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Anomalous Scaling Exponents of a White-Advected Passive Scalar
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For Kraichnan’s problem of passive scalar advection by a velocity field delta correlated in time
limit of large space dimensionalityd ¿ 1 is considered. Scaling exponents of the scalar field
analytically found to bez2n  nz2 2 2s2 2 z2dnsn 2 1dyd, while those of the dissipation field are
mn  22s2 2 z2dnsn 2 1dyd for ordersn ø d. The refined similarity hypothesisz2n  nz2 1 mn is
thus established by a straightforward calculation for the case considered.

PACS numbers: 47.27.Gs, 05.40.+j
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It is likely that Kraichnan’s model of white-advecte
passive scalar [1] will become a paradigm in theor
ical studies of intermittency and anomalous scaling
turbulence [2–4]. This is because any simultane
correlation function of a scalar satisfies a closed lin
differential equation so that all common hypotheses ab
intermittency could, in principle, be verified by dire
calculation. In an isotropic turbulence, the 2n-point cor-
relation function depends onns2n 2 1d distances, which
makes direct solution of the respective partial differen
equation quite difficult in a general case. The fourth-or
correlation function has been calculated recently in t
limiting cases: (i) large space dimensionalityd ¿ 1
[3] and (ii) almost smooth scalar field2 2 z2 ø 1 [4].
By z2n we designate the leading scaling exponent
the structure function: S2nsr12d  ksu1 2 u2d2nl ~ r

z2n

12 .
If z2n fi nz2 then the scaling is called anomalou
We shall see below that the anomalous dimensi
D2n  nz2 2 z2n are positive, which means that th
smaller the scale of fluctuations the more non-Gauss
the statistics is.

In this Letter, we use the formalism developed
Ref. [3] to calculate high-order correlation functions a
suming 1yd to be the smallest parameter in the proble
Following [3–5], we demonstrate how the anomalous p
of the solution appears as a zero mode with the form
dependent of the pumping. Those zero modes exploit
interchange symmetry between the distances, the num
of zero modes and of anomalous exponents thus incre
with the order of the correlation function.

The advection of a passive scalar fieldust, rd by an
incompressible turbulent flow is governed by the equat
0031-9007y96y76(15)y2706(4)$10.00
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s≠t 1 ua=a 2 kDdu  f, =aua  0 . (1)

The external velocityust, rd and the sourcefst, rd are
independent random functions oft and r , both Gaussian
andd correlated in time. Their spatial characteristics a
different. The source is spatially correlated on a sc
L; i.e., the pair correlation functionkfst1, r1dfst2,r2dl 
dst1 2 t2dxsr12d as a function of the argumentr12 ;
jr1 2 r2j decays on the scaleL. The value xs0d 
P is the production rate ofu2. The velocity field
is multiscale in space with a power spectrum. T
pair correlation functionkuast1, r1dubst2, r2dl  dst1 2

t2d fV0dab 2 Kabsr12dg is expressed via the so-calle
eddy diffusivity

Kab 
D
rg

sr2dab 2 rarbd 1
Dsd 2 1d

2 2 g
dabr22g ,

where0 , g , 2 and isotropy is assumed.
Considering steady state and averaging (1) over

statistics ofu and f [6,7], one gets the closed balanc
equation for the simultaneous correlation function of t
scalarF1,...,2n  Fsr1, . . . , r2nd  kusr1d, . . . , usr2ndl:

2L̂ F1,...,2n  F1,...,2n22x2n21,2n 1 permutations. (2)

The operatorL̂ ;
P

i,j Kabsrijd=a
i =

b
j y2 1 k

P
Di de-

scribes both turbulent and molecular diffusion, and it m
be rewritten in terms of relative distancesrij [3]:
L̂ 
Dsd 2 1d

2 2 g

X
i.j

r12d
ij ≠rij sr

22g
ij 1 r

22g
d drd21

ij ≠rij 2
Dsd 2 1d
2s2 2 gd

X
sr2

in 2 r2
ij 2 r2

jnd
r

12g
ij

rjn

≠2

≠rij≠rjn

2
D
4

X 1

r
g
ijrimrjn

µ
d 1 1 2 g

2 2 g
r2

ijsr2
in 1 r2

jm 2 r2
ij 2 r2

mnd 1
1
2

sr2
ij 1 r2

im 2 r2
jmd sr2

ij 1 r2
jn 2 r2

ind
∂

3
≠2

≠rim≠rjn
1 k

X r2
ij 1 r2

im 2 r2
mj

2rijrim

≠2

≠rij≠rim
. (3)
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Here, the summation is performed overns2n 2 1d inde-
pendent distances (ford . 2n 2 2) with subscripts sat-
isfying the conditionsi fi j and m fi i, j, n fi i, j; the
diffusion scaler

22g
d  2ks2 2 gdyDsd 2 1d has been

introduced. We consider the convective intervalL ¿

rij ¿ rd whereL̂ is scale invariant. Takingn  1, it
is easy to find the pair correlation functions [1,3]:

F12srd  P
2 2 g

gsd 2 1dD

µ
Lg

d 2 g
2

rg

d

∂
. (4)

We see thatz2  g. The scaling exponent of̂L is 2g;
the solution of (2) may thus be presented in the formF 
Fforc 1 Z , where we separated the so-called “force
part of the solution [with the scaling exponentz2n21 1 g

prescribed by the right hand side] from the zero modeZ

that may have a different scaling. It has been recogni
independently by the authors of [3–5] that they are
zero modes of the operator̂L that are responsible for th
anomalous scaling. We shall demonstrate below that
factor sLyrdD2n appears in the zero mode while the fact
sLyrdD2n22 appears in the forced term. The zero mode tu
out to be dominant. It has been demonstrated in [3] t
rd does not appear in the leading terms ofF as long as
at least some distancesrij are in the convective interval
Assuming that to be the case, we omit the diffusive pa
of L̂ . We shall account for them later while considerin
the correlation functions of the scalar derivatives.

Let us consider now the case of large space dimens
ality where the anomalous dimensions can be calcula
analytically. It is seen from (4) that the level of scal
fluctuations necessary to provide for a given fluxP de-
creases asd increases:F1,...,2n ~ Pnyfdsd 2 1dgn. Con-
sidering larged and assuming that the flux is determin
by the pumping (and it is thusd independent) we shall de
velop the perturbation theory for the quantitiesd2nF1,...,2n

which have finite limits atd ! `. We shall show be-
low that despite the small level of fluctuations at larged,
the statistics of the scalar is substantially non-Gaussia
small scales. However, since the anomalous dimens
are small, there exists a wide interval of scales where
2
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correlation functions are close to Gaussian and can be
culated by perturbation theory to obtainD2n at the leading
order in 1yd. As d ! `, the main part ofL̂ is the opera-
tor of the first orderL̂0 ~

P
r

12g
ij ≠rij

. SinceL̂ is of the
second order, one may wonder if the 1yd perturbation the-
ory is regular. It has been demonstrated in [3] that it is
by considering the perturbation theory that starts from
bare operatorL̂ 0

0 ~
P

r12d
ij ≠rij r

11d2g
ij ≠rij ; this alternative

theory gives the same answer for the anomalous expon
The zeroth term in the perturbation series forF1,...,2n is

given by a Gaussian reducible expression. Our aim is
iterate it once by applying the operator̂L

21
0 sL̂ 2 L̂0d.

The parameter of the expansion isnygd, assumed to be
small. In the first correction to be thus found, the log
rithmic terms lnsLyrijd are of interest because they appe
at expanding the anomalous scaling factorssLyrijdD2n over
D2n —see [3] for the details. As we shall see, there a
different zero modes with different anomalous dimensio
D2n,i for any givenn. Of course, only the largestD2n,i

contributes in the limitLyr ! `. However, in the region
D2n,i lnsLyrijd ø 1, where we carry out our calculations
all D’s contribute logarithmic terms. We thus have a d
generate perturbation theory (allZ2n,i have the same ex-
ponentng in the zeroth approximation) and should app
the operatorL̂ 21

0 sL̂ 2 L̂0d on a vector of zero modes o
L̂0 and then single out the terms having logarithms. It
clear that logarithms may appear only multiplied by a ze
mode ofL̂0. We thus obtain the matrix of the operato
L̂

21
0 sL̂ 2 L̂0d in the representation ofZ2n,i. The eigen-

values of that matrix are the anomalous exponentsD2n,i at
the leading order in 1yd.

Let us describe how the matrix is generated. The m
convenient classification of the zero modes is as follow
Z2n,i is the polynomial inx  rg of ordern which may
be separated into a symmetrical sum of polynomials, e
involving distances betweeni points. For example, there
are two zero modes for the fourth-order correlator:Z4,4 P

sxij 2 xkld2 and Z4,3 
P

sxij 2 xjkd2 [3]. The first-
order logarithmic correction is calculated by the rule
L̂ 21
0 sL̂ 2 L̂0dxijxkl 

2 2 g

2d
lnfrg

(
sxij 2 xild2 1 gsxij 2 xjld sxil 2 xjld, i  k, j fi l ,
2sxik 2 xil 2 xjk 1 xjld2, i fi j fi k fi l ,

(5)
s
e
he
s.

s
ith
which gives the matrix [3]µ
D4,4 · · ·

0 D4,3

∂
. (6)

Here,D4,4  4s2 2 gdyd andD4,3  2s4 2 g2dy2d are
the eigenvalues. Before describing the structure of
matrix at highern, let us note that the ordern and the
number of pointsi are not enough to specify the zero mo
for n $ 3 and4 # i # 2n 2 2 due to the possibility of
different topological configurations (we enumerate th
by j). For example, atn  3, i  4, there are two differ-
e

ent zero modes: one involves distancesrkl , rlm, rmn and
another rkl , rln, rlm. The total number of zero mode
grows with n faster than factorially due both to th
growth of the number of possible functional forms and t
appearance of new topologically different configuration
The operator acting on the mode with a giveni produces
only modes with i0 # i. The analysis of eigenvalue
is thus reduced to the consideration of the blocks w
a given i. The first modeZ2n,2n contains the mono-
mial x1,2 · · · xn21,n that cannot be obtained by (5) from
other modes, so that the first element isnsn 2 1dD4,4y2
2707
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and the remaining elements of the first column a
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eand all the lower elements in the second column are z
Then the 3 3 3 block follows which corresponds
to Z2n,2n22,j:
D4,4

2

0B@ sn 2 1d sn 2 4d 1 4q 0 22
2s3 2 nd n2 2 3n 2 1 2 6q 1 1 4q

0 9 1 12q sn 2 2d sn 2 5d

1CA , (7)
s.
ed
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with q  D4,3yD4,4, all the elements below the block ar
zero. The next block is fori  2n 2 3; it is 7 3 7 for
n $ 6. The sizes of the blocks grow as one approaches
center of the matrix, then they decrease and eventually
come to the3 3 3 block due toZ2n,2,j and a single value
at the lower right corner. By virtue of (5), all entries of th
matrix at arbitraryn may be expressed via thoseD4,4 and
D4,3 and combinatorial factors. Note that the classific
tion of all eigenvalues and eigenvectors is very import
because it carries information about the algebraic struc
and underlying symmetry that governs our set of corre
tion functions. We postpone the general classification
til further detailed publications. Fortunately enough, t
mode that gives the largest anomalous dimension and
structure functions of the dissipation field is separated
that it can be found without finding the whole set ofD2n,i.
We notice that sinceD4,4 . D4,3 and the largest combina
torial factor in front ofD4,4 appears in the first element the
it is plausible to assume thatZ2n,2n gives the largest eigen
valueD2n,2n  nsn 2 1dD4,4y2. One can directly check
that D2n,2n21 and all eigenvaluesD2n,2n22 of (7) are less
thanD2n22n for any n. For an arbitrary block, the valid
ity of the assumption may be established asymptotic
for n ¿ 1 (yet, of course,n ø gd) when all eigenval-
ues aren2D4,4y2 1 Osnd. For n  2, 3, 4, we found all
the eigenvalues usingMATHEMATICA ; the largest is always
D2n,2n. We thus conclude that forD2n,2nlnsLyrd ¿ 1 the
main contribution is given by the zero mode withz2n 
nz2 2 2s2 2 z2dnsn 2 1dyd. In particular,

ksu1 2 u2d2nl , rngsLyrd2nsn21d s22gdyd . (8)

It agrees with [4] wherez4 has been calculated. Not
that both (8) and the results of [3,4] differ fromz2n

suggested in [2]. In our opinion, that means that
closure implemented in [2] is not exact at the lim
consideredsn ø gd and2 2 g ø 1d.

To find the correlation functions of the scalar deriv
tives, one should consider some distancesrij as going to
zero. While some distance passes the diffusion scale
dependence on that distance changes. To describe
he
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e
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we include the diffusion operator intôL . As a result,
the diffusion scalerd appears in the correlation function
The form of rd dependence could be readily establish
for an arbitraryn, d, g by using a straightforward pertur
bation expansion in the ratio between small and large
tances (see Sect. III of [3]). The overall scaling ofF1,...,2n

at all the distances inside the convective interval is
sumed now to be knownsD2n  D2n,2n for d ¿ 1d

F1,...,2n ø C2nRng2D2n LD2n , L ¿ rij , R ¿ rd . (9)

Now, let us consider one distance, sayr12, to be much
smaller than the others:r  r12 ø rij . R. At zero
order in r, F1,1,3,...,2n ø GsRd , Rng2D2n LD2n [3]. The
leading isotropic correction satisfies the equation

L̂rdF2nsR, rd  L̂RGsRd 2 FsRd , (10)

where FsRd , Rsn21dg2D2n22 LD2n22 is the major term of
the rhs of (2),L̂R is the major term of the operator̂L , and
L̂r is the perturbation operator̂Lr ; Kabsrd=a

r =
b
r 1

2kDr . The solution has the form

dF2nsR, rd , Rsn21dg2D2n LD2n

Z r

0

rdr

2r
22g
d 1 r22g

.

It has been implied thatD2n . D2n22. At r ø rd ,
the isotropic correction is analytic inr: dF2nsR, rd ,
Rsn21dg2D2n LD2n r

g22
d r2. Now we may differentiate it

with respect tor, in particular, calculate the correlatio
functions that involve the dissipation fielde  kf=ug2:

kke1u3 · · · u2nll , Rsn21dgsLyRdD2n . (11)

Since e ~ k ~ r
22g
d , then rd disappears. The diffusion

scale appears only at the anisotropic terms proportio
to angular harmonics with respect to the angle betw
R and r. This is because of the zero modes of t
operatorL̂r associated with the angular harmonics th

are expressed via the Jacobi polynomialsP
sn,nd
2k [3,8]:
Z2ksr, Rd  P
sn,nd
2k

"
nr

r

#
3

(
rdk , r ¿ rd ,
r2kr

dk22k
d , r ø rd ,

dk 
1
2

√
g 2 d 1

s
sd 2 gd2 1

8ksd 1 1 2 gd s2k 1 d 2 2d
d 2 1

!
, n  sd 2 3dy2, n  RyR .
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The 2kth angular correction toF1,1,3,...,2n is thus

dskdF2nsr, Rd , Z2ksr, Rd sLyRdD2n Rng2dk , (12)

If ng . dk and r is in the diffusive interval,
then the estimate (12) is true atR being small
enough: sRyLdD2n srdyRdng2dk ø 1 [3]. Differ-
entiating ds2kdF with respect to r one can estab
lish the scaling of the correlation functions th
involve high-order traceless tensors of derivativ
jskd  ks2k2gdys22gd Pk

l0 alfsn=dk2l=a1 · · · =al ug2, al

is a respective coefficient ofP
sn,nd
2k sxd expansion in the

series inx. One can also generalize (11) in another w
considering extra fusion of another one or more pairs
points. The results show that the fusion procedures
an arbitrary number of different pairs of points commu
with each other. In other words, using the langua
of the so-called operator algebra [9,10] the validity
which for turbulence was argued in [11,12], we c
introduce rd-related dimensionality of the fields: Th
scalar fieldu and dissipation fielde have dimensionality
0, while jskd has dimensionalitydk 2 g. Thus, to find
the ultraviolet (rd-related) dimensionality of a composit
multiplicative field one should sum the dimensionaliti
of the multipliers:ø

u1 · · · ulel11 · · · em

Y
k

fjskdgck

¿
~ r

P
cksg2dkd

d .

The above fusion rules describe the scaling of the e
merated primary fields only. Particularly, the rules gi
the scaling of correlation functions withe at different
points but not with the higher powers of the dissipati
field en. The difference stems from the fact that to calc
late the correlation functions containingen we should fuse
a group of 2n (rather than two) points in an initialu cor-
relator. To calculate a correction that produces a nonz
contribution into the desirable correlator ofen, one should
find a zero mode of the 2n-point operator, but not that o
two-point oneL̂r . Such zero modes do have anomalo
scaling, as we have learned above, they produce the m
contribution to correlation functions ofen. The ultravi-
olet anomalous scaling of such objects is thus related
the infrared anomalous scaling of the passive scalar its
For example, by a direct application of the above pro
dure (10)–(11), we get

ken
1 em

2 l , sLyr12dD2n12m2D2n2D2m sLyrddD2n1D2m . (13)

The dissipation field is thus highly intermittent, the sing
point meanskenl , keln sLyrddD2n grow unlimited when
diffusivity decreases. Statistics at the convective inter
is better related to local averageer over the ball with
the radiusr. Since spatial integration and time avera
commute then, our knowledge ofke1 · · · enl with all
distances in the convective interval allows one to obt
by spatial integration (which converges ifD4 , d):

kser dnl , keln sryLdmn , mn  z2n 2 nz2 . (14)
t
s

,
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This relation presents a version of the refined similar
hypothesis [13–15] valid in our case. Indeed, scalar fi
and dissipation field are related:er . sdurd2ytr where
tr . Drg is a transfer time. Forn  2, (14) has been
established in [2,3].

The first sn ø gdd moments of the locally averaged
dissipation havemn  2nsn 2 1dD4,4y2 so they are
described by log-normal statistics

P serd , exp

√
2

slnfer ykelg 2 D4,4lnfLyrgy2d2

2D4,4lnfLyrg

!
.

To conclude, the law (8) qualitatively corresponds
the observed behavior ofzn [16–18]. Quantitatively, we
cannot use (8) ford  3, g  2y3 (which would give an
overestimation of the anomalous exponents) because
validity condition of our theoryn ø gd will be violated
already atn  2. Note that quadratic dependence ofzn

andmn on n (and lognormality) is violated whenn . gd,
while the similarity relation (14) is true for anyn, g, d.

This work is a part of the extensive program on stud
ing anomalous scaling in turbulence undertaken toget
with E. Balkovsky, I. Kolokolov, and V. Lebedev. We
are grateful to them for numerous discussions. We are
debted to G. Eyink, U. Frisch, and R. Kraichnan for use
remarks. The work was supported by the Clore Foun
tion (M. C.) and by the Rashi Foundation (G. F.).
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