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Abstract—We present a method that allows evaluating the ~ Development of new techniques capable of first- [19], [20],
performance of an optical fiber system where 'blt errors result. [21] and higher-order [21], [22] PMD compensation has raised
from a complex interplay of spontaneous noise generated in 5 gyestion of how to evaluate the compensation success (or

optical amplifiers and birefringent disorder of the transmis- . " .
sion fiber. We demonstrate that in the presence of temporal failure). Traditionally, the statistics of the PMD vectors of

fluctuations of birefringence characteristics, the bit-error-rate  first [5], [6], [8] and higher orders [9], [10], [11] are consid-
(BER) itself is insufficient for characterizing system performance. ered as a measure for any particular compensation method’s
Adequate characterization requires introducing the probability performance. However, these objects are only indirectly related
distribution function (PDF) of the BER obtained by averaging to fiber system reliability.

over many realizations of birefringent disorder. Our theoretical . . . . .
analysis shows that this PDF has an extended tail indicating the In this paper that develops the ideas briefly described in a

importance of anomalously large values of BER. We present the Series of recent publications [23], [24], [25], [26] we clearly
results of comprehensive analysis of the following issues: (1) The demonstrate that PMD effects should be considered together
dependence of the PDF tail shape on detection details, such asyith impairments due to amplifier (and other types of) noise.
filtering and regular temporal shift adjustment; (2) the changes Indeed, the system performance for a given realization of

in the PDF of BER that occur when the first- or higher-order birefri t disorder is ch terized b tai I f
PMD compensation techniques are applied; (3) an alternative Irefringent disoraer 1S characterized by a certain value o

PMD compensation method capable of providing more efficient BER, i.e. probability of detecting an error, which is nonzero
suppression of extreme outages. because of the noise. However the value of BER is varying

Index Terms—Optical Fiber Telecommunication systems, together with the temporgl variations of the biref'ringe'nt dis-
PMD-compensation, Polarization Mode Dispersion (PMD), Bit- order. The characteristic time scale of such variations is much
Error-Rate (BER), Probability Distribution Function (PDF) longer than the times related to signal transmission, however,
it can substantially exceed the overall system operation time.
Therefore, evaluating system performance should be based
on the analysis of fluctuations in the value of BER. We

Polarization mode dispersion (PMD) constitutes one &how that fluctuations of BER caused by variations of the
the main limiting factors for reliable optical fiber Systenbirefringentdisorderare substantial. Large fluctuations of BER
performance at transmission rates of @b/ s or higher. PMD originate from the very different nature (temporal correlations)
causes broadening of initially compact pulses in a data stre@frthe ASE noise compared to that of the birefringent disorder.
that eventually leads to bit-pattern corruption [1], [2], [3]Birefringent disorder is practically frozen (i.e. it does not vary
[4]. This effect can be characterized in terms of the PMBt least on the time scales related to the optical signal propa
vector [5], [6], [7], [8]. It has been also recognized that th@ation). Optical noise originating from amplified spontaneous
PMD vector does not provide a complete description of tHnission constitutes an impairment of a different nature: The
PMD phenomenon and some more sophisticated approacfgylifier noise is short correlated on the time scale of the
that take into account “higher-order” PMD effects, have bedignal width.
recently discussed in the literature [9], [10], [11], [12]. We demonstrate that the probability of extreme outages (i.e.

It is well known from experiment that birefringence insuch situations or, stated differently, realizations of birefringent
optical fiber systems is slowly, but substantially changingisorder when the BER substantially exceeds its typical value)
with time under the influence of fluctuations in environmenta$ much larger than one could expect from naive estimates
conditions (stresses, temperature, etc.), see e.g. [13], [1kAsed on singling out effects of either of these two impair-
Thus, dynamical PMD compensation became a major issti€nts. This phenomenon is a consequence of a complex

in modern high-speed optical fiber telecommunication tecHterplay between these two different impairments. It may not
nology [15], [16]. be rationalized in terms of just an average value of BER, or
statistics of any PMD vectors of different orders. Complete
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I. INTRODUCTION



NRZ, DPSK-RZ, DQPSK-RZ etc.), and detection techniqueslows us to treat discrete (erbium) and distributed (Raman)

(optical and electrical filtering, decision threshold choice, etcamplification schemes within the same framework. The bire-

However, for the sake of simplicity and clarity and also to biingent disorder is characterized by two rand®m2 traceless

specific we consider the following situation of major practicahatrix fields related to the zero4\, and first-,7, orders in

interest in optical fiber communications: (1) the modulatiothe frequency expansion with respect to the deviation from

format is RZ - return-to-zero (on-off keying); (2) transmissiotthe channel carrier frequenayy. Birefringence that affects

is linear, i.e. Kerr, Raman and other nonlinear terms are rtbe light polarization is practically frozen-{ndependent) on

taken into account. Besides (and less importantly) the othal propagation-related time scales.

two model assumptions (which do not restrict the generality of The matrix A as well as the attenuation and gain coef-

the model independent results reported in the paper) are thaients, v and g, can be excluded from consideration by

(a) the electrical filter (window) is represented by a symmetrtbe following transformation# = AV®, ¢ = AVE and

step-function; (b) the optical filter is of Lorentzian shape. m = VmV~-l Here A = exp{[; d2'[g(z') — v(z)]}
After brief technical introduction into the problem given ins a z-dependent number and the unitary matfiXz) =

Section Il our theoretical analysis starts in Section Il With" expl[i [ dz'A(2')] is the ordered exponential defined as a

evaluating the signal BER due to the amplifier noise for @rmal solution of the equatiod.V = iAV with f/(o) -1

given realization of birefringent disorder. We next study th@/e assume that the gain coefficient is properly chosen to

PDF of BER, where the statistics are collected over diﬁereﬁbrfecﬂy compensate for damping, SO '[h(E(tZ) = 1, where

fibers or, equivalently, over the birefringence states of a given s the total system length. The renormalized quantity

fiber at different times. At the second step we focus oghtisfies the equation

evaluating the probability of anomalously large BER. This _— . os oz

general scheme will be applied to four situations of interest. 0¥ —m(2)0¥ —id(2); ¥ = &(2,1). 2

We start with the basic (no compensation) case in Section Whe solution of Eq. (2) can be represented as

A and compare it with the case of the simplest compensation

scheme known as “setting the clock” in Section IV-B, and also UV=p+9¢, ¢=W(=)¥@1), 3)

with the cases of first- and higher-order PMD compensations Y Sl NE(

schemes in Sections V-A and V-B respectively. Finally, in ¢= /Odz W(W=(Z)e(=1), “)

Section V-C we discuss a compensation scheme referred to as . N SR I

(quasi)-periodic that appears to be more efficient in reducing W(z) = exp {Z/Odz d(z )at} U(2), ®)

the extreme outages compared to the traditional high-order . 2

compensation scheme with the same number of compensating U(z) = Texp {/ dzlm(zl)at]- (6)

degrees of freedom. Section VI is reserved for discussions and 0

conclusions. where ¥,(t) stands for the initial pulse shape and

Texp denotes the so-called ordered exponential operator

II. TECHNICAL INTRODUCTION Texp[foz dz'a(2")] = V(z) that can be formally described as

In this section we introduce the basic relations and ternjfl€ solution of the operator equationV’(z) = a(z)V (z) with

nology that describe data transmission (signal propagation)Hil§ initial conditionV(0) = I (note that when the operators

an optical fiber system. The goal here is to set the problemdf) commute for allz the ordered exponential coincides with
ifie usual one). Solving the operator equation iteratively leads

formal terms, introduce the objects of interest, and also ma - o
some preliminary evaluations. to a very useful r_epreS(_ant_a'_[lon of_the ordergd exponential in
a i(o)rm gf a fuzrllcnonal |r1f|n!te seriesT"exp| [ dz'a(2")] =
A. Amplifier Noise and Birefringent Disorder. Z“:O Jo d= fO dz; - o d’z”a(zl)a(zg) ' '.'a(Z“) that.
will be used in this manuscript for performing perturbative
The envelope of the optical field propagating in a givegomputations.
channel in the linear regime (i.e. at relatively low optical \ve consider a situation when the pulse propagation distance
power), which is subject to PMD distortion and amplifiegypstantially exceeds the inter-amplifier separation (the system
noise, satisfies the following equation [27], [28], [29] consists of a large number of spans). The additive ngisen-
o.W — iA(z)sP —1(2)0W — id(2)02F erated by opt_ical amplifiers is zero on average. The statistics of
& are Gaussian with spectral properties determined solely by
= (¥ +g(2)¥ +£(2,1). () the steady state features of amplifiers (gain and noise figure)
Herez, t, &, andd, v and g are the position along the fiber,[31]. The noise correlation time is much shorter than the pulse
retarded time (i.e. time associated with the reference fraf@mporal width, and thereforg can be treated a&correlated
moving with group velocity of a chosen frequency channel)) time. Egs. (4,5) imply that the noise contribution to the
the amplifier noise, and the chromatic dispersion, attenuatioutput signale¢ is a zero mean Gaussian field characterized
and gain coefficients, respectively. (We assume that neith®r the following pair correlation function
gain nor damping are polarization dependent, leaving the more X B
general problem for future investigation.) The enveldpés a (9a(2,11)05(2, 12)) = DeZoapd(tr ~ t2), (7)
two-component complex field, the two components represemith the productD¢Z being the amplified spontaneous emis-
two states of the optical signal polarization. Our approadion (ASE) spectral density accumulated along the system.



The coefficientD; is introduced into Eq. (7) to reveal theWe can replace& by ¥ in Eq. (10) sinced(Z) = 1 andV is
linear growth of the ASE factor with the total line length a unitary matrix. Upon substituting the representation (3) into
[31]. Provided the noisé€ is short-correlated in space (that if€€q. (10) we obtain

correct for both erbium and Raman amplifiers), the fadbgr

in Eq. (7) is statistically independent of botlz) andri(z),

as immediately follows from Egs. (4-6).

The matrix of birefringencen can be parameterized using a
three-component real fieltl;, 7 = >~ h;6;, with 6, being a Compensating options, coded in specific form(s) of the op-
set of three Pauli matrices. The figldis zero on average anderator K., are discussed in Sections 1I-C and II-D. Filtering
short-correlated in. Therefore, in accordance Wlth the centrabptions, formalized by specific choices of the functiGt)
limit theorem (see, e.g., [32]) the integrdl = fo dzh(z) and operatoiC; are described in Appendix |, where we also
has Gaussian statistics (with zero average) characterizeddigcuss the specific form of the initial pulsk, used for the
the pair correlation function modeling analysis.

Ideally, I takes two distinct values corresponding to the bits
(HiHj) = DmZ0ij, ®) o and “1”, respectively. However, the impairments enforce
where the average is taken over the birefringent disord@gviations off from the ideal values. The output signal (bit of
realizations (corresponding to different fibers or, equivalentiffformation) is identified by introducing a threshold (decision
states of birefringence in a single fiber at different times). THevel), 4, and declaring that the signal encodes “17if- I,
isotropy of the pair correlation function (8) is guaranteed bgnd “0" otherwise. Sometimes the information is lost, i.e. an
the above transformatiom = VmV 1 since the presencelﬂltlﬁ' “1" is detected as “0” at the output or vise versa. BER
of V leads to fast rotations of the vectér along z. In the is the probability to detect a false event measured by counting
case of weak birefringent disorded represents the PMD many pulses coming through a fiber with a given realization of
vector. Thus,D,, = k2/12, with k& being the so-called PMD the PMD (birefringent) disorde#;(z). For successful system
coefficient that is usually measured in the unitspef/km Performance BER should be extremely small, i.e. typically
and has the following meaning: In a system of length both impairments (noise and disorder driven) can cause only
short enough so that effects of PMD are typically welakZ @ small distortion of a pulse or, stated differently, the optical
represents a typical time splitting between the two principignal-to-noise ratio (OSNR) and the ratio of the squared pulse
polarization components of a pulse accumulated along thédth to the mean squared value of the PMD vector are both
system. The factor ol2 is obtained in the following way: large. OSNR can be esUmatengf(DgZ) where, according
kv/Z is twice the typical value of the DGD vector resulting® EQ. (10)Io = [dt G(t)|K;W(t)|* is the intensity of the
in k2Z to be four-times the typical (defined as the averag&perturbed signap, being the input signal normalized to
value of its square the latter being naturally given3dy,,Z. One. Therefore, the two small parameters of our theory are
As we will see later, some observables contain the fiel@Presented by
h in a more sophisticated form than just the integHl

I= /dtG(t) Kp(Z,t) + Ko (Z, 1) . (12)

Statistical properties of these more sophisticated objects can D¢z <1 (13)
be established by using the relation I ’
D7
(hi(z1)hj(22)) = Didijo(z1 — 22), C) b2 ’ (14)

instead of Eq. (8). b being the pulse width, and the condition (14) is assumed to

hold for all cases considered in the paper except for the one
B. Bit Error Rate as a Functional of Birefringent Disorder discussed in Section V-&

We consider the return-to-zero (RZ) modulation format We distinguish events associated with the- 0 transition

when the pulses are well separated in time. The signal d&ss of the signal), and with thé — 1 transition (false
tection at the line output; = Z, corresponds to measuringPulse detection) and designate the corresponding probabilities

the Output pu'se intensit)[” as Bl—>0 and BO—>1- these two ObjeCtS are defined as
I= / At G(t) |K®(Z,1)]? (10) Ia oo
Bio= [AIPD,  Boa= [d D, @)
where G(t) is a convolution of the electrical (current) filter 5 7,

function with the sampling window function. The linear op-
erator K in Eq. (12) stands for an optical filter and a varietyng according to Eq. (12) the PDF of the output signal
of engineering “tricks” applied to the output signdt(Z, ¢).
These tricks consist of the optical filtéf;, and the compen- d ; | A )
lSection V-C is devoted to a special case where without compensation
sation K. parts, respectively, assuming the Corm)ensatlonthe condition (14) is essentially violated, however, a weaker condition,

applied first followed by filtering, i.e. D Z/b? < 1/N still holds. It is shown then that by using a new quasi-
periodic compensation strategy &f-th order one can still get an operable
K =KsK.. (11) system, i.e. a system with typical BER essentially smaller than one.



intensity which can be written as “setting the clock”. This procedure accounts for adjusting the
overall time-shift which is a functional of the birefringent
Pog = <5 <I —/dt G(t)|Ke(Z,t)+Kp(Z, t)2)>, disorder. (We are not discussing here an important engineering
é problem of how to make this dynamical adjustment, simply
_ assuming that a device capable of doing this operation does
(A{o}), = /D¢A{¢}7’{¢}> exist.) Formally, the “setting the clock” procedure can be

~ ~ 1 oo described by the following modification of Eq. (12)
Pl =N e (5 [ aer). 9
2D:Z

— 00

where P is the PDF of¢, N is normalization constant and 7= /dt Gt +ta) |Ksp(Z,1) + Kso(Z, H>, (@18)
A{¢} is an arbitrary functional ofp. Also the 0-subscript ‘

in the definition ofPy.; corresponds to the “zero” input bit

¢ = 0, while the I-subscript corresponds tc; the “one” inpﬁbr returning to the notation of Eq. (11), Eq. (18) corresponds
b't_"" - _%'_ In Eq. (_16) averaging 1S per ormed_ over g, ihe following form of the compensation operatdf, =
noise statistics. Exp_erl_mentally such an average is measufe (—t.d,). As discussed in Section IV-B, the one-parameter
by collecting the statistics over many pulses propagating aloﬁ@xibility, one gains throught,;, can be used to minimize

a fiber ,With the same birefr_ingent _disorder reglizgthhz) system outage. The important question to be addressed is:
since different pulses experience different realizations of thg, - i< dependence of the “optimal” shift on the birefringent
noise the latter being stochastic in nature. Formally this COfllisorder?

stitutes averaging an observable that can be represented by any

functional A{¢} over all possible realizations of the noige

with the probability distributio{#}, whereas a specific form

of P{¢} also given in Eq. (16) corresponds to the situation

under consideration, i.e. Gaussian statistics of the noise fully pMD compensator
determined by the pair correlation function of Eq. (7). Since

realizations of noise are represented by functigfts of time Effects of PMD can be reduced by using a device usually

that represen.t the f!elq}(z,t) atz = 2. Eq. (16) constitutes called a PMD compensator (PMDC). Any optical PMDC
a path (functional)-integral representation Bs.; (see, e.g. ) ) ) .

[33], [34] for an introduction to path-integral techniques). Thisc.obTS'?tS ?; two parts: a}[_ cor:pel?satlrég (optical) _part refptﬁn£
Rowever,doe ot conste  major concetulprobe sf1° 1 1 SOTPeneaten teel ot 8 meceutt b vt
path integrals can (and strictly speaking should) be considerteD

C i : : iber birefringence. We start by considering the optical part
as finite-dimensional integrals where functions are represen . :
o ) of the compensator that usually consists of a set of relatively
by sets of values at a large but finite set of poitits . ., t,,.

An important difference betweeR; o and By._.,, defined short elements. Each element includes a piece of polarization-

by Egs. (15), is in the strong dependence of the first Carsné';untalmng fiber (this is a fiber characterized by uniform, i.e.

and independence of the second one on Aheealization position independent, birefringence vector) usually surrounded

(i.e. the birefringence profile along the fiber). This differenc%y tV.VO polanzanon contr_olle_rs, _that allow rotat_lon of the
stems from the fact thaty — 0 in the case ofBo ., polarization state [20]. This implies that the optical part of

) T . a PMDC (hereafter, referred to as a PMDC itself when it
whereasB1_.o is a nontrivial functional ofh, as well as

. does not lead to confusion) is characterized by its transfer
from statistical independence @f andh. One concludes that : : -
. function that can be parameterized by a finite number of
even thoughB;,_.o and By_,; are of the same order in the

absence of birefringence, anomalously large values of BF_pIQrameters (degrees of freedom). Additionally, one would

(which is the focus of this paper) originate solely from thgaturally distinguish between (i) describing a compensator
w1 _, 0" transitions. Therefore. in what follows we concentrata! terms of available transfer functions (the subject of this

primarily on the analysis o8 thus dropping thel — 0 Subsection), and (ii) compensating strategy, i.e. a prescription
subscriptB _B)to simplilf;Onotation of how to fix the compensating degrees of freedom based
1—0 — .

The PDF P, (I) has a maximum neaf — I, and decays on the measured data. The compensating strategy part of the

. . ..~ problem is discussed in Sections V-A,V-B,V-C.
quickly as I departs fromI,. The tail of the transition _
probability at|7 — Iy| > D¢Z is exponential (see Appendix The so-called, first order PMD compensator corresponds to
Il for details). This implies that the integration in the rhs ofCc = K1,
Egs. (15) is actually concentrated ndar I, thus yielding
the following estimate for BERB K1(M) = exp (—M;6;0,) , (19)

InB ~ ln’Pl (Id) (17)

- i ] with j = 1,2,3. Such a form of the compensating operator

C. “Setting the clock” compensation K. offers richer adjustment options compared to the “setting

An essential part of the signal loss can be compensated thge clock” compensation as it actually contains three compen-
ing a simple procedure, in the fiber optics jargon usually calleshting degrees of freedom, i.e. the three components of the



compensating vectaM, instead of one? Note also, that the saddle-point value of the transition probability to the inhomo-
transfer matrixU of the transmission fiber is defined as amgeneous part of the measured signal are given in Appendix
ordered exponential (6), whereas the compensating operdtor
K1 is defined in terms of the usual exponential (19). This The bottom line of these calculations, accounting for aver-
important difference stems from the fact that the birefringeneging with respect to the stochastic noise (i.e. many pulses)
profile along the transmission fibét(z), is a random function in Egs. (15,16) is the saddle-point [i.e. asymptotic, applied
of z, while the birefringence of the compensating part is flat, aghenever the condition (13) holds] expression for the loss
it is accurately controlled to be'-independent, witlz’ being probability that is obtained (see Appendices | and Il for
the position marker along the polarization maintaining piecéhe details) by first representing thlefunction in Eq. (16)

A compensation strategy that allows for more compensatiag a Fourier-transform of an imaginary exponent [see, e.g.
options (more degrees of freedom) is potentially better. Thusq. (46)] which yieldsP; as an integral oved\ D¢, with
a compensator, hereafter referred to asNath order PMD the integrand in a formexp[—Ses (A, ¢, h)]. Note thatS.
compensator consists @f concatenated PMD compensatorslepends parametrically dia throughy [see Egs. (3), (6) and
of the first order [20]. Each of theV compensators is (16). Evaluating the path integral (16) using the saddle-point
characterized by its owB-component compensating vectorapproximation (See, e.g. [33], [34], for the general description

M,,, wheren = 1,--- , N, so that the compensating operatopf the method.) and making use of Eq. (17) we obtain with
generalizes that of Eq. (19) the exponential accuracy
r'{h} o
Ke=Ki(M)K1(Ms)--- K1 (Mpy). 200 B=B , By= - , (21
=K (M (M) Ky (M), (20) vep (g ) Bo=ew (- g ) @Y

and the set ofM, vectors introduces3N compensating where (T, — I'{h}) Io/ (D¢Z) is the saddle-point value of the
degrees of freedom that are at our disposal for outage QgtionS, ;. In particular, B, corresponds to zero PMDy =
timization. 0, value of B andI is a dimensionless quantity with a smooth

Once the set of compensation options, described by Egependence oh. By definition, T' tends to0 with h — 0.
(19,20) is fixed, the next task, addressed in Sections V-A,¥Yhe quantityl', that determines a typical value of BER, is
B,V-C is about how to use the compensating degrees ®fdimensionless parameter of order unity. The dependence of
freedom offered by the compensators (19) or (20) to minimizg, on the electric filter widtHl’ and the optical filter width-
the effects of the system outages. Or rephrasing the questi@iiculated numerically for the model introduced in Appendix
in more formal terms: What are the optimal values of 3% | is displayed in Fig.1.
compensating degrees of freedah,, that correspond to a The dependence df on the birefringence profilé(z) is
given realizationh(z) of the transmission fiber birefringencethe key subject of the analysis presented in Sections 1V,V.
profile?

IV. PROBABILITY DISTRIBUTION FUNCTION OF BER AND
EXTREME OUTAGES

This Section constitutes the core of the paper. The bottom
In this short Section we present only the basic results, whiige here is that fluctuations of BER from one realization of
all derivations can be found in the Appendices. birefringence to another are strong. To demonstrate that, we
Since the OSNR is large, the expression for the transitigtudy the extended (toward larger values of BER;> By)
probability Eq. (16) allows for an asymptotic saddle-pointail of the PDF (histogram) of BERB.
evaluation. The details of an analytical calculation, resulting The exponential form of the BER dependence Ior{21)
in an algebraic system of equations that implicitly relate thsuggests that one can get an essential enhancement of BER at
the expense of a moderate change in the integral birefringence
2A three-parameter compensator with the transfer function given by Bgector, whenT > Dngo_l_ Since the OSNRI,/[D¢Z]

(19) can be implemented by surrounding a polarization-sensitive delay i e ; ; ; ;
with two polarization controllers (PC). The transfer function of such ? large, the condition is consistent with < 1 (i.e. the

device has the fornkC. = Ujlcd(t(,l)UC WhereUi and U, are frequency- regime described b31 > T >>. DEZ/IO is possjble). In_
independent of the PC located after and before the delay line, respectively, athier words, one expects that in this “perturbative” region,
Ka(ta) = exp (—ta630;) is the delay line transfer function with; being \here the ordered exponential (6) can be approximated by the

the relative time-delay. If the time delay is controlled, such a compensator . L . . . .
provides the transfer function of Eqg. (19) since with a proper choice J,@adlng terms In its expansion in the serieshinBER can be

U, provided by the PC we can obtain any vecidf with |M| = t;. A substantially enhanced in comparison with its typidak= 0,

possible implementation of a delay line with adjustahjeinvolves a free- value, i.e.B > By. This expectation is indeed confirmed, and
space optical-mechanical device that achieves a relative time delay by varyi ’ !

the relative value of the optical paths for two polarization states. Such a devfgéta!led ina quant'tat_'ve way, through ogr conS|derat|9n of this
naturally offers3-parametric compensation, as it is capable of dynamicallection, where we discuss the PDF tail corresponding to the

generating any value of the three-component vedtbrA less expensive and “perturbative” region. We have also studied a universal remote
maybe more practical option is to use a piece of polarization-maintaining fiber. f the PDFE of BER di h fl . f
instead of a complicated free-space optical-mechanical device. In this ckall of the 0 corresponding to huge fluctuations o

only two parameters (the componentsf) are dynamically adjusted with the disorder when the signal is almost destroyed by the PMD
the value of M| = t4 being determined by the polarization-maintaining fibe§|,ctuations. This remote tail is discussed in Appendix \VA
length. The dynamical adjustment is only two-parametric, as it originates from « -

changes in the polarization controllers orientation, while the birefringence of ON€ concludes that the “perturbative” tail of the PDF of
the polarization-maintaining fiber is fixed. BER can be computed by finding the leading terms in the

IIl. AMPLIFIER NOISE AVERAGING



expansion ofl" in h, i.e. the key question is how scales B. “Setting the clock” compensation

with h at small values ofh. We demonstrate below that The degree of freedom associated with the “setting the
I' = O(h"), where the powef: depends on the compensatioRyjock” transformation Eq. (18) allows us to reduce the effect

scheme applied. _ of anomalous fluctuations of birefringence and thus to reduce
Our final result is formulated in terms of the PDF of BERhe extended tail (26) to a certain extent. It is clear from
defined as the standpoint of the tail reduction task that the weaker the
Il dependence df on h is, the better. Therefore, with the single
S(B) = <5 [B — By exp (D Z>}> . (22) degree of freedom offered by Eq. (18) the optimal value of
¢ h t.; corresponds to cancellation of the first (linear) term in the
Averaging in Eq. (22) is performed over the statisticshof €xPansion ofl" in h. As shown in Appendix II-C such an
(see Appendix Ill). optimal value oft.; corresponds td.; = Hs, with the main
In Section IV-A we consider the bare case (no-compensati§iim in the expansion df in h
applied). Note, that the PDF of BER. is not only an interesting Cotock & &;Hi, H? = H? + H2, 27)
object to study but also the key object that characterizes the b

probability of the system outage due to PMD defined as s being a dimensionless coefficient of order one and, as
) before, the output signal is assumed to be real. For our simple
O = dBS(B 23 model . is displayed in Fig. 1 as a function of dimensionless
/B* (B), (23) electrical T'/b and opticalr /b filter widths. Substituting the

) expressions (27,21) into Eq. (22) and averaging over disorder
where B, is the tolerance value for BER outagB, > By according to Egs. (74) we arrive at

with B, being the zero-disorder value of BER. This explains N )

why suppression of the PDF tail is the prime target of a Setock(B) ~ 3707 o= i (28)
compensation strategy. It underlies the analysis of “setting Blte 2p12 D 1o

the clock” as well as first- and two different higher-ordersiote, that the “setting the clock” result (28) shows a steeper
PMD compensation strategies described in Sections 1V-B, ¥ecay compared to the bare case one (26) (due to the additional
A, V-B, and V-C, respectively. Sinc&, > By, the outage is small factorD;Z/I, in (26)) which is a natural consequence
determined by the tail of the PDF that decays fast enough bthe compensation procedure applied. We reiterate that the
that outage is determined by Eq. (24).

InO ~InS(B,). (24) V. PMD COMPENSATION

As already explained in Section II-D the key ingredient
of any PMD compensation strategy is finding the “optimal”
relation between the compensating degrees of freedom (e.g.,

In this subsection we consider the bare case, assuming thétin the case of first-order compensation scheme) and the
the output signal is real, i.e. that the chirp part of the inpwirefringence profileh(z) in the transmission fiber.
signal Eq. (45) was adjusted to compensate for dle)- The standard PMD compensation strategy, discussed in the
induced dispersive part dfi’, defined in Eq. (5). Following literature, boils down to compensating for as many terms
the procedure explained in detail in Appendix Il we find thas possible in the expansion of the received sighajiven

A. Bare case

main contribution tal’ to be first order in the fieldh: by Eq. (12) in the series irh [9], [10], [11], since the
z more terms in the expznsion are compensated the smaller
TChare &Hs, H, E/ dz hy(2). (25) is the PMD-induced signal distortion, and the number of
b 0 compensated terms in the expansion is usually referred to as

where ;1 is a dimensionless coefficient of order one th ? cgosznsation order. In vjew ﬁf Egs. (3.)’ (r?)’ and (1.2)
depends on the signal shape and the detection procedure Olls down to compensating the terms in the expansion

it is also assumed that the initiat & 0) polarization of the of KU — 1, in powers ofh. For gxample, n che first-order
; ; i~ .« compensation case (19) the choidé = H = [~ dz'h(z’)
pulse is(1 0). For our simple model the coefficient; is R 0

displayed in Fig. 1 as a function df/b and /b, whereT is guarantees that the expansion/ofy — 1 in the series i
the electric filter widthy is the optical filter width, and is the ~ Starts with theO(h%) terms.

pulse width. (See Appendix | for explicit definitions @f 7 Even though the standard PMD compensation criterion was
andb.) Substituting Egs. (25,21) into Eq. (22) and averagin@Ot |n!t|ally designed to minimize the ou_ta_ge probability (23),
over disorder according to Eqgs. (73) one derives we will see below (V-A,V-B) that it efficiently reduces the
outage in the case when even without compensation typical
DEZb2 , [ B realizations of disorder still cause reasonably small values of
In Spare(B) & “oDEr (Bo) (26) BER (i.e. when the condition (14) is satisfied). This is not

surprising, since this is exactly the combined operd&tpt/
Note also, that for a given OSNR, the larggris, the more that enters the value df according to Egs. (3,5,6,18). Thus,
extended the tail is. the weaker the dependence 6fU on h is ath — 0, the



weaker the dependence bfon h is, and therefore, a more

substantial reduction of the outage probability is achieved.
However, as argued in Section V-C the standarth order

compensation strategy is not the optimal one whérs large

enough. The standard PMD compensation is especially bad

in the case when the condition (14) fails, however a weaker

condition, with 1/N replacing one in the right-hand-side of =

Eq. (14) still holds. Therefore, in Section V-C we present an

alternativeN-th order compensation strategy that outperforms

the standardV-th order compensation strategy in the case

of a relatively large N, and is even capable of restoring

transmission in the aforementioned case of a really bad system, - . -

when the standardV-order compensation applied under the e I TR TR

same condition would fail. b

2k

15F

Fig. 1. Dependence of the dimensionless coefficieits =
et ; —D¢Z1n Bo/lo, p1, 2, pi4 /3 andpus, entering Egs. (21,26,28,33) and (34),
A. First-order PMD compensation on the electric filter widt’ and the optical filter widthr (both measured

One deduces from Egs. (12 19) that the output mtensilgythe units of the pulse width) for the model introduced in Appendix I.
h N he f etails of calculations resulted in the dependencies shown in the Figure are
depends on the birefringent disorder via the fackofU. gypjained in Appendix II.
ReplacingM with its optimal valueH, expandingC, U in h
followed by substituting the result into Eq. (12) and evaluating
B according to analysis of Appendix Il leads to where Egs. (33,34) correspond to the nonzefoand the

; degenerate zerqu, cases, Egs. (33,34) are valid when
o 2 3 4 /14 2
= HaYe/b"+ Y /U7 OUHT/DT),(29) gy s || Dondo/[Deb?) and DeZIn(B/By) >

dz / dz [h1(2")ha(z)—ha(2)h1(2)],  (30) lé?a(lz%)?’“lo/bg, respectively, and the outage is given by
Note, that although Egs. (28) and (33) that correspond to the
Y, = /dzl/ dz?/ dzs 2h3 z1)H(22, 23) “setting the clock” compensation and first-order compensation

(with uncompensated chirp), respectively, look similar the
_h3(22)H<Zl’23)_h3(z3)H(21732)}’ 31) exponentsa and v that determine the tails of the PDF in
H(z1,22) = hi(z1)h1(22) + ha(z1)ha(22), (32) these two cases are of different nature: They originate from

different bilinear combinations di(z) [compare Eqg. (27) with
where in Eq. (29) we present the general expression for thgs. (29) and (30)].

first two terms of the expansion df in a series inH/b.
In the general position case the dimensional coefficignt _ _
is nonzero, theu; term is subleading and can be neglected. IB. Standard High-order compensation

however, a degeneracy leads tb-term cancellation, thess  The fiber system performance can be improved even further.
term becomes the principal contribution. First of all, special filtering efforts can enforce the output pulse
Thus, for the Gaussian initial pulse shape, described dgmmetry under the — —¢ transformation (theoretically this
Appendix |, the case of nonzeyd, and the degenerate casean be achieved by a proper choice of the optical filter transfer
of zero u;, correspond to the complex (uncompensated chirfinction, however, practical implementation still remains an
and real (compensated chirp) output signal respectively. @pen question). Then th@(H?>) contribution toI" will be also
the first case the dimensionless coefficightis related to the canceled and Eq. (29) will be replaced By= O(H*/b%).
output signal chirp, produced by initial signal ch|rp and/ogecond, and more important, instead of first-order compen-
the nonzero integral chromatic dispersign= fo dzd(z). sation K; one can use a higher-order compensatiog,
Thus, if the initial chirp is small,3;, < 1, the output described by Eq. (20) with théV parametersM,,, where
signal chirp becomeg$ = f;, + 7.) The dependence of thep, = 1,... N, chosen in such a way that the fifstterms of the
dimensionless coefficients, /3 andyus onT/b andr/b, found  operatork.U/ — 1 expansion in the series i /b would cancel
numerically for the model introduced in Appendix | using theut, so thatl' = O(HN*!/pN+1). (Note that in counting
saddle-point equations of Appendix Il, are displayed in Fighe degree of cancellation we do not assume that the system
1. Substituting Eq. (29) into Egs. (21,22) and averaging ovgpssesses any kind of degeneracy, e.g. one of the kind that
disorder according to Eq. (85) and Eq. (91), respectively yiel@sd to T'; reduction from beingD(H?/b?) to O(H?/b%).) In

the PDF tail in a form this case the logarithm of the PDF tail Bfcan be estimated
S(B) B] _ aDeb? 3 by —(bz_/DmZ)(FN)Q./(N“). This results in the following
Lic Bl VT CIATN S expression for the tail of the PDF a,

InSy,-(B) = —4.2

2 2/3 2 2/(N+1)
b <D§ZI B> ’ b (DEZI B) ’ (35)

34 Sy (B) ~ ———
Dz \ sy Bo (34) nSn(B) ~ =5 g,



\ el ] el <] (36):

1 1 2 2 3 3 4 4
Input periodic stun Output Ke = exp(ind?)K11 ... KinUn ... Uiy (1), (39)
where/C,,, andU,, are defined by Egs. (37,38). The idea that
stands behind the “quasi-periodic” compensation is obvious:
Input Quasiperiodic setup We construct (in the compensating part) the best possible
Output approximation (with the given number of the compensating
1 2 3 4 4 3 2 1 degrees of freedom) for the inverse of the ordered exponential
\ I I I ICcllellc]lc] U=Un...U.

Note that the (quasi)periodic compensation does not influ-
éhce the statistics of the noise-dependent part of the signal, i.e.
K¢ has the same correlation function (7)@sTherefore, one
arrives at the same expressiniB/B) = I'ly /(D¢ Z), with
valid for D¢ ZIn(B/By) > (D Z/b?)N+D/2[, Eq. (35) 2 n_ew_h—dependent factdr. Furthermore, i|j the region of our
generalizes Egs.(26,33,34), correspondenite= 0,1,2 re- main m?eresﬂ“ can be gnalyzed perturbatively, just as before.
spectively. We conclude that, as anticipated, the compensatiofPanding the factors in Eq. (36) up to the second order and
does suppress the PDF tail. The corresponding estimate fking use of Egs. (7,12) and derivations of Appendix Il one
the outage probability defined by Eq. (23), gives® ~ derives:

—[(Io) " D¢ Z In(B, /By)|* V+Y82 /(D,, Z). ;N ool oz
[({0) ™" D¢ Z In(B./By)] /( ) FW%Z/ dz/dz'[hl(z)hQ(z')fhg(z)hl(Z')], (40)

n=1

Fig. 2. Cartoon scheme of fiber-line elements installation corresponding
periodic and quasi-periodic compensation strategies.

C. Periodic- and Quasi-Periodic PMD compensation: or hov\\//vhere — (n 1)L Here, 4, is the same dimensionless
to resurrect PMD-damaged fiber line an = (1 . )

coefficient that has been already discussed in Section V-A,

The main purpose of this subsection is introducing newhd is also displayed in Fig. 1 for the Gaussian chirped model
compensation strategies that substantially outperform a stgescribed in Appendix I. As follows from Eq. (39), the same
dard PMD compensation scheme (discussed in Sections dipression (40) is obtained in the second order for the quasi-
D,V-B) with the same number of degrees of freedaW, in  periodic case. Substituting Eq. (40) into the expressionZor
the case of relatively largey. and evaluating the PDF B, with the Gaussian statistics of

Assume that an optical line can be divided iffosegments, p described by Eq. (9), leads to the following expression for
each of lengthi = Z/N, and apply first-order compensation athe tail of the PDF of BER:

the end of each segment (as schematically shown in the upper BY N71D:b?
panel of Fig. 2, with “c” denoting the compensating elements). Sn(B) ~ Bliiy, v= ﬁ (41)
The noise-independent part of the compensated signal for the 12| Dmlo
“periodic compensation” strategy is determined by Eq. (41) holds forn(B/By) > 1ihDm1o/[Dcb?]. The expo-
. . nentv in Eq. (41) contains an additional factdf compared
Kep = exp(indf ) KinUn ... KU %o(t) (36) to «, that explains a steeper tail 6 B) for (quasi) periodic
. nl . compensation compared to the first order end-point compen-
Un = Texp /(n 1)?2 hj(2)0;0: | , (7)  sation. It is also instructive to compare the outage probability

o for the periodic case with the case of higher-order end-point
_ A compensation described by Eq. (35). One finds that for higher-
Kin = exp [_/( dzh; (Z)ajat] ’ (38) order compensation, i.e. whe¥ > p In(B../Bo)Io/ (D¢ Z),
the (quasi) periodic scheme becomes more efficient compared
where®,(t) is the input signal profiley = fOZdz d(z) is the to the straightN-th order compensation scheme.
integral chromatic dispersion, and the ordered product on theNote, that an important computational step that leads to Eq.
rhs of Eq. (36) is taken over all th¥ segmentsT exp is the (41) rests on evaluating perturbatively inh. Besides, in the
standard notation for the so-called ordered exponential. Tperiodic casd’ is a direct sum of the individual segment con-
exponential factoiC,,, represents the first-order compensatiotributionsI’,,, and the perturbative treatment applies separately
at the end of thes-th segment. to eachrl’,,, requiring the weakness of the PMD effect at each
Such a “periodic” compensation is not particularly convesegment only, i.eD,,Z/N < b. Therefore, one concludes
nient since it requires installation of compensating elementsthait even an optical line with not really operable (without
multiple places along the system. However, one can naturatigmpensation) characteristic®,(, Z is of the order or larger
modify this scheme and have the same compensating eleméngs b2) can still be used for transmission i is sufficiently
inserted subsequently but all at once at the fiber output lasge. Moreover, this observation on the applicability of Eq.
shown in the lower panel of Fig. 2. If the disorder profilgis (41) also extends to the quasi-periodic case, in the sense that
known (technically such end-point measurements are possibig (41) provides an upper bound for the PDF of BER. This
through the anti-Stokes refraction technique [35]) one can haweplies that the quasi-periodic arrangement can be superior
an end-point, but multiple, compensation &s = [[Ki,, Wwith respect to to the periodic one due to an additional,
leading to the following “quasi-periodic” modification of Eq.oscillatory with h, suppression of’,, in the quasi-periodic

n—1)I



case vs periodic. This suppression is especially important ®MD coefficient,k = /12D,,, is 0.2 ps/vkm, the pulse
segments strongly separated from their compensating counteidth is b = 25 ps, and the system length i& = 2,500
segments. km, i.e. D,,Z/b> ~ 0.013. Then for these particular set
To conclude, in this subsection we have proposed (quasf)parameters the outage probability correspondingdsio=
periodic compensation schemes that appears to be a strofg'® is O ~ 0.35 if no compensation is applied, see Eq. (26).
alternative to the standard higher-order compensation stra@ne deriveg) ~ 0.04, O ~ 4-10~* andO ~ 2-10~13 for Eq.
gies. The efficiency of the scheme has been demonstrated &if), Eq. (33) and Eq. (34), describing the cases of the “setting
even though the technical implementation of this procedutiee clock”, and two cases of the first-order compensations
requires expensive equipment, the reduction in the probabilitgnsidered in Section V-A, respectively.
of extreme outages can result in an essential overall benefit. Experimental and numerical verification of these results is
of considerable importance. Some moderate but significant
progress has been made in this direction. Numerical obser-
vations corresponding to the “setting the clock” case and
In this manuscript we evaluated the outage probability thagnsistent with our results (28) are available. Thus, Fig. 2a of
characterizes the reliability of an optical fiber communicatiope] re-plotted in log-log variables shows a relation between
system with well-separated time scales related to two differgits and In B close to the linear one given by Eq. (28). In
noise mechanisms. The two major impairments which cogddition, our major result, the emergence of an extremely
tribute to the outage are represented by spontaneous emisgiiénded tail in the PDF of BER that is algebraic or algebraic
noise generated in optical amplifiers and birefringent disordm{e (|e which is way more extended than any |og_norma|’
of the fiber. The latter originates from temperature and stresgussian or even exponential expectation would offer), is
variations in the fiber system. The outage — substantial devignsistent with experimental measurements on an artificial
tion of bit-error-rate from its mean value — is characterized pMD-modmator System reported in the same volume [37]
terms of the PDF of BER. The BER represents the probability \n,e conclude by emphasizing the generality of the theo-
of a transmission error (it is found by averaging over many bitgtical approach developed in the manuscript. Although we
of information) for a given realization of birefringent disorderyastricted our guantitative analysis to the linear model of
The outage probability is_ expressec_i in terms of th_e far tail %tical propagation and the RZ modulation format, the fact
the PDF of BER (23). This formulation, together with the faghat even minor variations of birefringence can lead to major
that the object of interest is described in terms of rare eveRiiations of BERconstitutes a general and key feature of
makes numerical or experimental studies extremely diffici{e approach. This leads to relatively straightforward general-
(if practical at all). izations that allow us to consider any other modulation for-
The proposed method to estimate outage probability fgat, account for inter-channel nonlinear interactions and even
based on first averaging over the amplifier noise, followed Ryport the approach to the non-linear (soliton) transmission
averaging over birefringent disorder. These averaging prog8gime. Those cases are currently under study and the results
dures are very different in nature: The spontaneous noisewfi be published elsewhere.
short-correlated in time, while birefringent disorder is frozen, The authors thank D. Chowdhury, M. Hempstead, F. Kuep-
.e. it does not change on the time scale associated Wiy and P. Masmyshev for valuable discussions. We are also
a given pulse transmission throughout the entire system. gkl to the Referee A for useful remarks and suggested
an efficient communication system the optical signal-to-noig@rections. The support of LDRD ER on “Statistical Physics
ratio (OSNR) is large, thus bit errors, due to fluctuationss riper Optics Communications” at LANL, personal grant of
of the optical field that are large compared to their typicg,ssian Foundation for Promotion of Science (IK) and grant

values, occur rarely. The saddle-point (optimal fluctuationys o2.16147a of Russian Foundation for Basic Research (IK)
method, developed within the functional integral approacfy acknowledged.

becomes an adequate (and currently the only) tool for the BER
evaluation. The BER is a functional of birefringent disorder.

VI. DI1scussiION ANDCONCLUSIONS

As is seen from the general expression (21), even relatively APPENDIX |
weak variations in the disorder can generate a Strong Changﬁj'“CAL AND ELECTRICAL FILTERS AND INITIAL SHAPE
(additional orders of magnitude) in the value of BER. OF THE PULSE

It is impossible to compensate for amplifier spontaneous
emission noise, whereas effects of birefringent disorder areOur approach is general. However, for illustrative purposes,
curable, at least to a certain extent. Since the outage probabi& choose to stick to a simple model of signal coding (form
ity characterizes system performance, compensation schesh@nitial pulse) and decoding (particular shape of optical and
performance should be compared based on this measure.efetrical filters). We also consider the simplest choice of the
illustration we briefly discuss a relevant example of howecision level value]; = I/2. These modeling assumptions
efficient various compensation techniques can be. Typiadlows us to get quantitative results, i.e. results valid not only
values of the parameters introduced in this manuscript for rggrametrically (and here the major focus will be on the two
fiber links are:I'y = 0.06, pu; = 0.06, uo = 0.12, 4, = 0.15 dimensionless parameters entering the lhs of Eqgs. (13,14)) but
and p3 = 0.35. Typical bit-error probability isB, = 10712  also up to numbers, the coefficients, generally being dependent
and the value ofly/[D:Z] ~ 460. We also assume that theon the model.
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Let us formulate our illustrative model. We assume whereu = i\D¢Z is a real number, and Egs. (47,48,49) thus

Lorentzian shape of the optical filter: constitute the system of integro-differential-algebraic equa-
oo tions. Subscript “sp” stands for saddle-point and we will skip
Ko = / dt' exp(—t'/T)®(t — ')/, (42) it in all following formulas to shorten the notation.
0

) ) ] ) _ Note that Egs. (47,48,49) are not singular in the— 0
where 7 is the optical filter temporal width. Then, takingjimit, which should, however, be treated with caution since
into account that the statistics af are insensitive to the the corrections to the leading saddle-point approximation
birefringence fieldh, one gets from Eq. (7) that the statistic§accounting for the so-called determinant that accounts for
of the inhomogeneous contribution are governed by the PRE5yssian fluctuations around the saddle-point) are actually

P singular in this limit. The condition that the fluctuations do
- _ 1 <12 <2 not destroy the saddle-point result reads> D Zb/I,. Thus
_ 1 _ 2 3 0
P(¢)=N eXp{ D¢:Z /dt Ud)’ T ‘6t¢‘ }}’ (43) in the interesting asymptotic range;> 7 > D.Zb/I,, Eqgs.

~ . o (47,48,49) transform to
where¢ = Ky¢, and N is a normalization factor. Eq. (43)

defines the measure of averaging with respect to the noise: one b=— uG K (50)
should integrate over realizations ¢f with the weight (43). - 14uG #
The electrical (window) filter is chosen as t 2

(window) o= | aCeIcel 51)

atyxo-my =4 b M<T (44) (1+uG)
VLo, |l >T [P ()] /dt < u@G >2 K2 (52)
n out)] = — .

where T stands for the electric filter temporal width. We ' 1+uG/) DeZ

assume that the initial signal encoding *1" is Gaussian For a step-function shape of the electrical (window) filter (44)

12 , 1 one gets an explicit expression farin terms ofy and I,
Wo(t) o exp [—%2(1 - Qlﬁm)} ( 0 ) ; 5 from Eq. (51) which, substituted into Eq. (52), gives
whereb is the pulse width and@;,, stands for the initial pulse 2

chirp. WP (I ( JdtG(t)|Ke|? — \/Iout) e
0 [P (Lout)] = — DeZ . (53)

APPENDIXII o

SADDLE-POINT EVALUATION OF BIT-ERROR-RATE (FOR In the generalr ~ b case one does not get an explicit

GIVEN REALIZATION OF DISORDER) analogue of Eq. (53), however, the general system of Egs.

The transition probability Eq. (16) and the measure of ave47’48‘49) can still be essentially simplified for the step-

aging overe, described by Eq. (43), are the two expressio gnction shape of the electrical (window) filter (44). The

that constitute the starting point for the calculations presentgaIUtlon of Eq. (47) that satisfies a zero condition &t oo,

in this Appendix. Substituting Eq. (43) into Eq. (16) and®

introducing an additional Fourier-transform leads to ) o (t)+ By exp[—td/7]+B_exp[td/r], |t| <T;
L [dA . é(t)= Ay exp[—t/7], t>T;
P (Lot i (n): 2) =N [ 52 [ Dt A explt/ ), t<-T.
(54)
w expd i\ (I . /dtG(t) ’lCcp n (5‘2> whered = /1 + u, and g, (t) is the solution of the auxiliary
e problem described by modifying Eq. (47) with(¢) on the

1 Ll ) 2 19d ) 46 Ihs of Eq. (47) replaced by one. Thus,
ooz [l 2ol ] ao)

_ U / / ‘t — t/|19
where dependencies dp,; andh are contained solely in the balt) = T o9 dt'[KCep](t') exp (_ T D)
Ky (Z,t) field. The condition Eq. (13) locates the path-integral -T

ovew and the usuall integral ove{r to the sgddle .point, .. Equr coefficients in Eq. (54) are fixed by four obvious
the integrals are dominated by a single configuration called tggnditions imposing continuity for botk(¢) and d,(t) at

saddle point. The saddle-point evaluation of Eq. (46) resu%ts: +T. Taking into account thad! (+7) = T0d. (£T
- : 9 ap, (1) = FI¢a(£T)/7,

one derives
282~5—~3—Gt~S:GtK, a7
T G GO (4D B.=(0-1) (56)
fout = / diG(t) |Kop+ dsp| , (48) (L+0)e™/7¢a(FT) + (9 — 1)e” T/ 740 (£T)
1 I 1 At (1612 + 7219, . |2 . (1 +19)2e2T9/7 — () — 1)2¢—2T9/7 )
0[Py (L)) = 5y [ (16 + 710060 ) R

u

= b7 {Iout - / dtG(t)(/Ccp+q35p)icga*] . (49)

(LA G(ET) + (9 — 1T/ o (FT)
(1 4 79)262%9/7 _ (19 _ 1)2672T19/‘r )



that results in the following explicit expression fgrin terms
of K¢

T

T
a(0) = 5 [ ariKcel ){exp(—"f‘t'“)
T

¥—1
+ (1+ 9)2e2T0/7 — (9 — 1)2e—2T0/7

X <exp[ rer ]

1)e?t=1)/7

(1+0)e’T=0/7

T—t

+(9 — + exp[— 9]

X | (1 +0)e?TH/T 4 (9 — 1)eﬁ<t+T>/TD } (58)

where only thelt| < T part of thep(t) function is shown.
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D:ZIn[B/By|/Iy — I'y = u1Hs/b, one derives from Egs.
(58,59,60)

= ¢p{Kp — K0, %9, u — up}, (62)
f,T dt (o + K% ) (1 + K70, %
w=—— ( )( ), (63)
St (@0 + Ko ) 0o /Ou
w1 = —uilo/u —uo/Tdt K0, ¥
1 110 0 fTT dt|’Cf‘IIO|2 o fOt¥o

X </Cf‘1’o + J)o) + K5 ((51 + ’Cfat‘I’o)] . (64)

Therefore, Eq. (58), substituted into the following two equa-

tions derived from Eqgs. (48,17),

Io T

2 / dt (59)
_T

m[B] ~ — | %o _ / "l + $)Ko" | (60)

wBl~ 5 |5~ ), dike e,

C. uo-calculation

A similar perturbative strategy will work in the zero chirp
“setting the clock” compensation case. The idea of the com-
pensation is to adjust the time shiff in such a way that the
first terms ofl”’s expansion irk vanish. Formally pure “setting

gives a complete description of saddle-point approximatiaRe clock” compensation meankip(t) — chf\po(t —tel)-
result. Here in Egs. (59,60) we have also assumedfthat Substituting this expression into Egs. (58,59,60), assuming that
In/2. ta = O(h), and making respective variations with respect
Note, that even though the explicit solution of Eq. (470 h, aboutu = wug, of Eq. (59) one derives that =
presented in Eqg. (58), is found, one still can not solve Egq+(Hs—t.)uy /b+O(h2), ¢ = do+(Hs—te)d1/b+O(h?)
(59), i.e. one cannot express explicitly in terms of p(¢). and finally I' = p1(Hsz — tg)/b + O(h?). Therefore, one
Therefore, the remainder of this Appendix is devoted toncludes that to cancel th@(h)-terms inT one needs to
numerical solution of Eq. (48). Step by step we analyzset the clock according ta,; = Hs.
the situations, corresponding to a variety of cases studied i
Section IV. In the remainder of this Appendix we descnbg
an exact recipe for numerical calculation of the dimensionless

nThen modifying the perturbative scheme from the previous
ubsection, according 6 — (1 + H? 82) KW, (also with

coefficients that lead to the results shown in Fig. 1.

A. T'y-calculation

First of all, one studies the zero PMDy = 0, case.
ReplacingK¢ in Egs. (58,59,60) byC,;¥,, where ; and
W, are defined by Eqgs. (42,45) respectively. Then= ug

35 = 0),u = ug+ H? up/b+O(h*) andé = o+ H3 po/b+
O(h?), one arrives at expressions equivalent to Egs. (62,63,64)
with all “1”-subscripts replaced b$2” andd; replaced byo?
respectively.

and ¢ = ¢, are the numerical solution of Eqgs. (58,59) for

fixed T'/b and 7 /b. Finally, from Egs.(21,60)
1 [T dt (Ko + o)k P
Lo = uo 5T T 2

ffT dt |’Cf‘1'0|

,  (61)

where we have usek) = 7. dt|lC;®,|2. Note that the initial
chirp, B;», does not entef’.

B. u1-calculation

D. uh-calculation

Here we discuss the case when first-order PMD compensa-
tion is applied while the output signal has small but nonzero
chirp. Perturbative calculations, outlined in Subsection 11-B of
this Appendix, are applicable with the following modifications:
K — (1 + Y(,.Gf)le\Ilo, where ¥, = ‘I’();R + Z',LL\I/O;[,
Wo.p = Cgexp(—t*/[20%]), Wo.r = Cyexp(—t2/[26%))t2 /b
andY. is defined in Eq. (30).

The idea is to solve Egs. (58,59) perturbatively with respectWe are Iooklng for perturbative solution of Egs. (58,59,60)

to h. Since in this caselCp — (1 + H30:)K;¥, (also with
Bin = 0), one presents: and ¢ in the forms,u = wg +
Hzuy /b+ O(h?) and ¢ = ¢o + Hs 1 /b+ O(h?). Then, for

in the form: u = wug + Youb/b? + O(h®) and ¢ = o +
Yoo /b2 + O(h®), where, however, bothp, and ¢, are
complex: qbk = ¢r.r + i8¢k, Wwherek = 0,2. Then, the



analogs of Eqgs. (62,63,64) are
brip = ¢{Kp — K0} ¥yp,u — ug}, (65)
where k£ =0,2 and P =1,R;
f_TT dt ((EO;R + /Cf‘I’o;R) (952;1 + /Cfa,?‘l’o;l)

I
Uy =

f_TT dt (950;3 + ’Cf‘I’o;R> dpo.r/Ou

uU—ug

- f,TT dt (éo;] + ’Cf‘I’o;I) (&2;1{ + /Cfaf‘I’o;R)

, (66)
f,TT dt (‘ZEO;R + /Cf‘I’o;R) dpo.r/du

Uu—ug
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While the PDFs ofH3 and H? follow directly from Egs.
(71,72):

2

P1(H3) ~ exp {— 253 Z} (73)
2

Po(H?) ~ exp [— 2]?”‘2] (74)

calculating the PDFs for the other two objects is less straight-
forward.

A. Statistics ofY,
PDF of Y, can be recast as

T

o Uo 2 —exp (IAY) Z(iN),  (75)
Mo = —U Fo/UO+ / dt|K+0 ‘I’();I / p

2 T T 1

N N Dh exp ——/ dz (h? + h3)
X (/Cf‘I’o;R + ¢0;R> — K07 %o, (¢0;1 + /Cf‘I’og)] . (67) / { 2D, Jo
—s/ dz/ dz’ [h1(2)ha(Z") — ha(2)h1(2")] p . (76)

E. us-calculation 0 0

Perturbative calculations for this case (first order PMDifferentiating Eq. (76) with respect to one gets
compensation and no chirp, i.e. all the functions are real) are
absolutely analogous to those explained above in Subsection OsIn = = / dz / dz' G_(z,7) (77)
II-B of this Appendix. Then withKy — (1 + Y,.07)K ¥,
(also with 3;, = 0), whereY, is defined in Eq. (31), and G_(2,7') = Gia(z,2") — Ga1 (2, 2), (78)
u = ug +Y,uz /0> +O(h?), ¢ = ¢+ Y p3/b° + O(h?), and Gij(z,2") = (hi(2)h;(2)) (79)

I = u3Y,./b® + O(h*), one derives from Egs. (58,59,60)
by = P{Kp — K;97®g,u — ug}, (68)
4 fTT dt ((]30 + /Cf\I’o) ((ﬁg + ’Cf@?‘I’g)

us = ——

, (69)
J;TT dt ((Zgo + ’Cf\:[’o) 8&)0/611

T
dt
oL

X (/cf\tfo + éo) + K%, (¢33 + /cfafxtfo)] . (70)

uU—ug
4u0
T
3 .LT dt |’Cf‘1’0‘

M3 = —U3F0/’U,0 — Kfaf":[’o

APPENDIXIII
h-AVERAGING

A formal definition of theh-averaging, i.e. averaging with

where averaging in the definition of the correlation functions
Gi; is performed using the Gaussian measure defined by Eq.
(76). Using theG-function definition and making a set of
Gaussian integral transformations (integration by parts) one
derives

Z
%’Zl) + s/sigr‘(z — ein|Gri (2, 21) = 8i50(z — ),
" 0
(80)
whereg;;, is the antisymmetri@ — 2 tensor and summation
over k is assumed in the Ihs of Eq. (80). Eq. (80) transforms
into the following equation folG_,

8G2¢ /dz sign(z—2"YG_ (2, 21)=—26(2 — 22) .

(81)

respect to the statistics of the birefringence pseudo- vectg[ZI (81) has to be supplemented by the boundary conditions

reads
(A{h})n = / Dh(z)P,A{h}, (71)
Z 2
Pr{h} = Ny, exp [—W , (72)

where A{h} is an arbitrary functional ofh, integration in

the rhs of Eq. (71) is functional (path-integral) ang, is a

normalization coefficient enforcingl),, = 1. Obviously, Egs.

(71,72) are consistent with Eq. (9).

G_(Z, Zl):*G_(O, Zl) s 8ZG_ (Z, Zl) = *azG_ (0, Zl) .

(82)
The solution of Eq. (81) that satisfies Egs. (82), has the form
G_(z,21) (83)
_ sin (77/.2+Ds(2(z—z1).+ZSIgr’{zl —2])) signiz1 —2].

sin (w/2 + DsZsignz; — z])

Substituting Eqg. (83) into Eq. (77) and performing integrations
over z, 2’ explicitly, one derived; In = = D, Z tan(D,,,sZ),

Our goal is to derive the Probability Distribution Funct|on§esumng in

for four auxiliary objects:Hz, H?, Y, andY, defined in Egs.
(25,27,30,31,) respectively, starting from Eqgs. (71,72).

1

=) = cos(Dy,sZ) (64)



Combining Egs. (84,75) and integrating overone arrives at
Y.
sht (e )
o0s (QDmZ)
B. Statistics ofY,

The PDF ofY,., defined in Eqg. (31), can be written as
1
/—exp (—iAY,) /Dp exp{ D3 73
X/dT {(dp/dé) +X% (3p° —2p1p) }}
0

where¢ = z/Z and p; = p(¢ =
over \ one arrives at

Pur) = [

PB(Y(:) = (85)

2D Z

(86)
1). Calculating the integral

Dp
@rV)iz

! dp\> V2
ac (2) + = 87
X[A (%) v } ®D
1
Y =D32%, V= / ¢ (3p° —2p1p)° (88)
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APPENDIX |V
REMOTE TAIL OF THEPDFOFBER

In this appendix we study a universal remote taildfB)
corresponding to huge fluctuations of birefringent disorder
when the signal is almost destroyed by the fluctuations. Thus,
in the parametric range

mar{(Dn2)*, (D¢Z)?} < DeZInB <1  (97)

the BER is formed by configurations di(z), where the

normalized intensity of the signal, without the noi§gh} =

I{h,& = 0}/I, (see also (12)) satisfies inequality:z <

J—1 <« 1. In this case the expression (21) for BER is replaced
(J{h} —1)°

by
D¢Z } ’

whereC ~ 1. (Strictly speaking , this coefficient also depends
on h, however for configurationd that correspond to the
leading contribution intoS(B) at (97), this dependence is
weak, and thus can be neglected.) The PDR7oE J{h},

as follows from Eq. (9), adopts the following form

B = exp [c (98)

P(J) x exp ( (99)

The condition (14) allows saddle-point calculation of the path-
integral on the rhs of Eq. (87). The saddle-point equaﬂo?@ere the functiont’(.7) does not depend oDy, Z, and

support the conservation df = const where
y2

FE = -

AR 2D3 73

and p corresponds to projection g# on p; (the other com-

(3p —2p1p)?, InPy ~ — (89)

ponent ofp orthogonal top is zero). One finds that Eq. (89)

can be recast in a form
K21 V2 52774
5 SR
wheren = o(1) and p = (V/Y)p. Note, that3 < x <
oco. Substituting Eq. (90) forE into Eq. (89) forln” and
expressing/ via o from Eq. (88) leads to

&* + (30° — 2n0)”

Sy2/3
InPy ~ — D, 7 (91)
_ A /Hcm/m22/]z(%)
It is convenient to introduce a new parameterization
:g(l—F\/l—i—f-@singp). (93)
that leads to
/ 47 (04)
@0 \/2/<;/ 1 +/<;) —cos? o
2
_ 1 / 1+ Fé) cos® ¢ (95)
9 \/2/<;/ 1+ k) —cos?
(96)

sin @, = m
One finds (numerically) thatp, = 7 — arcsin(2/+/1 + &),

corresponds to the solution with the lowest possible value [oP]

S, S,, ~ 4.185, achieved ak ~ 3.145.

or J ~ 1, it is O(1). Comparing Egs. (98,99) and also
maklng use of7 — 1 « 1, we obtain the following universal
asymptotics for the PDF of BER, valid on the interval (97):

De 1
D%Z B’

(100)

whereC; = F(1) andC; ~ |F’(1)| are constants of the order
one. The principal factor in Eq. (100) iskp[—C1/(D;,2)]
supplemented by a relatively weak dependenced3on
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