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The Lagrangian view of energy transfer in turbulent flow

A. Pumir
1
, B. I. Shraiman

2 and M. Chertkov
3

1 INLN, 1361 route des Lucioles - F-06560, Valbonne, France
2 Bell Labs, Lucent Technologies - 700 Mountain Ave, Murray Hill, NJ 07974, USA
3 CNLS and T-13, Theoretical Division, LANL - Los Alamos, NM 87545, USA

(received 18 July 2001; accepted 9 August 2001)

PACS. 47.27.-i – Turbulent flows, convection, and heat transfer.
PACS. 47.27.Qb – Turbulent diffusion.
PACS. 02.50.-r – Probability theory, stochastic processes, and statistics.

Abstract. – Hydrodynamic turbulence in 3D is characterized by a non-linear transfer of
energy from large to small scales. Here, we provide a geometrical view of energy transfer
by relating it to the deformation of fluid volumes under Lagrangian dynamics. The energy
flux is parametrized in terms of the coarse-grained velocity difference tensor together with the
tensor describing the shape of the volume. Our construction provides an intepretation for the
non-trivial time dependence of the energy of relative motion within a “cloud” of Lagrangian
particles observed in the direct numerical simulation turbulence.

The non-linear transfer of energy from large to small scales is the hallmark of hydrody-
namic turbulence in 3 dimensions. The resulting energy flux is responsible for the dissipation
becoming finite in the ν → 0 limit. Existence of this flux also makes turbulence an intrinsically
non-equilibrium phenomenon. The average rate of energy dissipation, or the energy flux ε,
plays a key role in Kolmogorov’s scaling theory (K41) [1, 2] and is also the subject of one of
the few exact results in turbulence theory —the Kolmogorov relation [1, 2]:
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where ∆u(x) ≡ (u(x)− u(0)). Equation (1) relates the energy flux ε to the 3d moment of the
structure function in the inertial range (where the effect of the viscosity term on the right-hand
side is negligible). Whereas the existence of the average energy flux is well established, the
fluctuations of the rate of local energy dissipation [2] are understood poorly if at all. Devising
a good parametrisation of the local energy flux, defined on a given length scale, in terms
of the velocity field resolved up to the same scale is essential in the context of large eddy
simulations (LES), where the smallest scales of the flow are left unresolved [3,4]. The LES is
arguably the only plausible computational approach to the practical problems of engineering
and geophysical turbulence.

Most of the present understanding of the energy flux is based on the Eulerian representation
underlying eq. (1). The Lagrangian approach, whereby fluid motion is described in terms
of particles advected by the flow, provides a natural framework to describe the dynamical
c© EDP Sciences
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processes underlying the energy transfer [5, 6]. The recent progress in the problem of mixing
of a passive scalar heavily rests on Lagrangian representation of fluid motion [7, 8]. In this
letter, we explore the mechanism of energy transfer in Lagrangian terms.

Consider the temporal evolution of the energy of relative motion, E(t), in a cloud of N
Lagrangian particles. Assume that at t = 0 the cloud particles are randomly distributed over
some small volume of characteristic size R0 in the inertial range. The energy of relative motion
at t = 0 is estimated on the basis of the Kolmogorov power spectrum, E(0) ∼ ε2/3R

2/3
0 .

According to Richardson [9], at long times the characteristic radius of the cloud grows as
〈R2(t)〉 ∼ εt3 so that estimating the relative energy, in the spirit of “mean field” theory, by
the characteristic energy on scale 〈R2(t)〉1/2, one arrives at 〈E(t)〉 ∼ εt. On the other hand,
the instantaneous time derivative of the relative velocity between two points in the cloud can
be determined from the von Karman-Howarth exact relation [10]: d

dt
1
2 〈(v(x)−v(y))2〉 ≈ −2ε

(provided the separation |x − y| lies in the inertial range of scales). Hence E(t) initially
decreases, so that the evolution of E(t) is non-monotonic. The initial decrease, due to transfer
of energy to smaller scales, is missed by the naive “mean field” argument. Below we shall
interpret the crossover between the short- and the long-time behavior of E(t) in terms of the
correlation between the “shape” distortion of the Lagrangian cloud and coarse-grained strain.
This geometric aspect of Lagrangian evolution is missed in the pure scaling arguments, based
only on single scale R(t), but is captured by the proposed parametrization of energy transfer,
tr(ĝM̂2M̂†), in terms of the moment of inertia tensor, ĝ, of the set of particles, and of the
coarse-grained velocity derivative tensor M̂ . The strain-dependent deformation of the cloud
is represented by the ĝ tensor, making explicit the geometric aspect of the dynamics. This is
the key novelty in our approach.

Consider the evolution of a cloud of N Lagrangian particles, whose location, (x1, . . . ,xN ),
is generated at initial time according to a Gaussian distribution: P (xi) = exp[−((xi −
x0)2/2R2)/(2πR2)3/2]. The center of mass of the cloud is x0, and its characteristic size
is R. The velocity of particle i is denoted vi. The moment of inertia tensor g, characterizing
the shape of the cloud [11], the mean velocity, V , and the coarse-grained velocity derivative,
M̂ , are defined by

gab ≡ (xi − x0)a(xi − x0)b; V ≡ vi; Mab ≡
∑

c

g−1
ac (xi − x0)c(vi − V )b, (2)

where the overbar denotes the average over a cloud. The coarse-grained velocity gradient
tensor, M̂ , is defined by fitting a linear velocity profile to the set of vi’s. Practically, it is
obtained by minimizing Q =

∑
i

∑
ab((v

i − V )b − (xi − x0)aMab)2 with respect to M̂ . Note
that our definition of M̂ does not require the knowledge of the derivatives and therefore is
accessible experimentally [12–14]. Alternatively, the least-square fitting procedure defines a
decomposition of the velocity of particles as

vi
a = Va +

∑
b

(xi − x0)bMba + ui
a (3)

which explicitly “separates” the center-of-mass motion, the contribution of the coarse-grained
velocity gradient and provides a definition of the residual incoherent small-scale component,
u. The decomposition equation (3) is effectively a scale decomposition: V results from
a low-pass filtering, u from a high-pass filtering, and

∑
b(x

i − x0)bMba from a band-pass
filtering around k = 2π/R, analogous in spirit to the one proposed in [11, 15]. The kinetic
energy, defined as E ≡ 1

2vi 2 can be rewritten as E = 1
2V 2 + E, where E = 1

2 (vi − V )2 =
1

2N2

∑
i<j(v

i − vj)2. The E-term represents the kinetic energy of relative motion. Using



Pumir A. et al.: The Lagrangian view of energy transfer etc. 381

eq. (3), it can be further decomposed as E = 1
2 tr(ĝM̂M̂†) + 1

2ui2, thus separating the small-
scale coherent and incoherent contributions.

We are interested in the statistical properties of many clouds released in a statistically
stationary turbulent flow, maintained by a large-scale forcing, f . The ensemble average over
many realisations is denoted 〈· · · 〉. In the statistically steady state, the balance between
forcing and viscous dissipation imposes that 〈f(x) · v(x)〉 + ν〈∇2v(x)v(x)〉 = 0; the kinetic
energy E of a cloud remains constant: d

dtE = 0. Arguments closely following the von Karman-
Howarth original derivation [10] lead to the conclusion that at t = 0, d〈E〉/dt < 0.

By expressing the Lagrangian derivative d〈V 2〉/dt = −d〈E〉/dt as the sum of the Eulerian
derivative, ∂t〈V 2〉, which vanishes in the statistically steady state, and of the contribution
originating from the non-linear advection term v · ∇v, and by using the decomposition equa-
tion (3), one obtains the relation

1
2

d
dt

〈E〉 = 〈Mabσab〉, (4)

where σab =
∑

i(v
i(x)−V )a(vi(x)−V )b is the Reynolds stress tensor. Using the decomposition

of the velocity field, eq. (3), one finds that Mabσab = tr(ĝM̂2M̂†) +
∑

ab Mabuaub ≡ F . The
small-scale contribution to the kinetic energy therefore evolves according to

d〈E〉
dt

=
〈
tr(ĝM̂2M̂†)

〉
+

〈 ∑
ab

Mabuaub

〉
= 〈F 〉. (5)

The transfer term in the RHS of eq. (5) involves correlation of stress and strain decomposed
into the sum of the term involving only the coarse-grained velocity derivatives, and the term
coupling the coarse-grained strain with the incoherent part of the velocity field. The status
of tr(ĝM̂2M̂†) as an energy transfer term has been explored in several contexts already [3, 4,
16]. The small-scale contribution was accounted for in [16] by an effective renormalisation of
tr(ĝM̂2M̂†). We shall start our analysis by demonstrating that the behavior of the flux F in
eq. (5) is controlled by the tr(ĝM̂2M̂†)-term.

We study the evolution of E numerically by following a set of clouds of N = 2000 particles.
This is done by integrating the Navier-Stokes equations with a pseudospectral, fully resolved
code, and by tracking Lagrangian particles with the algorithm introduced in [17]. Several
clouds, centered on a 43 regular sublattice of the computational box, are injected simulta-
neously. The size of the clouds was chosen so that the mean separation between particles,
initially

√
3R, ranges from dissipative scales (∼ 4η) to integral scale (∼ L). Our conclusions

are based on two runs at resolution 963 and 1923, corresponding to Rλ = 65 and Rλ = 110.
As expected, the energy of relative motion, E, initially decreases, but after a while starts

growing, see fig. 1. The larger the intitial size of the cloud, the later the transition from
dE/dt < 0 to dE/dt > 0 occurs, at times comparable to the characteristic time scale τ(R) ≈
ε−1/3R2/3 at scale R.

We next examine the energy transfer (eq. (5)), with the goal of parametrizing the Mabuaub-
term, which is in practice one of the central issues in turbulence. One of our main results,
illustrated in fig. 2, is the existence of a linear relation between the flux F and tr(ĝM̂2M̂†).
Figure 2 shows the joint pdf of the flux for two values of the size of isotropic clouds, correspond-
ing to an interparticle separation of 8η (fig. 2(a)) and 32η ≈ 0.4L (fig. 2(b)), at Rλ = 110.
The straight line represents the best fit: F = a× tr(ĝM̂2M̂†)+ b. The isoprobability contours
are strongly concentrated along these lines, demonstrating a linear dependence between flux,
F and tr(ĝM̂2M̂†). The two quantities are predominantly negative. The coefficients a and b
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Fig. 1 – The rate of change of E, the energy of the particles in the cloud with respect to the center
of mass. As the size of the blob increases, the transition from dE/dt < 0 to dE/dt > 0 occurs later.
The averages have been constructed from a sample of 270 clouds.

vary with scale, starting from a value 1 � a in the dissipative range, and increase as a function
of scale (a ≈ 1.30 for fig. 2(b)).

The linear relation between F and tr(ĝM̂2M̂†) allows us to introduce a geometric interpre-
tation of energy transfer. For isotropic clouds (gab = R2δab), tr(ĝM̂2M̂†) = R2(tr(Ŝ3) − 1

4ω ·
Ŝ ·ω), where Ŝ = 1

2 (M̂ +M̂†) is the strain, and ω is the vorticity. The density of F , defined as
the product of F by the joint probability distribution function of tr(Ŝ3) and ω · Ŝ ·ω, is shown
in fig. 3. The iso-density lines are concentrated around the line 1

4ω · Ŝ · ω = 0, demonstrating
that tr(Ŝ3) is the dominant term for energy transfer. Neglecting the vortex stretching term,
the sign of F is related to the properties of the eigenvalues of the strain, Ŝ. Indeed, denoting
the eigenvalues of Ŝ by λ1 ≥ λ2 ≥ λ3 (with λ1 + λ2 + λ3 = 0 due to incompressibility, so
λ1 > 0 and λ3 < 0), tr(Ŝ3) = λ3

1 + λ3
2 + λ3

3 = 3λ1λ2λ3, so − tr(Ŝ3) has the sign of λ2. This
sign is well documented to be predominantly positive at the level of the velocity derivative
at one point [18] and for the coarse-grained velocity derivative [16]. This property explains
the initial sign of dE/dt. Alternatively, since the negative sign of dE/dt follows from the
von Karman-Howarth argument [10], the latter can be held as a proof that the energy flux is
dominated by strain “sheets”, i.e. λ2 > 0, configurations.

The coarse-grained strain, Ŝ also determines the shape deformation of the cloud. Indeed,
the evolution of the shape is governed by dĝ/dt = (ĝ · M̂ + M̂† · ĝ). This may be reduced,

by rotating the coordinates by R̂(t) (ĝ → R̂(t)ĝR̂(t)
†
, M̂ → R̂(t)M̂R̂(t)

†
), so as to follow

vorticity (R̂(t)
† d
dt R̂(t) = −Ω̂, where Ω = 1

2 (M̂ − M̂†), to
dĝ

dt = (ĝ · Ŝ + Ŝ · ĝ), where Ŝ = (M̂ +

M̂
†
)/2. This implies that the cloud is stretched (compressed) in the direction corresponding

to positive (negative) eigenvalues of Ŝ. Consequently, the principal axis of the ĝ tensor
along the fast stretching direction of Ŝ becomes much larger than that along the compressing
direction(s). The nearly singular ĝ tensor will project out the contribution of compressive
strain eigenvalue to the trace tr(ĝŜ3) = tr(ĝŜ

3
). As a result tr(ĝŜ3) will become positive.
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Fig. 2 – Joint probability distribution functions of tr(ĝM̂2M̂†) and the flux F = tr(ĝM̂2M̂†) +∑
ab uaub for two values of the mean interparticle separation: 8η (a) and 32η ≈ 0.4L (b). The

histograms have been constructed with 4096 clouds. The two quantities have been normalized by
the rms of tr(ĝM̂2M̂†). The isoprobability contours are logarithmically spaced, and separated by a
factor

√
10. The isocontours follow closely the best fit line, F = a × tr(ĝM̂2M̂†) + b, demonstrating

the quality of the parametrisation of the flux by tr(ĝM̂2M̂†). All quantities are made dimensionless

by dividing by

√
tr(ĝM̂2M̂T )2. The mean value of (tr(ĝM̂2M̂†), F ) is indicated by a cross.

Since it is the dominant term in tr(ĝM̂2M̂†), the flux changes sign, as observed numerically.
Thus the crossover from negative to positive dE/dt is due to the development of a correlation
between the shape of the cloud and the strain. It is exactly this correlation or alignment of
all interparticle vectors with the fast stretching direction which distinguishes the initial cloud
from the Lagrangian cloud at t > 0.

We mention that the numerical results and the qualitative picture discussed here are
consistent with the prediction of the stochastic model of [16]. In the model, we computed
directly the flux 〈tr(ĝM̂2M̂T )〉 by a Monte Carlo algorithm. The initially negative value of
the flux becomes positive during the evolution as the cloud distorts. The result is independent
of the precise value of the parameters chosen to model the effects of smaller scales.

These considerations lead to an intuitively appealing geometric picture of the energy flux:
energy transfer to smaller scales is related to the deformation of the overall shape, which,
because of the predominance of sheet-like strain configurations (λ2 < 0), is dominated by
compression. Our numerical results indicate that the change of sign of dE/dt occurs well
before the shape of the cloud develops the folding, observed in mixing experiments [5]. At
very long times, a non-trivial distribution of the shape of the cloud is observed [11].

The argument we have used for velocity applies as well in the case of a passive scalar, θ.
A decomposition analogous to eq. (3) can be used for the scalar:

θi = Θ +
∑

a

(xi − x0)aGa + φi, (6)

where Θ is the mean value of the scalar, G the coarse gradient, obtained by fitting a linear
function to the values of θi, and φ the incoherent part of the scalar. The expression for
the scalar flux, analogous to eq. (5) is 〈Fθ〉 = 〈∑abc gabMbcGcGa〉 + 〈Gauaφ〉. The von
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Fig. 3 – Isodensity contours of tr(ĝM̂2M̂†) as a function of the strain skewness tr(Ŝ3) (horizontal) and
the vortex stretching 1/4ω · Ŝ · ω for isotropic clouds, and for an interparticle spacing of 32η ≈ 0.4L.
All quantities are made dimensionless by dividing by tr(Ŝ2)3/2. The contours are strongly aligned
with the zero-stretching line, demonstrating that most of the flux comes from strain skewness.

Karman-Howarth argument can be easily generalized to the passive scalar case, and leads
to the conclusion that the small-scale scalar energy, Eθ ≡ 1

2

∑
i(θi − Θ)2 initially decreases:

dEθ/dt < 0 at t = 0. At later times, as particles are drifting away from each other, Eθ grows.
Numerically, we found that the incoherent term of the scalar energy flux is highly correlated
with the coarse-grained quantity, as was the case for velocity. This fact enables us to interpret
the non-monotonic dependence of the small-scale passive scalar energy. Indeed, the passive
scalar gradient is known to align with the most contracting direction of the rate of strain
tensor [18]. As a consequence, for an intially isotropic cloud of particles (gab = R2δab), the
sign of 〈∑abc gabMbcGcGa〉 = 〈R2

∑
bc SbcGbGc〉 is initially negative. As the cloud evolves,

the contraction induced by the most compressing eigenvalue of the rate of strain tensor reduces
the corresponding component of g, thus diminishing the negative contribution to the flux, and
eventually changing the sign of the scalar energy transfer.

Our discussion so far has been restricted to the 3-dimensional case. We observe that the
energy flux based on tr(ĝM̂2M̂T ) is identically zero in 2 dimensions. This is consistent with
the fact that turbulence in 2 dimensions is characterized by an energy flux to large scales,
hence an inverse energy cascade.

In conclusion, we have shown how to parametrize the energy flux in terms of the coarse-
grained velocity gradient and the shape tensor defined on a cloud of Lagrangian particles and
provided a geometric interpretation of the observed non-monotonic behavior of the energy of
relative Lagrangian motion. Similar non-monotonic behavior is observed for the evolution of
turbulent kinetic energy in homogeneous shear flow [19]. These results are relevant both for
fundamental understanding and for modelling of turbulent flows.

∗ ∗ ∗
A grant of computer time from IDRIS (France) is gratefully acknowledged. AP was sup-

ported by the EU under contract FMRX-CT98-0175.



Pumir A. et al.: The Lagrangian view of energy transfer etc. 385

REFERENCES

[1] Kolmogorov A. N., Dokl. Akad. Nauk SSSR, 30 (1941) 299.
[2] Frisch U., Turbulence: The Legacy of AN Kolmogorov (Cambridge University Press, Cam-

bridge) 1995.
[3] Meneveau C. and Katz J., Phys. Fluids, 11 (1999) 2317.
[4] Borue V. and Orszag S. A., J. Fluid Mech., 336 (1998) 1.
[5] Corrsin S., J. Geophys. Res., 64 (1959) 2134.
[6] Meneveau C. and Lund T. S., Phys. Fluids, 6 (1994) 2820.
[7] Shraiman B. I. and Siggia E. D., Nature, 405 (2000) 639.
[8] Falkovich G., Gawedski K. and Vergassola M., to be published in Rev. Mod. Phys. (2001).
[9] Richardson L. F., Proc. R. Soc. London, Ser. A, 110 (1926) 709.

[10] von Karman T. and Howarth L., Proc. R. Soc. London, Ser. A, 164 (1938) 195.
[11] Pumir A., Shraiman B. I. and Chertkov M., Phys. Rev. Lett., 85 (2000) 5324.
[12] La Porta A. et al., Nature, 409 (2001) 1017.
[13] Ott S. and Mann J., J. Fluid Mech., 422 (2000) 207.
[14] Jullien M. C., Paret J. and Tabeling P., Phys. Rev. Lett., 82 (1999) 2872.
[15] Shraiman B. I. and Siggia E. D., C. R. Acad. Sci., 321 (1995) 279.
[16] Chertkov M., Pumir A. and Shraiman B. I., Phys. Fluids, 11 (1999) 2394.
[17] Yeung P. K. and Pope S. B., J. Fluid Mech., 207 (1989) 531.
[18] Ashurst W. et al., Phys. Fluids, 30 (1987) 2343.
[19] Yakhot V. et al., Phys. Fluids A, 4 (1992) 1510.


