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Abstract. The paper presenrs a new field-theoretical approach lo a 2D passive scalar advected by 
long-range random delfU-correlaled-in-Lime velocity field. The Gaussian form of the distribution 
for the stretching rate of a passive scalar cloud is derived and its parameters are found explicitly. 

1. Delkition of the model 

The convection of a passive scalar (PS) in two dimensions by an extemal long-range velocity 
field is a well defined linear problem [ 1,2]. To solve the problem is to find al l  the correlation 
functions of the passive scalar field W ( T :  t )  governed by the following equation: 

(1) 

where U ( T ;  t )  is an extemal Eulerian long-range velocity field (the spatial Fourier-harmonic 
of the velocity field U&) is non-zero only at k c L-I) and d, is a random extemal source 
localized in momentum space at ko = L-I. The measure of averaging over the random 
source in the simplest case of white-noise statistics of the source can be chosen in the 
following form without any loss of generality as shown in [3] 

iJ + u,v,o = d, 

d,k = (2n)-’ $(T; f )  exp(i1c. T )  dr 

PZ 
s 

(q5k(f)q5J&’)),T = Gk-k’(t - t‘) = -J(t - t’)J(k - k’)S(k - ko). (2) 

Here Pz stands for the flow of the squared Ps  on the source. 
In order to eliminate a homogeneous sweeping, it is convenient to pass to the locally 

co-moving frame [4] expressing equation (1) in terms of the quasi-Lapangian (QL) velocities 
related to the initial Eulerian velocities by means of the formula 

U ( T ;  t )  = v T - ~ ( 0  z)dz; t . (3) 
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Correspondingly, equation (1) takes the form 

b + (U" - v0")V.w = 4 U0 = u(0; 5 ) .  (4) 

Following the ideas of a recent paper [3], one can expand V = ( T )  - v"(0) = ouprfl for 
the points satisfying r < L. Here, 6 is the random-in-time traceless-symmetrict$ matrix 
of velocity derivatives. For the white-noise velocily-field staristics (which is the only case 
considered in the present paper), the measure of the 6 elements has the form providing 
spaceisotropy of the simultaneous-pair correlator of the QL velocities 

2,6(t) = 2, (a ) = Da)nDbexp(-So) SO = - (a2 + 6') dt. 
b -a 2 0  ' S  

To solve the resulting equation 

i, + oupr@V.w = 4 

one performs the substitutions 

O ( P ;  t )  = +(R; t) Ra = W"(t)@ 

(5) 

(7) 

that allows the solution of equation (6) to be written in the following f m :  

O(T: t )  = +(R(t); I) = d?$@-'(z, -co)R(t); T )  dr$(W(t, T)P; 5 )  (8) 

where the matrix $(t; T) can sought as a solution to the relation 

I I L L 
w, + w2 = 0. (9) 

The resulting equation (9) describes the advection of a unit cell (a cloud of the PS) embedded 
in an external large-scale velocity field. The splitting of the velocity derivatives matrix 
(6) into diagonal and off-diagonal parts results in a corresponding pure stretching and a 
pure shearing of the cell. Volume conservation is guaranteed by the zero trace of the 
matrix. The dropped antisymmetric part of the 6 matrix$ describes a unit-cell rotation. 
Using equation (8) we can rewrite the correlation functions of the Ps field in terms of the 
correlation functions of the source field 4. For example, the pair-correlation function is 

( w ( r ~ ;  tl)w(r2; t2)) = 1'' d q  /'2 dr2(%(6"(ttP T I ~ I  - $02, 5 2 ) ~ ~ ;  TI - 52)) (10) 
-ca -m 

where (. . .) stands for the average with respect to the measure (5). The explicit form of the 
simultaneous-pair correlator (which has to be isotropic) can be extracted from equations (10) 
and (2) as 

t Due to the fact Ihat one assumes Ihat the flow is inviscid. 
$ It is possible to show that io the case of the white-noise statistics the "rbiary asymmetry (which is compatible 
with Ihe isotropy of lhe velocity field) does no1 affesl any physical avenges of dl (see also [31). 
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with Jo(x) being the Bessel function of zeroth order. 
So, following the calculations in [3!, we have reduced our initial problem to the 

evaluation of some functions of matrix W satisfying equation (9). The statistics of the 
matrix elements of W ( t ,  0) is defined by the ensemble of random real traceless symmetric 
matrices 6 ,  see equation (5). The authors of [3] have calculated (lW(t,O)rl) by means 
of the direct expansion of the anti-chronological T-exponent that is the formal solution 
to equation (9). This enabled them to estimate the simultaneous-pair correlator (11) at 
small distances rI - r2 as ( P z / D )  ln (L / r ) .  In addition, by analysing the set of many-point 
correlation functions of the PS field, Falkovich and Lebedev [3] were able to demonstrate 
that the instantaneous statistics of such a field becomes closer to Gaussian statistics when 
passing downscales. 

In the present paper, we suggest a new non-pertnrbative field-theoretical approach to 
calculating the Ps-field correlations. We show that the asymptotic behaviour of the pair- 
correlator equation (1 1) is governed by the self-averaging (or 'deterministic') quantity: the 
Lyapunov exponent. By means of our method we rederive, extend and exactly prove all 
the above-mentioned results by Falkovich and Lebedev [3]. In particular, we explicitly find 
the value of the variance of the Gaussian distribution characterizing the short-range Ps-field 
statistics. 

2. Functional representation for averaged functionals of @ 

The matrix %(t)  can be extracted from equation (9) only in the form of the anti- 
chronological time-ordered exponent 

W(0,O) = i. 

rather than in terms of some regular function of?  that reflects the strong interaction between 
the pure stretching and shearing processes. A similar problem-transformation of a time- 
oidered exponent of some linear combination of spin W(2) operators (arising when one tries 
to write down an exact functional representation for the partition function of the quantum 
Heisenberg ferromagnetthas been solved [5,6]. The main objective of the method is 
to introduce a new set of integration variables in the functional integral such that ?exp 
becomes a regular function when expressed in these terms. In the present context we use a 
new modification of the ansatz proposed in [6], expanding the U matrix over the spin 2 x 2 
matrices as 

B = a &  -!- b&. (13) 

First, we introduce a new basis of the spin algebra 

0 -i B+=c+z+i6x=( i  1 i  .. * .^  ( 1. - i )  
6 y = ( i  0) -1 -1 U- = U, - lux = 

(14) 

that corresponds to the rotation of the quantization axis from the usual orientation (parallel 
to the z-axis) to a new orientation parallel to the y-axis. Instead of the fields a@), b(t), 
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we choose new ones p* = (a f ib)/2 which transform b and the integration measure 
equation (5) to the more compact form 

6 = p-b+ + q+& %(t) = 2)pi exp(-So) SO = - i '"ptp-dt. (15) 

Let us now introduce the operator given in explicit form as 

&t ,O)  =e~p[-b-$~(O)]exp[ -6,. ~ $ - ( f ' ) e x p ( 2 ~ p ( i " ) d r " ) d t f ]  

x exp [by lr p(r')dt'] exp[b-$'(t)] 

where $* and p are some new dynamical fields. Using the commutation relations for the 
spin operators ui, cry, it is easy to check that the operator 2 obeys the differential equation 

A, = A[-b+$- t b-(4$-W+)Z - 2P$+ + $+) + 2y(-4$-$+ + p)] .  (17) 

Using the fact that the first exponential factor in equation (16) makes the operator A satisfy 
the condition &O, 0) = 1 and comparing the equation (17) with the equivalent one (9). we 
find the change of variables 

p- = $- p+ = -$+ t 4$-($+)2 (18) 

p = 4*-++ (19) 

for the case in which dynamical matrices coincide. This allows us, to obtain the 
explicit functional integral representation for any average written in terms of W by changing 
variables from p* to $*. The Jacobian of map equation (18) is 

and 

m* = L7[!!J*Iz)$* (20) 

and it is essentially dependent on the type of regularization and conditions imposed on the 
field $+. The problem is that the transformation equation (18) conlains the derivative of 
the field $+ with respect to time in its right-hand side. Therefore, it should be supplied 
with some initial or boundary conditions. In 161, it has been shown that only by imposing 
initial conditions is it possible to ensure the invertability of the map equation (18). We also 
note that in the course of the calculation it is necessary to average some functions of the 
operator A(T, 0) at fixed time moment T over the measure equation (15). For a given T it 
is convenient to fix the final value of the field $+ 

(21) 

Then the operator A(T,  0) acting on the initial vector c) produces the following simple 
expressions 

I 
2' $+(T) = -- 



Passive scalar convection in ZD 4929 

Here we have exploited the isotropy condition and substituted R(0) = (A) for the initial 
value of the vector R ( T )  without any loss of generality. 

The regularization of the map equation (18) [6,7] is determined by physical 
argumentation. Here it stems from the translation-in-time invariance of the whibnoise 
measure equation (15). Indeed, the equality 

leads to the extension of the definition of the step function B(x) at x = 0 such that B(0) = i. 
Thus, the discrete version of the map (15) (9; = q*(tn); n = 1, . . . , M ;  E = T / M  + 0; 
t,, = en;  M 4 CO), compatible with the symmetry condition equation (M), is 

1 
(25) + 2  + - -++ P,- = *; Pn - n+l - 0 + $;w: + lkn+,) 

which gives the following expression for the Jacobian: 

J =constantxexp 4 $+$-dt' . (26) ( l T  ) 
When calculating the Jacobian equation (26). the fields q* and $* were considered to 

be independent complex variables or, in other words, as different coordinate systems in the 
whole space CZM of the fields' configurations. As the conditions 

P+ = (P-Y (27) 

are externally imposed on the model they specify the surface C in CzM along which the 
differential forms 'D@ A Dp- or 'D$+ A 'D$- are integrated. For the coordinate sets 
($*), equation (18) for C can be considered to be implicit. According to the Cauchy- 
Poincare theorem, the integration surface can be deformed in an arbitrary way in the 
convergence domain provided we integrate an analytical function. There exists a continuous 
family of surfaces (homotopy) which includes both C and the 'standard' E': 

(28) C' = { -$+ = ($.-)*}. 

The explicit expression for such a homotopy in a more general case can be found in [7]. 
Thus, we can replace the surface of integration 

Substituting equation (18) into the measure equation (5) and using expressions (20) and 
(26), we obtain the following modification of the measure for averaging over $*t: 

by the standard E'. 

ND$*exp(-&{$*}) SI =/ +m [-E@ 2 . +  rl, - +,($-$+)~-4+++-] 8 dt (29) 
0 

or, correspondingly, in the discrete form 

This means that we have reformulated the initial problem of the multiplicative random- 
matrix process with the measure equation (5) to the multiplicative random-scalar process 
with the measure given by equation (29). 

t It should be noted that the convergence is provided by the term -$+e- in the action where the discretization 
(25) is assumed. 
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3. Gaussianity of passive scalar correlations 

Another peculiarity of the arbitrary multiplicative random process is the Gaussian-like 
fluctuations of the exponential rate A(T) with an amplitude that decays l i e  constant/& 
when T goes to infinity. Let us note that this fact has been proven both for the multiplicative 
random scalar process (see, e.g. [SI) and matrix process (see [91). The usual way to calculate 
the constant in front of l/& is to restore the distribution function of A( f )  at arbitrary time 
from the set of moments (R") and then extract the Gaussian-like peak around the mean 
Lyapunov exponent at large enough time (for an example of such a calculation in ID see 
[lo] and for quasi ID see [ l l ]  localization problems). We follow a similar procedure in the 
present context. 

It is convenient to define the exponential stretching rate in our case as 

A I~[R*(T)] /~T.  (31) 

In order to find the probability distribution function (PDF) of A let us first calculate all the 
even moments of R 

((-2?h+(O))"exp (8ml: ?h+?h-df))l 

( U 1  
Rm(T) = (Rb) = (32) 

where (. . . ) I  stands for the average with respect to the measure equation (29). Passing to 
the new integration variables by means of the gauge transformations 

which can be witten in discretized form as 

(34) 

we reduce the averaging in both numerator and denominator (the latter case corresponds to 
m = 0) of equation (32) to the Gaussian type 

( ( -2@+(O))" exp (8m lT ++@- dt)) = (-2)"((x+(O))")2 exp { [(Zm + 2)m + $1 D T ]  
I 

( I ) ,  = eDTI2. (35) 

Here (. . .)z stands for the averaging with respect to the Gaussian measure 

+m 
N''DX*exp(-S2{Xf}) S, = 1 xtx-df (36) 
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and one takes into account the fact that the Jacobian of the map equation (33) is 

The average ( ( ~ ~ ( 0 ) ) " ' ) ~  is equal to (-+)'" due to the condition xt(T) = -;. This result 
is easy to get by shifting xt  + -$ + 2t and noticing that all the averages of i+ are equal 
to zero. Thus, we anive at the result 

(38) R,(T) = exp(DT(2m + 2)m). 

By knowing R, one can extract the Fourier representation for the PDF of RZ in the 
following way: 

CO (ik)" - +*ex) exp -- + 
$k = m a  -R, m! = (:T 

and the PDF for RZ is obtained after Fourier inversion of the form 

. e"). 

(39) 

Correspondingly, the PDF of the stretching rate defined in equation (30) is explicitly given 
by the expression 

which shows exact Gaussianjluctuations around the average value (A) = D with the 
variance D I T  vanishing when T tends to infinity. In particular, A tends asymptotically 
to a non-random ('deterministic') quantity (the Lyapunov exponent) in agreement with the 
general theory. 

In order to pass from the statistics of A to the statistics of the Ps-field, we introduce the 
fluctuating quantity 

the distribution of which can be restored from the PDF of A. Indeed, at r/L < 1 we can cut 
the integral in the right-hand side of equation (42) at t = h(r/L)/h and estimate Q with 
logarithmic accuracy as 

This gives us the possibility of extracting the PDF of Q from expression (41). We obtain 

Such a PDF has, at r --t 0 asymptotically, the form of a Gaussian distribution for the quantity 
Q /  In(L/r) approaching the &functional form when L/r + 00. 
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4. Conclusion 

We have described explicitly the local (no space averaging) statistics of a passive scalar 
advected by a long-range delta-correlated velocity field. First, by following [3], we 
transformed the initial problem to a study of the advection of a unit cell embedded in 
a long-range velocity field. The second key step in the evaluation of the problem was 
an averaging of the timeordered exponent describing the cell advection. We applied a 
modification of the functional-integral technique, used before in the theory of magnetism 
[6], to obtain the statistics of the stretching rate of the cell. The statistics turned out to 
be exactly Gaussian at an arbitrary time of the cell evolution. The Gaussian fluctuations 
around the average value of the stretching rate vanishes at time tends to infinity. Finally, we 
described the statistics of the passive scalar field (44) (ln(L/r))-' << 1) with logarithmic 
accuracy. 
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