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Anomalous Scaling Exponents of a White-Advected Passive Scalar
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For Kraichnan’s problem of passive scalar advection by a velocity field delta correlated in time, the
limit of large space dimensionality > 1 is considered. Scaling exponents of the scalar field are
analytically found to bes,, = n& — 22 — &)n(n — 1)/d, while those of the dissipation field are
mp = —2(2 — &H)n(n — 1)/d for ordersn << d. The refined similarity hypothesis, = nd + u, is
thus established by a straightforward calculation for the case considered.

PACS numbers: 47.27.Gs, 05.40.4j

It is likely that Kraichnan’s model of white-advected (0, + u*V® — kA)d = ¢, V*u® =0. 1)
passive scalar [1] will become a paradigm in theoret-

ical studies of intermittency and anomalous scaling in i
turbulence [2—4]. This is because any simultaneougd "€ €xternal velocityu(z,r) and the sourcep(s,r) are

correlation function of a scalar satisfies a closed lineaf’dependent random functions bendr, both Gaussian

differential equation so that all common hypotheses abo ndé correlated in time. Their spatial characteristics are
intermittency could, in principle, be verified by direct ifferent. The source is spatially correlated on a scale

calculation.  In an isotropic turbulence, the-goint cor- L I-€-, the pair correlation functiof (11, r1) b (12, r2))

relation function depends am(2n — 1) distances, which 0(f1 = 2)x(r12) as a function of the argument, =
makes direct solution of the respective partial differentiallf1 ~ T2l decays on the scalez. The value x(0) =
equation quite difficult in a general case. The fourth-orded” IS the production rate of9”. The velocity field
correlation function has been calculated recently in twdS Mmultiscale in space with a power spectrum. The
limiting cases: (i) large space dimensionality> 1  Palr corrglanon f[lgmct|on_<u“(t1,r1)uﬁ(t2,Q)) =& —

[3] and (ii) almost smooth scalar field — & < 1 [4]. 2 [V0d®" — K*P(rip)] is expressed via the so-called
By &, we designate the leading scaling exponent ofddy diffusivity

2n

the structure function: S»,(ri2) = (8, — 0,)*") « rfz .

f hen th ling is called | D Dd — 1) -

If &, # n{, then the scaling is called anomalous. KB = _(’,,2601/3 _ rar,B) + 5B 2=

We shall see below that the anomalous dimensions rY ’

Ay, = né, — {, are positive, which means that the

smaller the scale of fluctuations the more non-Gaussiaa,hereo < y < 2 and isotropy is assumed

the statistics is. '
In this Letter, we use the formalism developed in

Considering steady state and averaging (1) over the
statistics ofu and ¢ [6,7], one gets the closed balance

Ref. [3] to calculate high-order correlation functions as-gqation for the simultaneous correlation function of the
suming ¥d to be the smallest parameter in the prObIem'scaIarFl o = F(ry ry,) = (0(r)) 0(rs,)):
,,,,, n 90 ey n PIEY n .

Following [3-5], we demonstrate how the anomalous part
of the solution appears as a zero mode with the form in-

,,,,,,,,

of zero modes and of anomalous exponents thus increases A

with the order of the correlation function. The operatorl = 3, ; .’K"‘ﬁ(r,-j)V?Vf/z + k> A; de-
The advection of a passive scalar fidds,r) by an  scribes both turbulent and molecular diffusion, and it may

incompressible turbulent flow is governed by the equatiorbe rewritten in terms of relative distances [3]:

I—y

A D(d - 1) _ 2—y 2—y — D(d — 1) Tij 82
L =—" L T (g ré 1y, — ———2 r2 o=k — )=
2 -y ; ij ’//( ij a ) ij Yry 22 — ) Z( in ij jn Fin OTij0T)y
D 1 d+1—y , 5 2 2 | 2 2\ (.2 2 2
- i — < 5 rij(r,-n T T Fpn) T E(rij + i, - rjm)(rij T T T T
ijVimT jn
2 2 2
92 5o+ orh, — rp; 92

arimérjn 2Vijrim al"ijal"im
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Here, the summation is performed ove2n — 1) inde-  correlation functions are close to Gaussian and can be cal-
pendent distances (faf > 2n — 2) with subscripts sat- culated by perturbation theory to obtals, at the leading
isfying the conditionsi # j andm # i,j,n # i,j; the  orderin 1/d. Asd — o, the main part off is the opera-
diffusion scaler; ” = 2x(2 — v)/D(d — 1) has been tor of the first orderf,, o Zr,},-_ya,”. Since £ is of the
introduced. We consider the convective intervab>  second order, one may wonder if thédlperturbation the-
rij > rq Where £ is scale invariant. Taking = 1, it  ory is regular. It has been demonstrated in [3] that it is so

is easy to find the pair correlation functions [1,3]: by considering the perturbation theory that starts from the
Fio(r) = p—2—7 < L ﬁ)_ (4) bare operatory = > i, ri 7, ; this alternative
vd — 1)D\d — vy d theory gives the same answer for the anomalous exponent.
We see that, = y. The scaling exponent of is —v; The zeroth term in the perturbation series far_», is

the solution of (2) may thus be presented in the fatm=  given by a Gaussian reducible expression. Our aim is to
Frore + Z, Where we separated the so-called “forced”iterate it once by applying the operatdy, (£ — Ly).
part of the solution [with the scaling exponefi,_; + y  The parameter of the expansionrigyd, assumed to be
prescribed by the right hand side] from the zero made small. In the first correction to be thus found, the loga-
that may have a different scaling. It has been recognizetithmic terms I{L/r;;) are of interest because they appear
independently by the authors of [3—5] that they are thedt expanding the anomalous scaling factdrér;;)*> over
zero modes of the operatdf that are responsible for the A2,—see [3] for the details. As we shall see, there are
anomalous scaling. We shall demonstrate below that thdifferent zero modes with different anomalous dimensions
factor (L/r)2» appears in the zero mode while the factorA2x,; for any givenn. Of course, only the larges,, ;
(L/r)*» appears in the forced term. The zero mode turngontributes in the limi /r — . However, in the region
out to be dominant. It has been demonstrated in [3] thaf2x,:IN(L/r;;) < 1, where we carry out our calculations,
rq does not appear in the leading termsFofis long as all A’s contribute logarithmic terms. We thus have a de-
at least some distanceg are in the convective interval. generate perturbation theory (afh,; have the same ex-
Assuming that to be the case, we omit the diffusive partgonentny in the zeroth approximation) and should apply
of £. We shall account for them later while consideringthe operatorfy (£ — L) on a vector of zero modes of
the correlation functions of the scalar derivatives. L, and then single out the terms having logarithms. It is
Let us consider now the case of large space dimensior¢lear that logarithms may appear only multiplied by a zero
ality where the anomalous dimensions can be calculategiode of L,. We thus obtain the matrix of the operator
analytically. It is seen from (4) that the level of scalar Lo '(£ — L) in the representation a@,, ;. The eigen-
fluctuations necessary to provide for a given flexde-  values of that matrix are the anomalous exponénts at
creases ad increases:F,__,, « P"/[d(d — 1)]". Con- the leading order in Ad.
sidering larged and assuming that the flux is determined Let us describe how the matrix is generated. The most
by the pumping (and it is thusindependent) we shall de- convenient classification of the zero modes is as follows:
velop the perturbation theory for the quantit€$ F;_,, Zy,,; is the polynomial inv = r? of ordern which may
which have finite limits atd — . We shall show be- be separated into a symmetrical sum of polynomials, each
low that despite the small level of fluctuations at ladge involving distances betwednpoints. For example, there
the statistics of the scalar is substantially non-Gaussian aire two zero modes for the fourth-order correlatdys =
small scales. However, since the anomalous dimensions(x;; — x)* and Zs3 = >.(x;; — xjx)* [3]. The first-
are small, there exists a wide interval of scales where therder logarithmic correction is calculated by the rule

cup g 2=y oG = ) ey = ) G =), i=kj# L
_ 1 _ B _ = 7 ij i ij J i J
Lo (£ = Lo = =55 '”[r]‘z(x,-k i = x+ ) itjirk=l, O
I
which gives the matrix [3] ent zero modes: one involves distanegs ry,, rm, and
Agy - another ryy, ri,, . The total number of zero modes
< 0 A43>' (6) grows with n faster than factorially due both to the

growth of the number of possible functional forms and the
Here,Ay4 = 4(2 — y)/d andA,3 = —(4 — y?)/2d are  appearance of new topologically different configurations.
the eigenvalues. Before describing the structure of thdhe operator acting on the mode with a givieproduces
matrix at highern, let us note that the order and the only modes withi’ = i. The analysis of eigenvalues
number of points are not enough to specify the zero modeis thus reduced to the consideration of the blocks with
forn = 3 and4 = i = 2n — 2 due to the possibility of a giveni. The first modeZ,,,, contains the mono-
different topological configurations (we enumerate thenmial x> ---x,—1,, that cannot be obtained by (5) from
by j). For example, at = 3,i = 4, there are two differ- other modes, so that the first elementia — 1)A44/2
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and the remaining elements of the first column areand all the lower elements in the second column are zero.
zero. Considering Z,,,,-1, one realizes that the Then the 3 X 3 block follows which corresponds
second diagonal element(is — 1) (n — 2)A44/2 + Ay3 t0 Zopon—2:

A m—1)0m—4) +4q 0 -2
% 23 — n) n?—3n—1-6q 1 + 4q , )
0 9 + 12¢g n—2)(n—15)

with ¢ = A43/A44, all the elements below the block are we include the diffusion operator intd . As a result,

zero. The next block is for = 2n — 3;itis 7 X 7 for  the diffusion scale, appears in the correlation functions.

n = 6. The sizes of the blocks grow as one approaches th€he form of r, dependence could be readily established

center of the matrix, then they decrease and eventually wior an arbitraryn, d, y by using a straightforward pertur-

come to the3 X 3 block due toZ,,, ; and a single value bation expansion in the ratio between small and large dis-

matrix at arbitraryn may be expressed via thoda, and  at all the distances inside the convective interval is as-

A43 and combinatorial factors. Note that the classifica-sumed now to be knowf\,, = Ay, ., ford > 1)

tion of all eigenvalues and eigenvectors is very important

because it cgrries information about the algebraic structurep, <~ ¢, ,R"Y 2[5 [ > rij ~R > rq. (9)

and underlying symmetry that governs our set of correla-

tion functions. We postpone the general classification unyow, let us consider one distance, say, to be much

til further de_talled publications. Fortunatgly en_ough, thesmaller than the otheryp = rip K< rjj = R. At zero

mode that gives the Iargest' aljom.alou_s dlr_nensmn and thgdqer inp, Fi13..00 ~ G(R) ~ R" L% [3]. The

structure functions of'the d|§S|pat|on field is separated Sfeading isotropic correction satisfies the equation

that it can be found without finding the whole set/f, ;.

We notice that sincAs4 > A4 3 and the largest combina-

torial factor in front ofA4 4 appears in the first element then

it is plausible to assume thab, », gives the largest eigen- e . .

value Ay, 5, = n(n — 1)A44/2. One can directly check where @ (R) WAR_(H W Az”szAz"fz is the major term of

that As,,—1 and all eigenvalued,, »,_» of (7) are less tr]e rhs of (2),Lr is the majorterAm of the operatdt ,Band

than A,,_», for anyn. For an arbitrary block, the valid- £, is the perturbation operatof, = K*#(p)V5Vy +

ity of the assumption may be established asymptoticall2«<4A,. The solution has the form

for n > 1 (yet, of coursen < yd) when all eigenval- Cy—A, P rdr

ues aren’A44/2 + O(n). For n = 2,3,4, we found all 8Fu(R, p) ~ R AJLAZH]O 22 4oy

the eigenvalues UsiN@ATHEMATICA ; the largest is always d

An2,. We thus conclude that fak,, »,In(L/r) > 1the It has been implied that\,, > Ay,—2. At p < ry,

main contribution is given by the zero mode wifh, =  the isotropic correction is analytic ip: §F»,(R, p) ~

ng, — 2(2 — {)n(n — 1)/d. In particular, RO=Dy=8a 82,772 52 Now we may differentiate it

with respect top, in particular, calculate the correlation

(B — 6™y ~ r"Y(L/r)n= D=V, (8)  functions that involve the dissipation fiekd= «[VO7]*:

£,6F, R, p) = LrG(R) — ®(R), (10)

It agrees with [4] whereZ, has been calculated. Note
that both (8) and the results of [3,4] differ fron,
suggested in [2]. In our opinion, that means that the

2—y . . .
closure implemented in [2] is not exact at the limits Sinc@e = « = ry °, thenr, disappears. The diffusion
consideredn < yd and2 — y < 1). scale appears only at the anisotropic terms proportional

To find the correlation functions of the scalar deriva-t0 angular harmonics with respect to the angle between

tives, one should consider some distangesas going to R @nd p. This is because of the zero modes of the
zero. While some distance passes the diffusion scale tfPerator £, associated with the angular harmonics that

dependence on that distance changes. To describe thate expressed via the Jacobi polynomi‘aiéf”) [3.8]:

Ok
, n s >ry,
Zy(p,R) = P§" |:_p :| X p2k oo L
p P~ ra

(€105 02,)) ~ RV (L/R) . (11)

, pXKrg,

6k=%(7—d+\/(d—7)2+8k(d+l_d7/)_(21k+d _2)>, v =(d —3)/2, n = R/R.
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The Xth angular correction té'; 1 3,2, iS thus This relation presents a version of the refined similarity
. A s hypothesis [13—15] valid in our case. Indeed, scalar field
8O F5,(p,R) ~ Z(p,R) (L/R)**R" ™%, (12)  and dissipation field are related; = (50,)?/7, where

. e . 7, = Dr” is a transfer time. For = 2, (14) has been
If ny>é; and p is in the diffusive interval, established in [2,3].

then the estimate (12) is true &R being small
enough:  (R/L)*» (rqy/R)" % <« 1 [3]. Differ-
entiating 6%YF with respect top one can estab-
lish the scaling of the correlation functions that
involve high-order traceless tensors of derivatives

P(e,) ~exp<

The first (n < yd) moments of the locally averaged
dissipation haveu, = —n(n — 1)A44/2 so they are
described by log-normal statistics

£R) = (@k=y)/@=Y) ZLO a[(mV)Ive .. vagR o

is a respective coefficient Q?EZ’”)(x) expansion in the
series inx. One can also generalize (11) in another way,
considering extra fusion of another one or more pairs of To conclude, the law (8) qualitatively corresponds to
points. The results show that the fusion procedures fofhe observed behavior df, [16—18]. Quantitatively, we

an arbitrary number of different pairs of points commutecannot use (8) for = 3,y = 2/3 (which would give an

with each other. In other words, using the languageyerestimation of the anomalous exponents) because the
of the so-called operator algebra [9,10] the validity ofyalidity condition of our theoryr < yd will be violated
which for turbulence was argued in [11,12], we canalready at» = 2. Note that quadratic dependence ff
introduce r,-related dimensionality of the fields: The andu, onn (and lognormality) is violated whem = yd,
scalar fieldd and diSSipatiOﬂ fielde have dimensionality while the S|m||a|'|ty relation (14) is true for any, v, d.

0, while ¢ has dimensionalityp; — y. Thus, to find  This work is a part of the extensive program on study-
the ultraviolet ¢,-related) dimensionality of a composite jng anomalous scaling in turbulence undertaken together
multiplicative field one should sum the dimensionalitiesyith E. Balkovsky, I. Kolokolov, and V. Lebedev. We

_ (n[e,/{e)] — Agaln[L/r]/2)?
2A4’4|n[L/V] '
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