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Polarization mode dispersion is the effect of signal broadening in a fiber with birefringent disorder. The dis-
order, frozen into the fiber, is characterized by the so-called vector of birefringence (VB). In a linear medium
a pulse broadens as the two principal states of polarization split. It is well-known that, under the action of
short-correlated disorder, naturally present in fibers, the dispersion vector (DV), characterizing the split, per-
forms a Brownian random walk. We discuss a strategy of passive (i.e., pulse-independent) control of the DV
broadening. The suggestion is to pin (compensate) periodically or quasi-periodically the integral of VB to zero.
As a result of the influence of pinning, the probability distribution function of the DV becomes statistically
steady in the linear case. Moreover, pinning improves confinement of the pulse in the weakly nonlinear case.
The theoretical findings are confirmed by numerical analysis. © 2004 Optical Society of America
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1. INTRODUCTION
To design high-bit information transmission systems in
optical communications, it is necessary to understand
various effects that influence the propagation of a signal
in an optical fiber. One prominent effect is polarization
mode dispersion (PMD), which has been studied in the
linear case in a seminal series of papers by Poole and
co-authors,1–4 and, to the present day, PMD has remained
one of the major limitations of a transmission system.5

The effects of PMD on pulse propagation have been stud-
ied experimentally,6,7 and measurement techniques have
been analyzed.8,9 Inspired by experimental observa-
tions,10 Poole and Wagner introduced the concept of prin-
cipal states,11 which has been used widely in theory12,13

and experiments.14 Extensions of their concept account
for polarization-dependent loss15–17 and nonlinearity.18

One of the most important problems, however, is how to
compensate for PMD. The scope of this paper is to show
that periodic compensation (pinning) can help to improve
a system’s performance. This method works (however, to
different extents) in both the linear and the nonlinear re-
gime.

The paper is organized as follows. First, in Section 2,
we will introduce the basic equation and the general idea
of pinning. Then we review the theory of principal states
and its extension to pulses in Section 3. In Subsections
3.A–3.C we will introduce a methodology to characterize
the effect of PMD on pulse propagation that is closely
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linked to such quantities arising naturally in the linear
theory, such as the polarization dispersion vector V. We
show that the quantities are meaningful in the nonlinear
theory as well. Multifrequency statistics of the polariza-
tion dispersion vector for natural noise (no pinning) are
described in Subsection 3.D. Then, in Section 4, we turn
to the analytical description of the pulse statistics in both
the linear and the nonlinear case for pinned short-
correlated noise. Multifrequency statistics of V are de-
scribed in Subsection 4.A, where it is shown, in particular,
that the compensation due to pinning in the linear case is
ideal, in the sense that the pinning compensates for the
growth of the pulse width completely. Subsection 4.B
discusses the effect of pinning in the weakly nonlinear
case. Section 5 is devoted to numerical analysis of PMD
and comparison of the effects for natural and pinned
cases. We demonstrate numerically the effectiveness of
the pinning method. Subsections 5.A and 5.B are de-
voted to analysis of the linear and nonlinear cases, re-
spectively. Finally, Section 6 is reserved for brief conclu-
sions.

2. BASIC MODEL OF POLARIZATION
MODE DISPERSION
An optical fiber is not circular in cross section but rather
elliptic. As a result of this19 and other influences such as
twist and stress,20,21 light changes its polarization while
2004 Optical Society of America
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propagating through the fiber. This phenomenon is at
the core of our description, and we start the paper with an
introduction into the linear and nonlinear physics of the
one-dimensional trapped propagation of light through a
monomode optical fiber with birefringent, but isotropic
(on average), disorder.

The electric field E is tangential to the major propaga-
tion direction. It decomposes into two complex compo-
nents as E 5 E exp(ik0 z 2 iv0t) 1 E* exp(2ik0 z 1 iv0t),
where z is the coordinate along the fiber. v0 and k0 are
the carrier frequency and the wave vector of the electric
signal, respectively. In the monomode regime the coarse-
grained (envelope) description of the signal propagation is
given by the complex, two-component field C, E
[ (a51,2Caea . Here e1,2 are unit vectors, orthogonal to
each other and to the waveguide direction. The envelope
approximation equation (derived directly from Maxwell’s
equations; see Refs. 22 and 23) is as follows:

i]zCa 1 DabCb 1 imab] tCb 1 d~z !] t
2Ca 5 2

d^W&

dCa*
.

(1)

This is a partial differential equation of second order in t,
where t is the retarded time measured from the reference
frame moving along the fiber with the mean group veloc-
ity of the signal. The matrices m̂ and D̂ characterize the
birefringence and will be discussed in more detail below.
Superscripts and subscripts are used synonymously in or-
der to make use of Einstein’s summation convention.
The dispersion d(z) is a function of z that can usually be
assumed to be piecewise constant. The right-hand side
(rhs) of Eq. (1) is reserved for the nonlinear Kerr term.
We consider both linear and nonlinear problems in the pa-
per. The former means zero for W. In the latter case, W
is the Kerr energy. In the isotropic medium, W 5 E4/6.
(The dimensional coefficient is rescaled to 1/6 by a proper
choice of the z units.) ^W& stands for the average of the
energy over the fast carrier frequency and wave-vector os-
cillations (see Ref. 24 for a similar derivation in a three-
dimensional isotropic medium):

6^W& 5 ^@E2 exp~2ik0z ! 1 2uEu2 1 E* 2 exp~22ik0z !#2&

5 2E2E* 2 1 4uEu4

5 2~C1
2 1 C2

2!~C1*
2 1 C2*

2! 1 4~ uC1u2 1 uC2u2!2,

(2)

dW

dCa*
5

2

3
Ca* ~C1

2 1 C2
2! 1

4

3
Ca~ uC1u2 1 uC2u2!.

(3)

It is easy to check that expressions (2) and (3) are invari-
ant under any rotation of the polarization axes:

S C1

C2
D → F cos u sin u

2sin u cos u
G S C1

C2
D . (4)

Let us discuss various terms on the left-hand side (lhs) of
Eq. (1). The last term describes combined (material and
waveguide) dispersion of the fiber. One assumes here
that the dispersion is constant along the fiber (see Refs.
25 and 26 for a discussion of the effects associated with
variations of the fiber dispersion) and rescales the disper-
sion coefficient to unity by the proper choice of the tempo-
ral units. The matrix of birefringence, m̂, describes an-
isotropy in the group velocity for the two states of
polarization. The matrix m̂ is traceless as a result of the
proper choice of the retarded-time reference frame. One
assumes that there is no energy loss, which means that m̂
is self-adjoint. The m̂ term on the lhs of Eq. (1) is the
only source of medium anisotropy that we consider in this
paper. Anisotropic (birefringent) corrections to the terms
in Eq. (1) other than the D̂ and m̂ ones are usually less
important, i.e., they have a weaker effect on propagation,
if the fiber is isotropic on average. As far as the other an-
isotropic term in Eq. (1), D̂, is concerned, we can actually
exclude it from consideration. The reason for this simpli-
fication is twofold. In some fibers D̂ is just small. In the
general case (e.g., in the opposite and more realistic limit
of large D̂, where uDu @ umu/b and b is the pulse width),
one can change Ca in Eq. (1) to the slow field C̃a

5 T exp$@*0
zD̂(z8)dz8#ab%Cb , where T exp signifies a

z-ordered exponential, and then one can average over
fluctuations of D̂(z). The linear part of the equation for
the averaged C̃ is identical to the lhs of Eq. (1), while the
nonlinear term depends on details of the statistics of the
matrix D̂. Some discussion of the D-averaging procedure
can be found in the literature,27–29 where the special case
of averaging over an almost circular fiber, so that the bit
length and the correlation length of the D disorder are
comparable, was considered. In the part of this paper
dealing with nonlinear and weakly nonlinear cases, we
adopt another possible scenario of the nonlinear term
averaging30 (different from the one described in Refs. 27–
29), where the structure of the averaged nonlinear term
remains the same as that given by the rhs of Eq. (1).
Note that both the theoretical and the numerical analysis
of this paper can be easily extended to account for other
formulations of nonlinear terms. This generalization/
modification does not change the major statement of the
paper that pinning of the m̂ term in Eq. (1) suppresses
pulse degradation. Thus, in this paper, we concentrate
on analyzing Eq. (1) with the D̂ term neglected.

The matrix m̂, which is parameterized through the
Pauli matrices as

m̂ 5 (
j

hj~z !ŝ j , (5)

(where j 5 1, 2, 3), is zero on average. We call h the vec-
tor of birefringence (VB). The correlation scale of the
random hj(z), naturally occurring because of imperfec-
tions in fiber production, is short. Therefore, according
to the central limit theorem, hj(z) at the greater scales
(corresponding to the long-haul transmission that we
study here) can be treated as a homogeneous Gaussian
random process with zero mean. The noise intensity is
described by Djk 5 *dz^hj(z)hk(z8)&. One assumes that
the isotropy of the noise is restored on average, i.e., Djk

5 Dd jk. In standard fiber optics jargon, D corresponds
to the so-called PMD coefficient.

The statistics of the VB are given by the functional
measure
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Dh~z !expS 2
1

2D
E h2dz D , (6)

which is unambiguously characterized by the pair corre-
lation function

^hi~z !hj~z8!& 5 Dd ijd ~z 2 z8!. (7)

Here d ij is the Kronecker symbol, and d (z) is the Dirac d
function. Note that hi is t independent, as it describes
anisotropy frozen into the fiber. Note also that averaging
in Eqs. (6) and (7) corresponds to either collecting statis-
tics over many realizations (many fibers or separated-in-
time states of birefringence of the same fiber) or spatial z
averaging over one particular realization. In the latter
case the correlation scale of the birefringent disorder is
assumed to be much shorter than the averaging scale.
Following standard notations,31 the path-integral formu-
lation for the averaging is introduced into expression (6)
for the convenience of notation and further manipulations
and derivations. (See, e.g., Ref. 31 for a description and a
detailed explanation of the path-integral approach,
widely used in statistical physics.)

In parallel with the natural process (7), we will also
consider a synthetic one. The synthetic model enforces
the pinning to zero of the integral of the VB. It is de-
scribed by

Dh~z !expS 2
1

2D
E h2dz D)

n
dS E

L~n !

L~n11 !

dzhD , (8)

where L(n), n 5 1,..., is the sequence of the pinning
points, d (x) stands for the Dirac d function, and we use
standard notation for the path-integral measure. The
process remains Gaussian with zero mean. It is unam-
biguously described by the pair correlation function,
which is

^hi~z1!hj~z2!& 5 Dd ijFd ~z1 2 z2! 2
1

L~n 1 1 ! 2 L~n !
G

(9)
for z1 and z2 belonging to the same fiber span between
two pinning points, i.e., L(n) , z1,2 , L(n 1 1), and
zero otherwise. The physical meaning of the model de-
scribed by expressions (8) and (9) is to enforce (by some
artificial means that we do not discuss in the paper, as-
suming simply that such means are experimentally avail-
able) return to zero (pinning) for the integral birefrin-
gence *0

Zdzh(z) at the sequence of special points Z
5 L(n). For the sake of simplicity, we consider the pe-
riodic pinning process L(n 1 1) 2 L(n) 5 l.

Practically speaking, the synthetic noise brings the in-
tegral of the noise back to zero periodically. Consider as
an example the stochastic equation J̇ 5 j(z), with j(z)
being white noise and the dot denoting differentiation
with respect to z. Then, after a length L, we will have
^J(L)2& } L, the standard result for Brownian motion.
For a pinned process jp(t) with Ln11 2 Ln 5 l, one de-
rives J̇p 5 jp(z), and further, directly from Eq. (9), one
derives that ^J(L)2& does not grow with L. It is intu-
itively clear that this suppression of the birefringence
strength achieved by pinning should lead to reduction of
the effect of the PMD on the signal, similarly to how pin-
ning of random dispersion, discussed in Ref. 26, improves
the transmission characteristics of a fiber line with a ran-
dom dispersion coefficient.26 In this paper we aim to
quantify this intuitive statement.

3. LINEAR POLARIZATION MODE
DISPERSION
A. Linear Propagation Equation
Here we discuss the linear version of Eq. (1), i.e., with
zero rhs; hence

i]zC 1 @im̂~z !] t 1 d~z !] t
2#C 5 0. (10)

The formal solution of the equation is

C~t; z ! 5 E
2`

1`

dvE
2`

1` dt8

2p
exp@2iv~t 2 t8!

2 iv2R~z !#Ŵ~zu0; v!C~t8; 0!, (11)

Ŵ~zu0; v! [ T expF ivE
0

z

dz8m̂~z8!G ,

R~z ! 5 E
0

z

d~z8!dz8, (12)

where Ŵ is the z-ordered exponential (i.e., it is an opera-
tor that satisfies dŴ/dz 5 ivm̂Ŵ). The problem of de-
scribing the statistics of C is thus reduced to averaging of
some functionals of Ŵ.

B. Polarization and Principal States
In this subsection we consider the dispersion-free case
d(z) 5 0. There are two equivalent possibilities to de-
scribe the effects of linear PMD. One way is to look at Ŵ
and to describe properties of this time-ordered exponen-
tial in the space of unitary 2 3 2 matrices, SU(2). The
second possibility is to use the fact that there is a homo-
morphism between SU(2) and SO(3) and to describe PMD
on the Poincaré sphere. In this subsection we review the
main results of this theory.

Following the first description, we note that Ŵ is uni-
tary and can be written as

Ŵ 5 F u1 u2

2u2* u1*
G , uu1~z; v!u2 1 uu2~z; v!u2 5 1.

(13)

The concept of principal states was introduced by looking
at a constant input signal in C(v; 0) 5 C0 .11 Then the
output signal depends on the frequency, and one finds

C~z; v! 5 Ŵ~zu0; v!C0 , (14)

]C

]z
2 ivm̂C 5 0. (15)

This allows derivation of a relation between the frequency
derivative of the output state and the output state itself:

]

]v
C~z; v! 5 F ]

]v
Ŵ~zu0; v!GŴ21~zu0; v!C~z; v!.

(16)
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Therefore one finds that the matrix

Ĵ [ F ]

]v
Ŵ~zu0; v!GŴ21~zu0; v! (17)

is traceless:

Tr~ Ĵ ! 5
]

]v
~ uu1u2 1 uu2u2! 5 0. (18)

To find the evolution equation for Ĵ, one uses that

]z~Ŵ21! 5 2ivŴ21m̂ (19)

and then obtains

]zĴ 5 im̂ 1 iv@m̂, Ĵ#. (20)

Here [•, •] denotes the commutator of the two matrices.
Motivated by experiments,10 the coordinate system, called
the principal states of polarization,11 is used for the de-
scription of linear PMD. The idea is to write the output
signal C(l; v) (l marks the end of the line) in the form

C~l; v! 5 S C1~l; v!

C2~l; v! D 5 cp~l, v!ep~l, v!, (21)

where cp(l, v) is complex and ep(l, v) is a complex unit
vector that satisfies

d

dv
ep~l, v! 5 0, (22)

as a mathematical formulation of the fact that the princi-
pal polarization state of the output signal shall be inde-
pendent of the frequency to first order. The validity and
the extension of the concept of these principal states, from
a theoretical point of view and in relation to experiments
as well, have been the subject of various publications; we
refer, e.g., to Refs. 12, 17, and 18. The principal states
are related to the eigenvectors of Ĵ, as the frequency de-
pendence of C(l; v) can be expressed by

dC~l, v!

dv
5

dcp~l, v!

dv
ep~l, v!

5 Ĵ~l, v!C~l, v! 5 Ĵ~l, v!cp~l, v!ep~l, v!;

(23)

hence

Ĵ~l, v!ep~l, v! 5
1

cp~l, v!

dcp~l, v!

dv
ep~l, v!. (24)

Therefore l 5 @1/cp(l, v)#@dcp(l, v)/dv# is an eigen-

value of Ĵ, and ep(l, v) is the corresponding eigenvector.
The eigenvalues can be computed directly from Eq. (13)
(Ref. 11) and are given by

2R~z; v! 5 F u1*
2 2 u2

2 1 u1
2 2

i~u1
2 1 u2*

2 2 u1*
2

2~u1u2* 1 u1* u
l 5 6i@ uu18~l; v!u2 1 uu28~l; v!u2#1/2, (25)

where the prime denotes differentiation with respect to v.
In experiments one can measure the time delay Dt be-
tween the two polarization states. Dt is related to the
output signal in the following way: One writes cp(l, v)
in polar coordinates (with real-valued amplitude ap and
real-valued phase fp), and hence

cp~l, v! 5 ap~l, v!exp@ifp~l, v!#. (26)

Then one finds

l 5
1

cp~l, v!

dcp~l, v!

dv

5
1

ap~l, v!

dap~l, v!

dv
1 i

dfp~l, v!

dv
. (27)

Let us denote the two different eigenvalues by l1 and l2

and use this notation for all associated quantities as well.
The time delay is related to the phase of the output signal
by

Dt 5
dfp1~l, v!

dv
2

dfp2~l, v!

dv

5 2@ uu18~l; v!u2 1 uu28~l; v!u2#1/2. (28)

Therefore Dt is directly related to Ĵ as

det~ Ĵ ! 5 uu18~l; v!u2 1 uu28~l; v!u2 5
Dt2

4
. (29)

Let us now turn to the second possibility to describe the
effects of PMD on the Poincaré sphere. To define the cor-
responding quantities on the Poincaré sphere, we use the
Pauli matrices with the following signs:

ŝ1 5 F0 1

1 0G , ŝ2 5 F0 2i

i 0 G , ŝ3 5 F1 0

0 21G .
(30)

Following Foschini and Poole,12 the object associated with
the two-component field C(z; v) is the three-component
vector of polarization P(z; v) defined by

P i 5 ~C1* C2* !ŝ iS C1

C2
D . (31)

The evolution of the signal C according to Eq. (14) corre-
sponds to

P~z; v! 5 R~z; v!P0 , (32)

where R is a 3 3 3 matrix that can be related to Ŵ by

To find the quantity corresponding to Ĵ, one recalls that Ĵ
is traceless. Thus one can define a three-component vec-
tor V by

2 u1*
2 2 u2

2 2 u1
2 1 u2*

2 2 2~u1u2 1 u1* u2* !

u2
2! u1

2 1 u2*
2 1 u1*

2 1 u2
2 2i~u1* u2* 2 u1u2!

2i~u1* u2 2 u1u2* ! 2~ uu1u2 2 uu2u2!
G . (33)
u2*

2

2!



490 J. Opt. Soc. Am. B/Vol. 21, No. 3 /March 2004 Chertkov et al.
Ĵ 5 i(
i

V is i 5 iV–s, (34)

and one derives

2iV1 5 u1u28 2 u18u2 1 u1*
8u2* 2 u1* u2*

8 , (35)

2V2 5 2u18u2 1 u1u28 1 u1* u2*
8 2 u1*

8u2* ,
(36)

iV3 5 u18u1* 1 u28u2* 5 2u1u1*
8 2 u2u2*

8 ,
(37)

which also shows that the vector V is real. V is usually
called the polarization dispersion vector.2,4,12,14,20,21,32

This new object allows the presentation of the frequency
dependence of P as a rotation on the Poincaré sphere.
One takes the definition (31) of P and uses

]

]v
C~z; v! 5 F iV3 iV1 1 V2

iV1 2 V2 2iV3
GC~z; v!

to express the frequency derivatives of C through C itself.
The result is

]

]v
P~z; v! 5 2@P~z; v! 3 V~z; v!#. (38)

From Eqs. (15), (31), and (38), one finds

]

]z
P~z; v! 5 2v@P~z; v! 3 h~z !#. (39)

To describe the evolution in z of the polarization disper-
sion vector, we go back to Eq. (20) and the definition of V
and find

@m̂, Ĵ# 5 i(
k, j

hkV j@ŝk , ŝ j# 5 22@~h1V2 2 h2V1!ŝ3

2 ~h1V3 2 h3V1!ŝ2 1 ~h2V3 2 h3V2!ŝ1#,

(40)

which leads to

]

]z
V~z; v! 5 h~z ! 2 2v@h~z ! 3 V~z; v!#. (41)

This equation can be used to describe the statistics of V
for random birefringence.12,33,34 Therefore the polariza-
tion dispersion vector V can be used in two ways. First,
it can be measured easily by using Eq. (38) (Ref. 3), and
second, the length of V is related to Ĵ and therefore also
to the transfer matrix (z-ordered exponential) Ŵ by

uV~l, v!u 5 Adet~ Ĵ ! 5
Dt

2
, (42)

as follows directly from the definition of V and the above
considerations.

C. Polarization-Mode-Dispersion-Induced Growth of
the Pulse Width
We show now how V can be related directly to measure-
ments and numerical simulations. In both cases pulses
are used—in telecommunications they represent the in-
put signal, and in the numerical modeling, the initial con-
ditions of Eq. (10).

Let us therefore consider a fixed input pulse and at first
put d 5 0 in Eq. (10):

C~0; v! 5 S f~v!

0 D (43)

with a real-valued function f(v). Then, from the above
discussion, a natural object to look at is

S f1~v!

f2~v! D 5 Ŵ~z, v!C~0; v!, (44)

and, in analogy with Eq. (29), one shall look at

T̃2 5
1

2p
E @ uf18~v!u2 1 f28~v!u2#dv 5 E t2@ uf1~t !u2

1 uf2~t !u2#dt, (45)

where the prime denotes differentiation with respect to v
and f1(t) is the inverse Fourier transform of f1(v). Us-
ing the properties of the transfer matrix Ŵ, one finds

uf18u2 1 uf28u2 5 ~ uu18u2 1 uu28u2!u f u2 1 u f8u2, (46)

and it is therefore suggestive to look at

T̃PMD
2 5

1

2p
E ~ uf18u2 1 uf28u2 2 u f8u2!dv (47)

to extract the PMD-induced pulse broadening. In a simi-
lar way we can include the dispersive case d Þ 0 in our
considerations. In the linear regime two effects are re-
sponsible for pulse broadening: dispersion and PMD.
Therefore our objective here is to separate the regular dis-
persive broadening from the one associated with PMD.
From the solution of Eq. (10), it is clear that dispersion is
a phase rotation in Fourier space gained with accumu-
lated dispersion R(z). Therefore we have to look at

S c1~v, z !

c2~v, z ! D 5 exp@2iv2R~z !#S u1~v, z !f~v!

2u2* ~v, z !f~v! D , (48)

taking into account

u c18u2 1 u c28u2 5 ~ uu18u2 1 uu28u2!u fu2 1 u f8u2 1 4v2R2u f u2

1 2ivR~u1* u18 2 u1u18* 1 u2* u28

2 u2u28* !u f u2, (49)

where primes denote again differentiation with respect to
frequency. From these formulas it is clear that the
growth of the pulse width, measured by TPMD

2 , is directly
related to the vectors (u1 , u2) and (u18 , u28) and therefore
to V.

For instance, for ^uj* uj8& 5 ^uj*
8uj&, one arrives at

^TPMD
2 & 5

1

2p
K E ~ u c18u2 1 u c28u2!dv

2 E ~4v2R2u fu2 1 u f8u2!dv L . (50)

This formula shows again that the pulse width is influ-
enced by different effects. If we subtract the initial pulse
width and the pulse broadening induced by dispersion, we
are left with the pulse broadening caused solely by PMD.
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For the special case in which the statistics of uVu do not
depend on the frequency, we obtain the important relation

^TPMD
2 & 5 ^uVu2&E u f u2dv. (51)

Therefore we understand the PMD-induced pulse broad-
ening if we understand the statistics of V.

D. Multifrequency Statistics of V and Natural Noise
In this subsection we will calculate multifrequency statis-
tics of V, all taken at the same z. For this purpose we
use Eq. (41) and average over VB statistics described by
expression (6). The path-integral representation for the
joint probability distribution function of V1 ,...,Vn ,
...,VN , where the index n 5 1,...,N marks the set of fre-
quencies, is

P~zu$Vn%! 5 E
$Qn~z !5Vn%

S )
n51

N

DQnDpnD
3 expF E

0

z

dz8S 2i(
n51

N

pn

d

dz8
Qn 2

D

2

3 H (
n51

N

@pn 2 2vn~Qn3pn!#J 2D G
3 P(0u$Qn~0 !%)

5 E
$Qn~z !5Vn%

F)
n51

N

DQn~z !Dpn~z !G
3 expS 2E

0

z

dz8SDP(0u$Qn~0 !%), (52)

S 5 i(
n51

N

pn

d

dz8
Qn 1

D

2 (
k,n51

N

$pkpn 1 2~vnQn

2 vkQk!~pk3pn!

1 4vnvk@~pkpn!~QkQn! 2 ~Qkpn!~Qnpk!#%.

(53)

The Fokker–Planck equation for the probability distribu-
tion function is then

H ]z 2
D

2 (
k,n51

N

@]V;k
i ]V;n

i 1 2~]V;k 3 ]V;n!~vnVn 2 vkVk!

1 4vnvk~]V;k
i Vk

j ]V;n
i Vn

j 2 ]V;k
i Vk

j ]V;n
j Vn

i !#J P 5 0.

(54)

One can straightforwardly derive equations for correla-
tion functions of V from Eq. (54), first by multiplying both
the lhs and the rhs of the equation on the same
V-dependent object, second by integrating the resulting
expression with respect to V, and finally by using integra-
tion by parts to get a relation (differential equation with
respect to z) between different correlation functions of V.
For example, the sequence of equations for the single-
frequency moments of V given by
]z^V
2n& 5 n~2n 1 1 !D^V2n22& (55)

is an immediate consequence of Eq. (54). The single-
point probability distribution function of uVu can be recon-
structed from Eq. (55):

P~ uVu! 5
4uVu2

D3Ap
expS 2

V2

D2 D , (56)

D2 [ 2
3 V0

2 1 2Dz. (57)

The Maxwellian statistics were found by Poole and co-
authors in Refs. 1–4.

The next step is to deduce from Eq. (54) expressions for
two-frequency objects. For the correlation functions of
(V1V2) and V2

2V1
2, one gets

]z^~V1V2!n& 5
D

2
^~]V;2 1 ]V;1!2~V1V2!n& 1 2D~v1V1

2 v2V2!^~]V;2 3 ]V;1!~V1V2!n&

1 2DK H 2v1v2@~V1V2!n~]V;1]V;2!

2 V1
i ]V;1

j V2
j ]V;2

i #

1 (
k51

2

vk
2~Vk

j ]V;k
i Vk

j ]V;k
i

2 Vk
j ]V;k

i Vk
i ]V;k

j !J ~V1V2!nL
5

n~n 2 1 !

2
D^~V1V2!n22~V2

2 1 V1
2!&

1 Dn~n 1 2 !^~V1V2!n21&

1 2Dn~n 2 1 !

3 ~v1 2 v2!2^~V1V2!n22V2
2V1

2&

2 2Dn~n 1 1 !~v1 2 v2!2^~V1V2!n&,

(58)

]z^V2
2nV1

2m& 5
D

2
^~]V;2 1 ]V;1!2V2

2nV1
2m&

5 D@n~2n 1 1 !^V2
2n22V1

2m&

1 m~2m 1 1 !^V2
2nV1

2m22&#

1 4Dnm^~V1V2!V2
2n22V1

2m22&.

(59)

Equation (58) has a simple solution for the pair correla-
tion function

^~V1V2!&~z ! 5 exp@24D~v1 2 v2!2z#~V1V2!~0 !

1 3
1 2 exp@24D~v1 2 v2!2z#

4~v1 2 v2!2
,

(60)

which was found recently in Ref. 34 by means of direct
summation of the discretized set of equations. The result
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shows that the PMD is actually a single-frequency effect;
i.e., at any fixed nonzero value of the frequency shift v12
[ v1 2 v2 , the correlation function goes to a constant at
z → `. (This is contrary to the linear growth of the
single-frequency object.)

Note that the statistics of (V1V2) are not Gaussian
(even though Gaussianity, as we will see below, is restored
at z → `). This is seen from expressions for the fourth-
order correlation function. From Eq. (55) one derives

]z^~V1V2!2& 5 D^V1
2 1 V2

2& 1 8D^~V1V2!&

1 4D~v1 2 v2!2^V2
2V1

2&

2 12D~v1 2 v2!2^~V1V2!2&. (61)

Finally, from Eqs. (59) and (61), one finds

^V2
2V1

2&

5 E
0

z

dz8@3D^V1
2 1 V2

2& 1 4D^~V1V2!&#

5 9D2z2 1 3D~V1
2 1 V2

2!0z

1 ~V1V2!0

1 2 exp@24D~v1 2 v2!2z#

~v1 2 v2!2

1 3
4D~v1 2 v2!2z 2 $1 2 exp@24D~v1 2 v2!2z#%

4~v1 2 v2!4
,

(62)
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2

1 E
0
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2 1 V2

2&

1 8D^~V1V2!& 1 4D~v1 2 v2!2^V2
2V1

2&#z8

5 3D2z2 1
1

6v12
4

1
Dz

v12
2

1 Dz~V1
2 1 V2

2!0 1
~V1V2!0

3v12
2

1 exp~24Dzv12
2 !F ~V1V2!0

2v12
2

2
3

8v12
4 G

1 exp~212Dzv12
2 !F ~V1V2!0

2 1
5~V1V2!0

6v12
2

1
5

24v12
4 G .

(63)

Let us summarize the results of these computations.
In addition to the known results on the statistics of uVu
[Eq. (56)] and the pair correlation function of V at differ-
ent frequencies [Eq. (60)], we have explained here the
general way to calculate higher-order and multifrequency
correlation functions of V. We have applied this general
technique to calculate fourth-order two-frequency objects
[Eqs. (62) and (63)]. It is found that as z → `, the
asymptotic statistics of V are Gaussian and frequency in-
dependent. [Higher-order corrections (in terms of 1/z),
accounting for angular correlations, do show, however,
some frequency dependence.] These results [in combina-
tion with Eq. (51)] let us conclude that the major effect is
that the pulse width squared will grow linearly in z be-
cause of the effect of PMD. This well-known effect pre-
sents a serious limit to telecommunication capacities, and
it is therefore of high practical importance to find a way to
reduce this growth of the width. Section 4 is devoted to
checking if the pinning method, introduced by Eq. (9), is
able to achieve the goal.

4. PINNING METHOD
A. Multifrequency Statistics of V in the Linear Case
We consider first the statistics of V within a single pin-
ning leg (0 , z , L). The analogs of Eqs. (52) and (53)
are

P~zu$Qn%! 5 E dqS )
n51

N

dFnD expS 2
q2LD

2 D
3 K )

n51

N

d ~Vn 2 Fn!U
3 exp@2Ĥq~L 2 z !#

3 U)
n51

N

d ~Vn 2 Qn!L K )
n51

N

d ~Vn 2 Qn!U
3 exp~2Ĥqz !uP~0u$Vn%!&

5 E dq expS 2
q2LD

2 DPq~zu$Qn%!, (64)

Pq~zu$Vn%! [ exp~2Ĥqz !uP~0u$Vn%!&,

Ĥq [ Ĥ0 1 iD(
n51

N

]V;n@q 2 2vn~q3Vn!#,

(65)

Ĥ0 [ 2
D

2 (
k,n51

N

@]V;k
i ]V;n

i

1 2~]V;k 3 ]V;n!~vnVn 2 vkVk!

2 4vnvk~]V;k
i Vk

j ]V;n
i Vn

j

2 ]V;k
i Vk

j ]V;n
j Vn

i !#. (66)

One may therefore interpret the transition from the origi-
nal statistics to the restricted ones as a change from h(z)
to h(z) 2 Dq, where q is a static (z-independent) Gauss-
ian field with zero mean and the following pair correlation
function:

^qiqj& 5
d ij

DL
. (67)

The rules of calculations are a little bit more complex
here. One first needs to calculate objects conditioned to q
and only afterward average the result over statistics of q,
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described by Eq. (67). Thus, for the first two moments of
V, one gets the following set of equations:

]z^V&q 5 iDq, ]z^V2&q 5 2iDq^V&q 1 3D,
(68)

]z^V1V2&q 5 iDq^V1 1 V2&q

2 2iDv12q^V13V2&q 1 3D

2 4Dv12
2 ^V1V2&q , (69)

where ^ • &q stands for the average conditioned by q. In-
tegration of Eqs. (68) gives

^Vi&q 5 Vi~0 ! 1 iDqz, (70)

^Vi
2&q 5 Vi

2~0 ! 1 3Dz 2 D2q2z2 1 iDzqVi~0 !.
(71)

Let us drop the dependence on the initial conditions at z
5 0. Then the problem is isotropic, and

^V1
aV2

b&q 5 d ab
A

3
1 S d ab

3
2

qaqb

q2 D B, (72)

the cross-product term of Eq. (69), disappears from the
problem completely and one gets

^~V1V2!&q;isot 5 DE
0

z

dz8 exp@24Dv12
2 ~z 2 z8!#

3 ~3 2 2q2Dz8!, (73)

where the subscript isot stands for the isotropic part. It
is easy to check that the general (anisotropic) solution is

^~V1V2!&q 5 ^~V1V2!&q;isot 1 ~V1~0 !V2~0 !!

3 exp~24Dv12
2 z ! 1 iDq$V1~0 ! 1 V2~0 !

2 2v12@V1~0 ! 3 V2~0 !#%

3
1 2 exp~24Dv12

2 z !

4Dv12
w

, (74)

and after averaging with respect to q is done, we are left
with

^~V1V2!& 5 S 3 1
^q2&

2v12
2 D 1 2 exp~24Dv12

2 z !

4v12
2

2
zD^q2&

2v12
2

1 ~V1~0 !V2~0 !!exp~24Dv12
2 z !. (75)

The expression contains, in particular, renormalization of
D2 to the Maxwellian distribution (57) as a result of pin-
ning:

Dpin
2 5

2
3 @V0

2 1 3Dz~1 2 z/L !#. (76)

The formulas derived above are valid within one compen-
sation interval (0 , z , L). One may use all of them,
however, with some modification for the next subsequent
interval(s) as well, replacing V1,2(0), z and L by V1,2(L),
z 2 L and 2L, respectively.

Finally, the conclusion of the linear consideration is
that the pinning is ideal, in the sense that it compensates
for the growth of D2 [according to the extension of Eq. (76)
to many pinning periods] completely. Figure 1 compares
the unpinned growth of TPMD
2 given by Eq. (57) with the

pinned case (76) by the relation

^TPMD
2 & 5 ^uVu2& 5

3
2 D2 (77)

for a Gaussian input that is normalized by * u f(v)u2dv
5 1. From this we can see how pinning works: It is not
a pointwise compensation, but the compensation is dis-
tributed in the whole span [0, 0.5] according to Eq. (9).
Because of this modification of the correlation of the
noise, the mean of TPMD

2 will come back to zero on the pin-
ning point. This is why the above curves are piecewise
parabolic and do not follow a sawtooth.

B. Weak Nonlinearity: Do We Have an Averaged
Equation (Self-Averaging)?
In the linear case we can describe the effect of pinning
analytically and compute the statistics of V. If we in-
clude nonlinearity, the system is much more complex and
we have to apply a different method in order to study its
properties. In this section we present an analytical
analysis of the pinning effect in the case of weak nonlin-
earity, i.e., when the effect of PMD is strong. (Even
though analytical consideration of the pinning effect in
the opposite limit of weak PMD in the spirit of Refs.
35–37 is possible, we do not discuss it in this paper.) The
more realistic case of moderate-strength PMD is ad-
dressed numerically in Section 5.

Weakness of the nonlinearity suggests transition to a
‘‘slower’’ variable F related to C through

C~t; z ! [ E
2`

1`

dv exp~2ivt !Ŵ~z; v!Fv~z !. (78)

The idea of the substitution is obvious. If the nonlinear
term is not taken into account, F is subjected only to a
pure dispersive spreading, as the change of polarization
(the major fluctuating effect) is already accounted for
through the W term in the integrand of Eq. (78). Fv(z)
satisfies the following integral equation:

Fig. 1. Pinning in the case of d-correlated noise. The ampli-
tude of the noise is D 5 0.3, corresponding to a PMD parameter
of d 5 0.03 ps/Akm,23 if the propagation distance is normalized
with a length L 5 100 km. The growth of the pulse width is pe-
riodically suppressed. If the system is linear and the noise is d
correlated, this suppression is complete. The pinning period is
here (and in the following numerical simulations) 0.5 (in dimen-
sionless units), corresponding to 50 km.
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~i]z 2 v1
2!F1

a 1 2E dv2,3,4d ~v1 2 v2 1 v3 2 v4!

3 Jabnh~v1,2,3,4uz !F2
bF3*

nF4
h 5 0, (79)

Jabnh~v, v1,2,3,4uz ! [ 4
3 @Ŵ21~z; v1!Ŵ~z; v2!#ab

3 W* mn~z; v3!Wmh~z; v4!

1
2
3 @Ŵ21~z; v1!Ŵ* ~z; v3!#an

3 Wmb~z; v2!Wmh~z; v4!. (80)

The major question is the following: Is direct averaging
of the equation allowed? A more formal way to pose this
question is to ask if the quantity

1

z
E

0

z

Jabnh~v1,2,3,4uz8!dz8 (81)

saturates to a nonfluctuating object at z → ` or not.
A similar question has been addressed in Refs. 25 and

26, where the case of strong fluctuations in dispersion
(and, respectively, weak nonlinearity) has been studied.
The answer to the question was negative for the natural
noise in dispersion: The analog of F fluctuates strongly.
The pinning of the integral dispersion, however, results in
saturation of the integral kernel fluctuations. This guar-
antees the deterministic character of the envelope func-
tion (analog of F) in the z → ` limit.

However, our problem here is more complex than the
scalar one considered in Ref. 25. The major difference is
due to the matrix character of the process: What was an
exponential of an integral over a random process now
turns into a z-ordered exponential Ŵ. It is clear that the
change from a scalar to a matrix process can only worsen
the situation with the averaging: A process that is a self-
averaged one in the scalar case may either remain self-
averaged or lose this feature, but not the other way
around (the matrix nature of the process adds fluctua-
tions but cannot remove them).

Thus one concludes that the kernel (81) fluctuates
strongly in the case of natural noise in birefringence.
This fact is demonstrated in Appendix A, where the aver-
age of V̂(v1uv2) [ Ŵ21(z; v1)Ŵ(v2), which is a multipli-
cative part of the kernel in Eq. (79), and
Sab;mn(v1 , v2 ; v3 , v4), defined as the average of
Vab(v1uv2)Vmn(v3uv4) [the object is an additive part of
the average of the kernel (79)], are calculated. Both ^V̂&
and ^S& decay exponentially for large z and a nondegener-
ate configuration of frequencies. This excludes the pos-
sibility of integral (81) being a self-averaged quantity.
We have also considered the objects averaged over the
pinned noise in Appendix A. Pinning results in reduction
of the exponential decay rate of average kernel with z, i.e.,
the destruction of a pulse is getting weaker. However,
the decay rate remains finite. We conclude that the ma-
trix nature of the problem does not allow a complete satu-
ration of the kernel in Eq. (79). In other words: We find
that the pinning delays the effective decay of the kernel
with z; however, it does not allow a complete compensa-
tion of the decay in the weakly nonlinear case.
5. NUMERICAL ANALYSIS OF POLARIZED
MODE DISPERSION (COLORED NOISE
WITH SHORT CORRELATIONS)
So far, we have considered d-correlated noise, which is al-
ready a good approximation for physical systems. To
show that the basic idea that pinning helps to reduce
pulse spreading can be extended to the case of short-
correlated noise, we performed numerical simulations.

A. Linear Case
Numerical simulations can be performed directly for the
basic equation (10). The matrix m̂ is a function of z, and,
in the analytical calculations, its entries are assumed to
obey white-noise statistics. In the numerical simulations
the short-correlated noise is generated by an Ornstein–
Uhlenbeck process. The equation for a step dz is

Ŵ~z 1 dz; v! 5 exp@i~vm̂ 1 v2Î2!dz#, (82)

where Î2 [ diag(1, 1) is solved directly by using the ex-
plicit formula for a matrix exponential in the case of 2
3 2 matrices. In our simulations we take an initial
Gaussian pulse

c in~t ! 5 p21/4 exp~2t2/2!S 1
0 D (83)

and propagate it. From the output we can evaluate nu-
merically TPMD

2 by Eq. (50) and find its average by simu-
lating different realizations.

Figure 2 shows that, in the unpinned case, ^TPMD
2 &

grows linearly with z and, in the pinned case, its evolu-
tion is almost along parabolas, as predicted by Eq. (76).
It is seen, however, that unlike the d-correlated theory ex-
plained above, the compensation is not complete. We at-
tribute this to the finite-correlated nature of the noise.
We have checked that once the correlation length of the
noise is decreased (while its strength is kept the same),
the accumulated width (i.e., measure of the compensation
incompleteness) decreases.

Fig. 2. Numerical results for the linear case for short-correlated
noise. The amplitude of the noise is D 5 0.3. The solid line
represents the analytical result (3Dz) of the d-correlated case,
the dashes represent the numerical simulations in the unpinned
case for short-correlated noise, and the dots represent the pinned
case for short-correlated noise. TPMD

2 is averaged over 500 real-
izations. The correlation length is 0.002. Again, the pinning
period is 0.5, and the total length is normalized to unity.
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B. Numerical Analysis of the Nonlinear Polarization
Mode Dispersion Equations

1. New Numerical Scheme for Solving the Nonlinear
Equations
To compare the analytical results derived above with nu-
merical results, we performed numerical solutions of the
full system (1). In these numerical simulations we used
the usual split-step scheme. The linear step used the so-
lution in Fourier space in the same way as it was pre-
sented in Section 3 on linear PMD. In the general case
for a nonlinear term, presented in Eq. (3), the nonlinear
step can be performed by using a Runge–Kutta
integrator.23 A different treatment is also possible. We
consider the equations governing the nonlinear step in
the form

]zC1 5 ic~3uC1u2C1 1 2uC2u2C1 1 C1* C2
2!,

]zC2 5 ic~3uC2u2C2 1 2uC1u2C2 1 C2* C1
2!, (84)

with c 5 1/3. From these equations we obtain directly
conservation of energy, i.e.,

uC1u2 1 uC2u2 5 const. 5 E, (85)

and, additionally,

C1C2* 2 C2C1* 5 const., (86)

~C1
2 1 C2

2!~z ! 5 exp~6icEz !z~0 !,

z~0 ! 5 ~C1
2 1 C2

2!~0 !. (87)

These equations can be used to decouple the system (84):

]zCa 5 ic@2ECa 1 exp~6icEz !z~0 !Ca* #. (88)

With the transformation Ca 5 ha exp(3icEz), one obtains

]zha 5 ic@2Eha 1 z~0 !ha* #. (89)

This system of linear equations can be solved easily by
calculating the matrix exponential of the corresponding
real equations. We compared this scheme, used in a

Fig. 3. Numerical results for the nonlinear case with the initial
condition being a perfect soliton. The effect of PMD is consider-
ably reduced by the application of pinning. The solid curve is
for the unpinned case, and the dashed curve shows the pinned-
case curve. The other parameters of the simulation are the
same as those in the linear case.
split-step integrator, with a finite-difference scheme for a
fixed value of the birefringence matrix. Both schemes
yield the same result.

2. Numerical Results in the Nonlinear Case
Let us now consider the case of a soliton having the same
amplitude as that of the linear pulse considered above for
a dispersion d(z) 5 1.0. Now the equations will be
coupled in the linear and in the nonlinear part, and we
want to check if pinning allows reduction of the effect of
PMD-induced broadening. As the soliton is considered,
one has to subtract the initial width; hence we are looking
again at

T̃PMD
2 5

1

2p
E ~ uf18u2 1 uf28u2 2 u f8u2!dv. (90)

The numerical simulations presented in Fig. 3 show that
even in the nonlinear case, pinning is an appropriate
method to reduce the effect of PMD-induced pulse broad-
ening. It is interesting to note that if we compare the re-
sults of the numerical simulations of the linear and non-
linear cases, TPMD

2 grows faster in the nonlinear case.
This is not surprising, as the nonlinear terms in Eq. (1)
introduce additional energy flow from the excited polar-
ization state to the initial unexcited state.

6. CONCLUSIONS
We have shown that pinning is an effective method to re-
duce broadening of the pulse width induced by PMD. For
linear, d-correlated noise we proved this analytically. In
the weakly nonlinear, d-correlated case, we found it help-
ful to analyze the kernel of an associated integral equa-
tion. The calculations show that the effect of pinning is
positive; however, it is not able to completely suppress the
PMD-induced pulse broadening. For linear and nonlin-
ear systems, the effectiveness of the pinning method was
shown numerically for finite- but short-correlated noise in
birefringence. For this purpose we suggested an effec-
tive numerical way to perform integration of the coupled
nonlinear equations.

APPENDIX A: AVERAGE KERNEL
In this technical appendix we first calculate the auxiliary
object ^V&, where

V̂~v1uv2! [ Ŵ21~z; v1!Ŵ~v2!. (A1)

^V& is found in Appendix A.1 for both the unpinned and
pinned cases. Evaluation of these simpler averages
helps us in Appendix A.2 to find

Sab;mn~v1 , v2 ; v3 , v4! (A2)

5^Vab~v1uv2!Vmn~v3uv4!&, (A3)

which is the average of an additive part of the kernel J.
Let us first look at a discretization in z for the unpinned

case. In this case the transition from Ŵ(z 2 e) to Ŵ(z),
representing one infinitesimal step from z 2 e to z, can be
described by the following relation:
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Ŵ~z ! 5 @1 1 ivehi~z !ŝ i 2
1
2 v2e2~hiŝ i!

2#Ŵ~z 2 e!,

(A4)

where hi is a Gaussian zero mean field described by

^hi~z !hj~z !& 5
D

e
d ij . (A5)

The generalization of the key differential formula (A4)
for the pinned case is

Ŵ~zuq ! 5 $1 1 ive@hi~z ! 2 Dqi#ŝ i 2
1
2 v2e2~hiŝ i!

2%

3 Ŵ~z 2 euq !, (A6)

where averaging over q should be done according to Eq.
(67).

1. Calculation of ^V&

a. Natural Disorder (Unpinned) Case
From Eqs. (A4) and (A5), one derives

d

dz
^V̂& 5 2

3D

2
v12

2 ^V̂&. (A7)

The solution of Eq. (A7) is

^V̂~v1uv2!& 5 1̂ exp~23Dv12
2 z/2!, (A8)

where 1̂ stands for a unitary 2 3 2 matrix.

b. Pinned Case
Calculating the average V̂, conditioned to the given q, one
finds that the description is closed in terms of the two ob-
jects, i.e., one gets the following closed system of equa-
tions for the two auxiliary objects:
d

dz
S ^V̂&q

qi^@Ŵ1
21~z !ŝ iŴ2~z !#&q

D

5 DF 2
3v12

2

2
iv12

iq2v12 2
v12

2

2

G S ^V̂&q

qi^@Ŵ1
21~z !ŝ iŴ2~z !#&q

D .

(A9)
Equation (A9) is straightforward to solve. Averaging the
result over statistics of q, and taking into account that
^qi^@Ŵ1

21(z)ŝ iŴ2(z)#&&q at z 5 0 is zero (because of iso-
tropy), one derives

^V̂~z !& 5 1̂
~DL !3/2 exp~2Dzv12

2 !

A2p
E

0

`

q2dq

3 expS 2
q2DL

2 D F coshS Dz
v12

2
Av12

2 2 4q2D
2

v12

Av12
2 2 4q2

sinhS Dz
v12

2
Av12

2 2 4q2D G .

(A10)
Generalization of the object accounting for evolution
through n pinning legs (each of length l) is ^V̂(n 3 l)&
5 ^V̂(l)&n. One concludes that at z @ L 5 l 3 n, ^V̂&
decays exponentially with L, even though the rate of de-
cay is reduced by the factor 1/3.

2. Calculation of S

a. Unpinned Case
In addition to S, it is also convenient to introduce an aux-
iliary object

Fab;mh~z ! 5 ^@Ŵ1
21~z !ŝ iŴ2~z !#ab@Ŵ3

21~z !ŝ iŴ4~z !#mh&.
(A11)

From Eqs. (A4) and (A5) and also taking into account the
Pauli matrix relations

ŝ iŝ jŝ i 5 2ŝ j , ŝ iŝ j 5 d ij 1 i« ijkŝk , (A12)
one gets the following system of linear equations for dif-
ferential change of S and F in z:
d

dz
S Sab;mh

Fab;mh D 5 2
3D

2 Fv12
2 1 v34

2 2
3 v12v34

2v12v34 v1
2 1 v2

2 1 v3
2 1 v4

2 1
2
3 v1v2 1

2
3 v3v4 2

4
3 ~v1 1 v2!~v3 1 v4!

G S Sab;mh

Fab;mh D . (A13)

Integration of Eq. (A13) is straightforward but bulky, and we do not present it here so as to save space.

b. Pinned Case
The generalization of Eq. (A13) (thus conditioned to a certain value of q) becomes

d

dz
S Sq

ab;mh

Fq
ab;mhD 5 2

3D

2 Fv12
2 1 v34

2 2
3 v12v34

2v12v34 v1
2 1 v2

2 1 v3
2 1 v4

2 1
2
3 v1v2 1

2
3 v3v4 2

4
3 ~v1 1 v2!~v3 1 v4!

G S Sq
ab;mh

Fq
ab;mhD

1 DS iv12 X12;34
ab;mh 1 iv34 X34;12

mh;ab

iv34 X12;34
ab;mh 1 iv12 X34;12

mh;ab 1 ~v12 2 v34!Y12;34
ab;mhD , (A14)
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d

dz S S
F
Y
D 5 DF 23v12

2 2 v12
2 2iv12

2
3
2 v12

2 2v1
2 1 2v1v2 2 5v2

2 1 8v2v3 2 4v3
2 2iv12

iq2v12 iq2v12 24~v1
2 1 v2

2 2 v1v2!
G S S

F
Y
D . (A21)
where the following new objects have been introduced:

X12;34
ab;mh~zuq !

[ qi^@Ŵ1
21~z !ŝ iŴ2~z !#ab@Ŵ3

21~z !Ŵ4~z !#mh&, (A15)

Y12;34
ab;mh~zuq !

[ « ijkqi^@Ŵ1
21~z !ŝ jŴ2~z !#ab@Ŵ3

21~z !ŝkŴ4~z !#mh&.

(A16)

The evolution equation for the derived object X is

d

dz
X12;34

ab;mh 5 iq2Dv12Sq
ab;mh 1 iDv34q

2Gab;mh

2 v12v34D~X34;12
mh;ab 1 iY12;34

ab;mh!

2
3D

2 S v1
2 1 v2

2 1
2

3
v1v2 1 v34

2 DX12;34
ab;mh ,

(A17)

Gab;mh [
qiqj

q2
^@Ŵ1

21~z !ŝ iŴ2~z !#ab@Ŵ3
21~z !ŝ jŴ4~z !#mh&,

(A18)

d

dz
Gab;mh 5 2

3D

2 Fv1
2 1 v2

2 1 v3
2 1 v4

2 1
2

3
v1v2

1
2

3
v3v4 2

4

3
~v1 1 v2!~v3 1 v4!GGab;mh

2 v12v34D~Sq
ab;mh 1 Gab;mh 2 Fq

ab;mh!

1 iD~v34 X12;34
ab;mh 1 v12 X34;12

mh;ab!. (A19)

It is also straightforward to check that Y12;34
ab;mh(zuq) 5 0

[since the respective equation takes the form (d/dz)Y
; Y, while Y is zero initially, at z 5 0]. The resonance
condition v12 5 v34 guarantees that the different X ob-
jects enter the problem only through

Y12;34
ab;mh [ X12;34

ab;mh 1 X34;12
mh;ab . (A20)

Yet another simplification is due to the fact that while at
z 5 0, we have Gab;mh(0) 5 Fq

ab;mh , the equations for G
and F are generally (at any z) symmetric under the
G ↔ F transformation. This results in the equality G
5 F being valid at any z. The final system of linear
equations for the three (as yet not averaged over q) ob-
jects is
The system of equations can be solved for any value of q
(the result will be expressed in terms of the roots of a cu-
bic equation), and subsequent averaging over q is (at least
formally) straightforward.
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