors ifg/(m21).1. Vice
versa, if g/(m21),1 one can replace all the matrix ele
ments by;1/n2 terms. All the kinematic matrix element
Ki j are n independent~strictly speaking fori and j being
close to each other the matrix elements are even get
smaller with n→` than a constant,;n2(22g)/(m21)).
Hence atg/(m21),1 the energy characteristics are es
mated asdE;n21, andDE as a constant, respectively. In th
opposite caseg/(m21).1 ~that is realized only ifm52,
g.1! one getsdE;ng/[2(m21)]21, DE;ng/[2(m21)]. Calcula-
tion of the n dependence of theA term does not change
the principal dependence onn of the energy characteristics
There is the extra parameterl which enters the anomalou
answer and counts the number of typically stretch
degrees of freedom. For theSm instanton one gets
l52(m21)n. To conclude, contribution of fluctuation
about the Sm instantons, d21.m>2, is estimated
as ;(r /L) @DE1(m21)n#g/(22g)(n22g/2TD/Lg)22(m21)n/(22g).
This means the Gaussian correction appears to be of
same order as~even larger than! the saddle-point value
~3.17!, rendering theSm saddle points smoothed out by th
Gaussian fluctuations. Particularly, atg.1 the contribution
of theSm instanton~saddle point plus Gaussian fluctuation!
to the^en& correlator is getting smaller with Pe increase. T
contribution is of no interest since it is negligible in compa
son with the forced term contribution~possessing the norma
scaling! that was dropped in the saddle-point approach fr
the very beginning. One recognizes that the saddle-point
culus is not an appropriate tool for calculations of t
anomalous exponent atg.1.

It was thus shown in the present section that at 0,g,1
the contribution of Gaussian fluctuations to^«n& is algebraic
~scale invariant! with respect to the Pe´clet number
(Pe5L/r d) and it is small with respect ton in comparison
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2730 55MICHAEL CHERTKOV
with the classical value~3.17!. The scaling exponentz2n of
the scalar’s structural function shows a finite limit
n→`. The exponent is calculated explicitly

z`5
g

2~22g!

1
d122g

2~22g!
@223g/21A16216g117g2/4#

at 0,g,1. ~4.18!

There are relative fluctuations of the points in the two-po
geometry that are responsible for the answer~4.18!. At
g.1 all the saddle-point solutions discussed in Sec. III
smoothed out by the Gaussian fluctuations: The instan
calculus does not work in this case.

V. CONCLUSION

It was stated in the Introduction that the idea of t
saddle-point calculus is to maken the largest number in the
problem. However, to establish the criterion of applicabil
of the saddle-point approximation at 0,g,1 explicitly one
should estimate contributions of non-Gaussian fluctuati
about the instanton and compare them with the already fo
Gaussian corrections. If following the general schem
Eqs.~4.4!–~4.14!, to keep a nonlinear~say, third order over
r̃ term! one arrives at an extra factorATD/
@Rr(t)#g/4<Peg/4/An behind the dimensionless; s̃ 3 term in
the nonlinear variant of Eq.~4.13!. The factor~along with the
integral timeT) is getting smaller withn→` ~the smallness
makes the saddle point become instant, and the ‘‘classic
action become, respectively, large!. The observation is ge
neric: all the higher order corrections to the quantum m
chanics describing the Gaussian fluctuations are small if

Peg/4

An
!1 ~5.1!

@here in Eq.~5.1! we do not follow the preciseg and d
dependences#. The object from the left-hand side of Eq.~5.1!
is the small parameter, making the saddle-point calculati
valid. Particularly, the method works ifn is the largest num-
ber in the problem (n@d,Pe).

However, it is remarkable that the anomalous sca
invariant result~4.18! has a wider criterion of applicability
than the method used for its derivation. Indeed, it is the z
mode of the primary operatorL̂ that makes the major con
tribution to the 2nth order structural function. Choosing th
scale invariance as the key for classification of zero mod
one finds that onlyn, d, andg ~but not Pe) can be entere
into the zero modes. Thus the anomalous result~4.18! is
valid even if Peg/2 is larger thann, however,n remains much
larger thand. physically. It is important to note that Eq
~4.18! matches parametrically correctly the perturbative
sults of the 1/d @4,6# expansion atn, being of the order ofd.
t

e
n

s
nd
,

l’’

-

s

-

o

s,

-

There existed two different expectations forz2n at n suf-
ficiently large. Decoupling of the molecular-diffusion term
the equation~that is not closed originally! for the structural
function of the 2nth order givesz2n→A2ndz2 @2,3#. An-
other prediction is thatz2n tends to ann-independent con-
stant determined somehow byd and z2 @21,2,22#. Thus the
recent work@22# is based on an extension onto the pass
scalar case of the method of operator product expansion
gested recently in the context of Burgers’s turbulence@23#.
Our calculations contradict the first prediction and supp
the prediction forz2n to approach a constant atn→` if
0,z2,1. It is worth noting that an extended prediction
@22# gives us even more than an asymptotic constant beh
ior for the exponent at largen: z2n was predicted to be a
constant for all the numbersn having been larger than som
n0. We cannot exclude or confirm the extended predict
here. It will require accounting for corrections to the sadd
point solution of the next non-Gaussian order explicitly. L
us stress that the equivalent problem in the Burgers tur
lence has also not yet been solved.

A comparison of the first-quantized formalism~‘‘quan-
tum’’ particles! presented in the paper with a secon
quantized one~‘‘quantum’’ fields!, that hopefully will be de-
veloped in accordance with the general scheme@13#, would
be very instructive.

It was argued phenomenologically@18,24# and confirmed
quantitatively atd@n by means of direct expansion ove
finite velocity’s correlation time@25#, that the scalar’s expo
nentsz2n are nonuniversal, they are crucially aware of t
velocity’s temporal characteristics. In the present paper
developed a theory for a peculiarly adopted~to the analytical
study! case of thed-correlated Gaussian velocity field. Nev
ertheless, the starting technical idea of the paper to rep
“i in the operator representation by momentum of thei th
particle in the path integral does not require any tempora
statistical restrictions on the Eulerian velocity field being im
posed. Hence it follows that it would be interesting to ge
eralize the theory of findingz2n atn@d for the more realistic
case of finite temporal correlations and generally for ar
trary degrees of non-Gaussianity of the velocity field. It r
mains to be seen whether the scaling of the largest mom
is nonuniversal in the limit. It is hoped that quantitative com
parison of the future theory with experimental data~say, with
measurements of temperature structural functions, up to
der 12@26#; for review of experiments see@27#! will be real
some day.

The theory prediction does not contradict simulations
d52, z251/2 reported in@3# ~there, the velocity field was
swept rapidly through the scalar to mimic the sho
correlated feature of Kraichnan’s model!. The largest tenth
moment measured in the simulation givesz10'1.6085,
which is smaller~as it should be due to the convexity in
equality! than our asymptotic resultz`'5.1.
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APPENDIX A: SOURCE-FREE SYMMETRICAL
INSTANTONS

1. Sl sphere geometry ind dimensions

Consider 2n points equidistantly distributed on th
l -dimensional sphere: for example, in the two-dimensio
case, d5 l52, we can use the polar representati
rk5(r,wk), wk5(k21)p/n, k51, . . . ,2n, for the points’
displacements. Let us consider the following setup:~1! the
angular momentum~3.12! will be equal to zero;~2! the ini-
tial (t501) spherical geometry will be preserved dynam
cally. Then, all the vector objects defined for some parti
i , like ṙi or pi , are parallel tori . The system of equation
~3.8! and ~3.9! is reduced to

ṗ2a2Dp
2r12g50, ~A1!

ṙ1a1Dpr22g12kp50, ~A2!

a252
1

Dr12g ni
ani

b(
j
nj

hKbh;a~ri2rj !

5
1

2(k @2sin~wk/2!#22g

3@~2d2g!sin2~wk/2!2d211g#.0, ~A3!

a152
1

Dr22g ni
a(

j
nj

bKab~ri2rj !5
2a2
22g

. ~A4!

Thus we arrive at the simple equation with the followin
boundary conditions imposed:

d

dt
F ṙ

a1Dr22g12k
G1

a2Dr12gṙ2

~a1Dr22g12k!2
50, ~A5!

r~0!5r 8, r~T!5R. ~A6!

Solution of Eq.~A5! fixed by the conditions~A6! is

E
r 8

r~ t ! dx

Aa1Dx22g12k
5

t

TEr 8
R dx

Aa1Dx22g12k
, ~A7!

in accordance with the energy conservation law~3.11! @to get
the answer~A7! one could replace one of the basic equatio
~A1! and ~A2! by the conservation law~3.11!#. On the
present instanton solution~A7! the action ~2.11! gets the
form

Scl~T;r 8,R!5
n

2T S E
r 8

R dx

Aa1Dx22g12k
D 2. ~A8!

The momentum of thek50 particle at zero moment of tim
is
-

l

e

s

pu t5052

E
r 8

R

dx~a1Dx
22g12k!21/2

TAa1Dr 822g12k
. ~A9!

Calculatinga1 in the two-dimensional case ofS2 geom-
etry, one finds thata15@(42g)b2/42(32g)b1#/(22g)
and

b15(
k

@2sin~wk/2!#22g,

b1un→`→
242gG@~32g!/2#

G@~42g!/2#
n, ~A10!

b25(
k

@2sin~wk/2!#42g,

b2un→`→
262gG@~52g!/2#

G@~62g!/2#
n. ~A11!

As n goes to` ~andg being not too closed to 22) a1 goes
to zero asng22: If to replaceb1,2 in the definition ofa1 by
their asymptotic values~A10! and ~A11!, a remarkable can-
cellation, that gets rid of the linear overn term in a1, takes
place. The cancellation occurs as a direct consequence o
incompressibility of the flow~the divergenceless of theK
matrix!. Thus the major contribution intoa1 is estimated by
the first term of the series overn,

a1un→`→n2~22g!/~d21!, ~A12!

where it is calculated that the angular size of the elemen
cell, which appeared after sectioning of theSd sphere into
n parts, is proportional top/n1/(d21). ConsideringS2 geom-
etry in higher dimensionsd.2, and generallySl geometry in
d. l , one finds a linear growth ofa1 asn goes to`.

2. S2 geometry: The general two-dimensional case

Let us fix the initial and final vectors that define the sym
metric geometry@say,r1(0) andr1(T)# to be nonparallel to
each other. The situation starts to be more complicated
one is going to solve the same instanton equation~3.1!, as
new parameters describing rotation of the vector come
the game. We consider here the two-dimensional case, w
is the simplest one~rotation is Abelian in this case!. In
d52 the vectors ri and pi can be parametrized a
r i

a→r exp@i(w1wk)#, pi
a→p exp@i(c1w1wk)#, where sca-

lars p(t), r(t) and anglesw(t), c(t) are time dependent
Four equations describing the dynamical behavior are

ṗ1Dp2r12gF @32g cos2~c!#b11
g24

4
b2Gcos~c!

2
50,

~A13!

ċ1ẇ1Dpr12gF @g cos2~c!21#b11
42g

4
b2Gsin~c!

2
50,

~A14!



ion
en

2732 55MICHAEL CHERTKOV
ṙ5
Dpr22g

22g F ~32g!b11
g24

4
b2Gcos~c!22kp cos~c!,

~A15!

ẇ5
Dpr12g

22g Fb11 g24

4
b2Gsin~c!22k

p

r
sin~c!,

~A16!

whereb1 andb2 were introduced in Eqs.~A10! and ~A11!.
The equations of motion~A13!–~A16! are compatible with
t-
et
te
W
i

the conservation laws of energy~3.11! and the angular mo-
mentum~3.12! ~that is pseudoscalar in this case!. The system
of equations~A13!–~A16! can be analyzed in full glory.
Nevertheless, starting from the point one drops the diffus
term responsible for the ultraviolet regularization only. Th
in the diffusion-free case, the system of equations~A13!–
~A16! being rewritten in terms of the auxiliaryx,y variables,
(x,y)5rg/2

„cos@gw/(2Ah)#,sin@gw/(2Ah)#…, describes a
uniform motion of a particle with constant speed in thex-y
plane:
e

x~ t !5r 8g/21
t

T
$cos@gw* /~2

Ah!#ARg22Rg/2r 8g/2cos@gw* /~2
Ah!#1r 8g2r 8g/2%, ~A17!

y~ t !5
t

T
sin@gw* /~2

Ah!#ARg22Rg/2r 8g/2cos@gw* /~2
Ah!#1r 8g, ~A18!

where

h5
@~42g!b2/42b1#

@~42g!b2/42~32g!b1#
, ~A19!

and the following initial and final conditions forr,w dynamical fields are imposed:r(0)5r 8, r(T)5R and w(0)50,
w(T)5w* . The solution~A17! and~A18! means, particularly, that there are no equivalent trajectories forw* taken from the
interval uw* u<2pAh/g. Thus, considering the final values ofw* and w*12pn from the interval to be equivalent, on
observesAh/g-fold degeneracy~all those trajectories from the degenerate set differ in the values of energyE and angular
momentumM ).

The actionS on the ‘‘classical’’ trajectory gets the following form:

Scl5
4~22g!n

g2@~42g!b2/42~32g!b1#D

Rg22r 8g/2Rg/2cos@gw* /~2
Ah!#1r 8g

T
. ~A20!

The momentum of thek50 particle at zero moment of time@the object entered the self-consistency condition~3.6! and the
preexponent term# has the following dependence on the initial and final conditions imposed:pi(t50)
5p0exp@iw(0)1wk1c0#,

p0cos~c0!52
2~22g!

g@~42g!b2/42~32g!b1#DT
$ARg22r 8g/2Rg/2cos@gw* /~2

Ah!#1r 8gcos@gw* /~2
Ah!#2r 8g/2%r 8g/221,

~A21!

p0sin~c0!52
2~22g!

gAh@~42g!b2/42~32g!b1#DT
ARg22r 8g/2Rg/2cos@gw* /~2

Ah!#1r 8gsin@gw* /~2
Ah!#r 8g/221.

~A22!
ions
ly.
f
in

r of
3. Two-point geometry: 0<g<1

The saddle-point system of equations~3.8! and ~3.9! has
some reduction feature at 0,g,1: if we merge a group of
particles in a point and choose the momenta~equal for the
particles pasted together! to be parallel to the vector connec
ing the points at the initial moment of time, the problem g
rid of those superfluous degrees of freedom at all the la
times too—the group can be replaced by one particle.
will check the general observation for the two-point case
the present appendix.

Here we consider a geometry formed by two groups~la-
beled by1 and2) of particles (n11n252n) each merged
s
st
e
n

in a point with a positionr1(t) or r2(t), respectively. In-
deed, there exists a solution of the saddle-point equat
~3.8! and ~3.9! that preserves the symmetry dynamical
That is specific aboutg,1, it is an algebraic decay o
Kr

ab;h whenr goes down scales; one can put the particles
a point without any divergences appearing. The numbe
dynamical degrees of freedom is reduced from 4nd to 2d.
One gets

ṗ6
a 1n7p1

b p2
hKr

bh;a50, r5r12r2 , ~A23!

ṙ6
a 12kn6p6

a 2n7Kr
abp7

b 50. ~A24!
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Coming from r6 ,p6 variables to collective one
p5n1p152n2p2 , r ~the full momentum is constant!, one
gets the system of equations that does not depend on
numbers of1 and2 particles at all,

ṗa2pbKr
bh;aph50, ~A25!

ṙa14kpa12Kr
abpb50. ~A26!

Notice that the rotationless variant of Eqs.~A25! and ~A26!
is transformed to Eqs.~A1! and ~A2! and the two-
dimensional variant of Eqs.~A25! and ~A26! is transformed
to Eqs. ~A13!–~A16!, if one performs a reduction
a1→2(d21)/(22g), andk→2k andh→g2/4 there. Thus
the formulas for the classical action~A8! and the initial mo-
mentum~A9! are valid with appropriate changes@the multi-
plier (2n)21 should be accounted for additionally in the a
tion# in the case of the two-point geometry too. One fin
that the effective classical action~2.17! is n independent in
this case, if the values ofT andR are considered to be fixed

To check the dynamical stability of the two-point geom
etry let us consider a ‘‘dumbbell’’ geometry~floated variant
of the two-point one! with the characteristic size of the drop
of the dumbbell being initially~at t501) much smaller than
the relative distance between them. The major questio
ask is; will the dumbbell geometry be preserved dyna
cally? To answer the question, let us go back to the class
equation~3.9!. Introduce a small excursion of a particlerd
from the drop’s center. Then, keeping the leading~over
dr/r) term in the right-hand side of Eq.~3.9! one arrives at
the following equation fordr:

dṙa5pr12g@dra2d~dr•n!na#. ~A27!

Substituting the already known law of the basic two-po
stretching, one gets
om
u
n
e
a

the

s

to
i-
al

t

dr'~ t !

dr'~01!
5S r 8r D ~22g!/[2~d21!]

, ~A28!

dr i~ t !

dr i~0
1!

5S r

r 8D
12g/2

, ~A29!

wheredr',i are transversal and longitudinal~with respect to
the direction of the classical stretching! sizes of the drops. To
conclude, the ratios of the drops’ sizes to the distances
tween the drops are getting smaller with time and the tw
point geometry is indeed preserved dynamically. Note t
Eq. ~A28! is a classical manifestation of the law of volum
conservation valid atg50 ~the respective law of area con
servation allows solving the problem atd52 explicitly
@12,18#!: r(dr')

d21 does not depend on time. In othe
words, Eq.~A28! is a statistical descendant of the volum
conservation law~incompressibility condition! valid for any
particular flow.

Considering the dumbbell geometry atg.1, one finds
that it is destroyed dynamically: The size of the drops a
separation between them, in the initially served two-po
geometry, turns out to be of the same order at the la
times.

APPENDIX B: GAUSSIAN FLUCTUATIONS
ABOUT THE TWO-POINT INSTANTON

1. Relative fluctuations of the points

Consider quantum mechanics, Eqs.~4.11!–~4.14!, that ap-
pears when accounting for the relative fluctuations of
drops only. There ared essential distances in the cas
r̃5 r̃ $1%2 r̃ $2% . OperatorL̂8 Eq. ~4.13!, rewritten in terms of
s @related tor̃ via Eq. ~4.10!#, is
L̂85Fd112g

22g
dab2nanbG“s

a
“s

b1
1

g F2S 42g

2
1
2~22g!

d21 D sa1
2~22g!d

d21
~n•s!naG“s

a

2
~22g!2

g2~d21! F2S 121
1

d112g D s21S 22g/21
1

d112g D ~n•s!2G , ~B1!
ua-

ears
n-
wheren5rcl/rcl. It is seen clearly from Eq.~B1! that the
transversal part of the effective potential is not bound fr
below. Accounting for nonlinear terms is required to reg
larize the divergence~see Sec. IV and Appendix C for a
explanation of how to avoid an explicit calculation of th
terms!. By this means, to describe the longitudinal fluctu
tion one should makes parallel ton in Eq. ~B1! and so deal
with the reduced operator

L̂95
d21

22g

d2

ds2
1

~d122g!~d21!

22g

1

s

d

ds
1
423g

2g
s
d

ds

2
~32g!~22g!2

2g2~d21!
s2. ~B2!
-

-

In the long time (t@1) asymptotic the major contribution

into CT stems from the lowest eigenstate ofL̂9. The eigen-
function of the ground state is an exponential of the q
dratic form

Cgr;expS 2
as2

2 D . ~B3!

In the Heisenberg representation the eigenfunction app
as exp(DEt)Cgr , where the ground state energy for the eige
value problem gets
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DE
st5

21d2g

2g S 22
3

2
g1A~223g/2!212~22g!~32g! D .

~B4!

2. Inner fluctuations of the points

K, A, andB responsible for the inner fluctuations of
point ~disk! are estimated as

Kd;dr22g, Ad;pdr12g, Bd;p2dr2g, ~B5!

where dr(t) is related tor(t) via Eqs. ~A28! and ~A29!.
Thus instead of Eq.~4.10! one has to perform the following
transformation to the dimensionlesstd ,sd i variables:

td5
g

2Er 8
rdr

r S dr

r D 12g

, dsd i5
Rg/4r̃ i

ATDdrr12g/2
, ~B6!

to get rid of the temporal dependence of the Hamiltoni
The resulting quantum mechanics will yield positive spe
trum with a constant gap. The dependences ofDE anddE on
n are estimated as;const and;1/n, respectively~the po-
tentialK term has an extra smallness;1/n2, while the num-
ber of elementary excitations is;n). The dimensionless
time of evolution is short;@dr(01)/r(01)#12g/@12g#
!1, if g is not too close to 1. These collected observatio
result in the following asymptotic forCdT @analog
of Eq. ~4.15!#: CdT→dx@ r̃ (L/r 8)12g/2# @we have calculated
Eq. ~A29! here#. The respective contribution of the fluctua
tions is thus scale (r ) independent,

Zd
fl;E ) dr̃ i

exp~2 r̃ i
a@ Ĝ21# i j

ab r̃ j
b/2!

Audet@ Ĝ#u

3dx@ r̃ ~L/r 8!12g/2#;q2dn,

q5max@1;Lg/~nDT!#, ~B7!

where, accounting for scale dependence only, we
dx@ r̃ (L/r 8)12g/2#, as a function ofr̃ , and it decays on the
scaler 812g/2Lg/2;rL g/(nDT).

APPENDIX C: INTEGRATION OVER THE SOFT
ROTATION MODE

The measure of functional integration in Eq.~2.10! is
quasi-invariant with respect to a slight rotation of the field

ri~ t !→Û21~ t !ri~ t !, pi~ t !→Û21~ t !ri~ t !,

det@Û~ t !#51, Û~T!5Û~0!51̂, ~C1!

whereÛ(t) is a unitary matrix realizing thed3d represen-
tation of SU(d). Quasi-invariance means that an extra te
appears at the transformation of the action~2.11!
.
-

s

se

,

DS5E
0

T

†Û@Û21#8‡abr i
api

bdt. ~C2!

To fix the gauge quasi-invariance we will use a gene
method@28# that is popularly known in field theory. To in
tegrate over the soft mode we will put under the function
integration~2.10! the unity

15E DÛ~ t !d„@~Ûr1!83Ûr1#/r1
2
…

3det$d@~Ûr1!83Ûr1 /r1
2#/dÛ%, ~C3!

wheren15r1 /r1 and3 stands for the antisymmetric vecto
product ofd-dimensional vectors. Thus, we use a requi
ment for one of the particles~labeled by 1), to not rotate
over the origin, as a gauge condition~without loss of gener-
ality one can choose an arbitrary direction, characterized
the trajectory, to be nonrotating!. For the sake of simplicity,
let us consider the two-dimensional version of Eq.~C3!,

15E Dw~ t !d„@~Ûr1!83Ûr1#/r1
2
…

3det$d@~Ûr1!83Ûr1 /r1
2#/dw%, ~C4!

Û~ t !5S cosw sinw

2sinw cosw D .
Direct calculation gives

~Ûr1!83Ûr1 /r1
25ẇ1~ ṙ13r1!/r1

2 . ~C5!

Thus the determinant from the right-hand side of Eq.~C4!
does not depend on the dynamical fieldr1, and we can drop
the determinant. As a next step let us perform the chang
variables~C1! in the original functional integral~2.11! @with
the unity ~C4! substituted into the integrand#. The Jacobian
of such a transformation is unity. Thed function from the
right-hand side of Eq.~C4!, describing the gauge condition
turns out to bew independent. We get finally that the on
factor calculated integration over the soft~gauge! mode is

E Dw exp@2DS$w%#, DS5E
0

T

ẇ«abr i
apj

bdt,

~C6!

where«̂ is the antisymmetric 232 tensor. Further, the inte
gration overDw, being performed, reduces Eq.~C6! to the
d function

d~@«abr i
api

b#8!. ~C7!

The condition under thed function, which is satisfied on a
saddle-point solution as describing conservation of the an
lar momentum~3.12!, is thus valid for fluctuations too.



,

,

,

.

,

tt.

et,

55 2735INSTANTON FOR RANDOM ADVECTION
@1# R. H. Kraichnan, Phys. Fluids11, 945 ~1968!.
@2# R. H. Kraichnan, Phys. Rev. Lett.72, 1016~1994!.
@3# R. H. Kraichnan, V. Yakhot, and S. Chen, Phys. Rev. Lett.75,

240 ~1995!.
@4# M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev

Phys. Rev. E52, 4924~1995!.
@5# K. Gawȩdzki and A. Kupiainen, Phys. Rev. Lett.75, 3608

~1995!.
@6# M. Chertkov and G. Falkovich, Phys. Rev. Lett.76, 2706

~1996!.
@7# D. Bernard, K. Gawe¸dzki and A. Kupiainen, Phys. Rev. E54,

2564 ~1996!.
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