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Error Correction on a Tree: An Instanton Approach
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We introduce a method that allows analytical or semianalytical estimating of the post-error
correction bit error rate (BER) when a forward-error correction is utilized for transmitting information
through a noisy channel. The generic method that applies to a variety of error-correction schemes in the
regimes where the BER is low is illustrated using the example of a finite-size code approximated by a
treelike structure. Exploring the statistical physics formulation of the problem we find that the BER
decreases with the signal-to-noise ratio nonuniformly, i.e., crossing over through a sequence of phases.
The higher the signal-to-noise ratio the lower the symmetry of the phase dominating BER.
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The last 50 years have witnessed a tremendous increase
in the amount of data transmitted through various com-
munication systems. This also leads to tightening of the
conditions for error-free data transfer in the presence of
noise and other transmission-related impairments. The
problem of dealing with errors in information flow has a
fundamental importance and has been studied exten-
sively in information and coding theory. In 1948
Shannon [1] proved that applying an error-corrected
code can result in an error-free communication in the
thermodynamic limit of an infinitely long message, as
long as the rate of transmitted information is kept be-
low a certain value known as the channel capacity.
Constructing well-performing, capacity-approaching yet
practical codes has been a challenge until the discovery
that some classes of codes based on random construction
[2] can achieve near-optimum performance when used for
transmission over white additive Gaussian noise channels
[3]. In the past few years several codes have been designed
with performances very close to this limit [4]. Generally,
these codes are referred to as codes on graphs, and their
prime examples are low-density parity-check (LDPC)
codes and turbo codes. A linear block code (for which
LDPC codes are an example) can be represented as the set
of solutions � to a system of linear equations Ĥ� � 0,
where each row of the parity-check matrix H is called a
parity-check equation. The codes under consideration are
called binary since all the coding operations are in a
binary field. The code can be represented by a bipartite
(Tanner) graph which consists of variable nodes that
represent the code word bits and check nodes that are
representatives of its parity-check equations. The number
of edges that originate from a node are referred to as its
degree. In this Letter we discuss primarily codes with a
uniform variable and/or check node degree distribution.
Note that relations between the variable and checking
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nodes on the graph may still be random. The uniform
degree codes based on random construction are called
regular Gallager codes [2]. These codes show an extra-
ordinarily good performance, however, it has been also
shown recently [5] that regularly structured LDPC codes
(that have a natural advantage of being memory effective
and simpler to build) can be performing comparably well.
Another major recent development is associated with
reformulating the error-correction problem in terms of
statistical mechanics [6], which stimulated a fresh flow of
new exciting ideas and analogies. (See, e.g., [7–10].)
However, the new approach has mainly focused on com-
prehensive analysis of the thermodynamic (infinite code
length) limit, whereas describing the phenomena related
to realistic finite-size codes has attracted much less
attention.

Performance of any finite-size error-correcting code is
measured in terms of the dependence of the post-error
correction bit error rate (BER) on the signal-to-noise
ratio (SNR). Error correction aims to decrease BER by
adding redundant information (overhead) to the informa-
tion message. The smaller the post-error correction BER
is (for fixed overhead) the better. Any new generation of
communication devices creates a new challenge for the
error-correction technology as it sets higher standards
for the channel capacity, thus lowering the level of BER
which can still be tolerated. Straightforward Monte Carlo
numerical simulations constitute an efficient method only
for the values of a BER �10�7 or higher, and it falls short
in accessing lower values of BER. Experimental tests are
extremely expensive, thus frequently impractical, since
they require building a special device prototype for any
new suggested coding or decoding strategy. This implies
that finding efficient practical ways of extremely low-BER
evaluation is under universal demand. Our main objective
is constructing a theoretical tool capable of delivering
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quantitative estimates for these low probability events
analytically. The approach we propose to adopt and de-
velop for achieving this goal is known under the names of
saddle point, optimal fluctuation, or instanton calculus.
(Instanton calculus, introduced initially in the context of
disordered systems [11] and aimed at estimating a low
probability event, is common in modern theoretical phys-
ics.) Therefore, we start with a general but brief intro-
duction to the subject. We describe the basic principles of
coding for an LDPC code, introduce the optimal maxi-
mal a posteriori (MAP) decoding strategy along with
generally suboptimal yet very efficient belief propagation
(BP) decoding, and finally define the post-error correc-
tion BER that characterizes the code performance. Next
we argue, following [3,4,9,10,12], that a finite-size tree-
like structure offers a good approximation for a uniform
degree LDPC code if the length of the shortest loop on
the corresponding Tanner graph is long enough. We fur-
ther focus on the BER computation for the central site on
the tree, presenting it as an integral over noise configu-
ration (fields) on the tree. Instantons—special configura-
tions of the field giving the major contribution into the
integral/BER—are first found numerically through com-
plete variational procedure. We show that all the relevant
instantons correspond to different symmetries visualized
in terms of the partially colored Tanner graph. Finally, we
describe a sequence of phase transitions, between phases
and/or instantons of different symmetries, thus fulfilling
the task of describing BER dependence on SNR in the
low-BER domain.

Error correction consists of: (i) coding the original
message (word) represented as a set of L binary �1
symbols into a longer word consisting of N binary sig-
nals; (ii) transmitting the N-bit long code word through a
noisy channel; (iii) decoding the corrupted message de-
tected at the output. The Tanner graph consists of N
variable nodes (marked by Latin indices) that correspond
to the bits of the transmitted message and M � N � L>
0 checking nodes (marked by Greek indices) that repre-
sent the parity checks; and the connections occur be-
tween those bits j and parity checks 	 so that the bit j
participates in the parity-check 	, i.e., j 2 	. (In this
representation all the parity checks should be linearly
independent.) More formally, � � ��1; � � � ; �N� with
�i � �1 represents one of 2L code words if and only ifQ
j2	�j � 1 for all the checking nodes, 	 � 1; � � � ;M.

The code redundancy is described by the overhead
M=L � R�1 � 1, with R � L=N < 1 being the code
rate. Transmitted through a noisy channel a code word
gets corrupted due to the channel noise, so that at the
channel output one detects, x � �, where in the simplest
model case of the additive white Gaussian channel con-
sidered here x � �	 ’, h’i � 0, and h’i’ji � �ij=s

2,
where s measures the SNR.

The goal of decoding is inferring the best approxima-
tion for the original message from a corrupted word.
Optimal decoding, also known under the name of MAP
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symbol decoding, can be represented in terms of the
generating function of an effective ‘‘spin’’ model [6,7]
exp��F�h�
 �

P
�
QM
	�1 ��

Q
j2	�j; 1� exp�

PN
k�1 hk�k�,

where the ‘‘external magnetic field’’ h is related to the
channel noise ’, h � s2�1	 ’�, ��x; 1� is the Kronecker
� symbol, and the ‘‘magnetization’’, defined as  j�h� �
h�ji � �@F�h�=@hj, is interpreted as the result of decod-
ing, or more accurately sgn� j
 gives the decoded value
for the bit j. The code performance can be characterized
via the density of errors at the given site j known as the
post-error correction BER that can be also described as
the probability of a spin flip

Bj �
Z 0

�1
d�

Z
dh�� jfhg � ��

YN
j�1

f�hj�; (1)

where f�x� � exp���x� s2�2=�2s2�
=
�����������
2�s2

p
and � � 1

is assumed for the code word input.
MAP decoding is optimal, however inefficient, since it

requires an exponentially large number (2L) of steps. BP
decoding [3,12] constitutes a fast (linear in N), yet gen-
erally approximate alternative, corresponding to replac-
ing the generating function in MAP by solving the
following set of nonlinear equations (hereafter referred
to as the BP equations) �j	 � hj 	

Pj2�
��	 tanh

�1 �

�
Qi2�
i�j tanh��i��
, and �j � hj 	

Pj2�
� tanh�1 �

�
Pi2�
i�j tanh��i��
, where tanh�1� j� � �j. Iterative solu-

tions of the BP equations truncated at a finite step is
known as the message passing (MP) algorithm. As shown
in [12] the set of BP equations becomes exactly equivalent
to MAP in the loop-free approximation. Using physics
jargon, it is equivalent to the Bethe-lattice approximation
[13]. This basic approximation involves generating a tree
with the number of generations, counted from the central
variable node to be equal to the shortest loop length on a
realistic graph. Note that for Gallager codes the typical
length of the shortest loop is estimated as � lnN [4].
Although the method of BER computation proposed in
this Letter is generally applicable for any kind of codes,
we will focus solely on the regular codes for which each
variable node participates in the m � 2 checking node,
and each checking node constraint includes l � 3 vari-
able nodes, with l > m.

The set of the �-functional BP constraints, leads to
essential complications in the generic case resulting in a
nontrivial statistical mechanical model. However, in the
treelike case (no loops) the constraints become fairly
easy to handle. Indeed, in this case each variable site
can be described by one ‘‘inbound’’ field �j	 with the
checking site 	 belonging to the only path from the given
variable site to the tree center, and the otherm� 1, by the
‘‘outbound’’ field �j� with � 2 j and � � 	. It is a
remarkable feature of the tree structure that the integrand
in Eq. (1) can be expressed solely in terms of the inbound
fields on the tree, and only the outbound field is defined
198702-2
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exactly in the center of the tree. Therefore, the only non-
trivial integrations go over the inbound fields, hereafter
denoted by simply �j, and Eq. (1) is simplified to B0 �R
0
�1 d P0� � � P0�0� and P0� � �

R
�
Q
jd�j� exp��Q�,

where the effective action is

Q �
1

2s2

"
 �

X
�20

tanh�1

 Yk2�
k�0

�k

!
� s

#
2

	
1

2s2
X
j�0

"
�j �

X�>j
�2j

tanh�1

 Yk2�
k�j

�k

!
� s2

#
2

: (2)

j � 0 marks the tree center, �> j denotes that the check
node, and � is positioned above the variable node j in the
tree hierarchy.

Integrations over noise fields �j will be performed in
the saddle point instanton fashion that corresponds to the
assumption that the major contribution to the integral
originates from the special (instanton) configurations
related to the minimum of the effective action Q:
�Q=�� � 0. Alternatively, one can solve the BP equa-
tions on the tree using the MP algorithm (i.e., making
some fixed number of iterations), by substituting it into
the resulting expression for the magnetization/BER, and
maximizing it with respect to the noise field. The two
variational schemes should be equivalent in the limit of
the infinite number of iterations in the MP case (we found
the convergence with the number of iterations to be rela-
tively fast and monotonic in the loop-free case). The
result of the MP variational procedure for m � 2, l � 3,
and n � 3 (the number of generations on the tree), for ten
iterations is shown in Fig. 1. Full variation over all noise
fields on the tree (thus containing no symmetry assump-
tion) shows a rich bifurcation picture corresponding to a
symmetry breakdown. At small values of SNR the opti-
mal solution is of maximal symmetry with all noise fields
SNR = 0.65 SNR = 0.8 SNR = 0.95 SNR = 1.1
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FIG. 1 (color). m � 2; l � 3, and n � 3. Instantons and bi-
furcation picture for a complete optimization procedure (no
symmetry was a priori assumed). The first line area of a circle
surrounding any variable node is proportional to the value of
the noise on the node. Different colors correspond to different
generations on the tree.
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that belong to a given generation (counted from the tree
center) being identical. With a SNR increase the symme-
try of the optimal configuration degrades discreetly
through n steps. The symmetry of the k-th order instanton
can be described by a set of variable nodes (shown as
striped on Fig. 1) that extend from the center (which is
always striped) towards the k-th generation according to
the following rule: All checking nodes connected to a
marked variable node of the previous generation are
marked, while for any marked checking node exactly
one variable node of the next generation is marked. The
rule is generic, i.e., it applies for any values of m and l.

Taking the symmetry assumption for granted, one can
substantially simplify and improve the process of finding
the set of instanton solutions and getting a better estimate
for the BER. Thus the independent fields that correspond
to an instanton with the symmetry broken up to the k-th
order can be conveniently represented in terms of the
two-index quantities ��p�

j using the following agreement.
The variable ��p�

j , where p � 0; � � � ; k and j � 0; � � � n�
1� p, represents the field on a nonmarked node located
in generation j (counting from the leaves), so that the first
marked node on the only path to the center lies in gen-
eration p (counted from the tree center). The variable
��p�
n�p with p � 1; � � � ; k represents the field on a marked

node that is located in the generation p (counting from the
center). Replacing the full set of the � fields on the graph
by the described above restricted symmetry set f��p�

j g,
substituting it into the effective action Q described by
Eq. (2), and minimizing the resulted k-th order effective
equation with respect to the k-th order restricted set of �
fields one arrives at a system of equations for the k-th
order instanton that are bulky and are not presented here.
The set of equations for the k-th instanton can be formu-
lated in terms of a k	 1-dimensional minimization prob-
lem. We have found, however, that the system can be
approximately reduced to a one-dimensional chain mini-
mization problem if either of the following conditions
holds: (i) l� 1; (ii) n; n� p� 1 and s > sc, where sc is
defined as s, which formally solves the system, � � g���
and 1 � g0��� where g��� � s2 	 �m� 1�tanh�1 �
�tanh��l�1�
; (iii) s� sc. Note, that in the thermody-
namic limit action of the high-symmetry instanton,
which is finite at s < sc, then becomes infinite at s > sc,
with sc being finite for m> 2. In all three cases the
instantons have the following structure: The unmarked
variables ��p�

i with p > 0 grow while approaching the
center according to the equation ��p�

j � g���p�
j�1�, whereas

for the marked variables ��p�
n�p � 0. Therefore, the only

dynamical field to be optimized is the unmarked portion
of the p � 0 branch. Note that although the approxima-
tion is justified only in either of the three aforementioned
limits, it actually works quantitatively well even for the
moderate values of the key parameters l;m; n and s, as
follows from comparing the numerical solutions of the
198702-3
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FIG. 2 (color). m � 4; l � 5, and n � 4. Comparative plots of
BER (full sum, but the phase volume factors were not counted:
cp � 1), and individual instanton contributions, calculated
within the single-chain approximation, vs SNR.
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full (i.e., making no a priori symmetry assumptions),
k	 1-dimensional and approximate one-dimensional
minimization problems.

Within the instanton approximation the BER is esti-
mated as B0 �

Pn
k�0Nk exp��Q�k�
ck, with Q�k� being

the action of the k-th order instanton. The combinatorial
factor Nk, with N0 � 1 and Nk � m�m� 1�k�1�l� 1�k

accounts for the symmetry-induced instantons’ degener-
acy. The phase space volume ck occupied by a given
instanton accounts for Gaussian fluctuations in the in-
stanton neighborhood. It is possible to show that both
ln�ck
 and ln�Nk
 are subdominant to Q�k� in any of the
three asymptotic limits (i–iii), where low-BER is domi-
nated by a single instanton contribution that determines
the relevant SNR phase. Calculations of ck are to be de-
tailed in a forthcoming more technical publication. At
the lowest SNR the major contribution to the BER ori-
ginates from the most symmetric instanton. With the
SNR increasing, the system is coming through a series
of phase transitions from Q�0� to Q�1�, Q�2�, etc., to Q�n�,
that take place at s1 < s2 < � � �< sn, respectively. Note,
that at n! 1 an infinite sequence of sk, with
k < n, converges to sc from below. In the case of a finite
tree shown in Fig. 2 the transitions are not that sharp, yet
are still recognizable.

Emergence of the sequence of phases reported above
can also be understood intuitively: If the noise is large,
correlations between the noise values on different nodes
are weak, thus no symmetry breaking (marked) structure
on the Tanner graph is possible and therefore the most
symmetric noise configuration is optimal. The correlation
length growth due to the SNR increase leads to develop-
ing a preferred and/or marked structure that breaks the
full symmetry. The structure grows from the tree center
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toward the leaves, simply because the tree center is chosen
for the local measurement of the BER. In the extreme
case of large SNR the symmetry breakdown is obviously
associated with the structure of the code word closest to
the original one, thus making the logarithm of the BER to
be proportional to the Hamming distance between the
two special code words, and also rationalizes why (for any
instanton solution), the marked structure locally resem-
bles the structure of the next-to-original code word. Note
also that the emergence of a finite correlation length (on
the graph) growing with the SNR increase, suggests that
the tree approximation works well for a finite LDPC code
as long as the correlation length is short compared to the
length of the shortest loop on the LDPC graph. Thus, the
no loops/tree approximation is perfectly justified for at
least some number of low SNR phases. For the higher
SNR phases the approximation may still be reasonable,
however, resolving this challenging question requires
going beyond the tree approximation. We conclude with
noting that emergence of the sequence of transitions
suggests a substantial flattening of the BER dependence
on the SNR at moderate values of the latter. This obser-
vation may have an interesting relation to the error floor
phenomenon reported for the frame (code word) error
rate [14].
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