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Geometry of Lagrangian Dispersion in Turbulence
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Turbulent flows disperse Lagrangian particles resulting in the growth of pairwise separations and, for
sets of three or more particles, in a nontrivial dynamics of their configuration. The shape of such clusters
is controlled by the competition between coherent straining of the cluster and the independent random
motion of the particles due to small scale velocity fluctuations. We introduce a statistical description of
the geometry of the Lagrangian clusters and predict a self-similar distribution of shapes, which should
be observable in the inertial range of scales in high Reynolds numbers flows.

PACS numbers: 47.11.+j, 47.27.–i
One of the defining attributes of turbulent flow is the ef-
fective mixing that it produces thanks to the chaotic motion
of the material points of the fluid and consequently, that
of any advected particles. According to Taylor, a single
material point (or advected particle) on time scales much
longer than the turnover of the largest eddy exercises a
Brownian motion with effective diffusivity set by the char-
acteristic scale and time of the flow. On the other hand, a
pair of points separated by the scale smaller than that of
the largest eddy separates superdiffusively according to the
Richardson law �R2�t�� � ´t3 (where ´ is the rate of en-
ergy dissipation) [1,2]. The difficulty of tracking particles
has been a serious impediment to direct experimental veri-
fication, yet recent observations in a two-dimensional flow
are compatible with Richardson’s prediction [3]. Newly
developed methods of particle tracking [4,5] should allow
further direct tests of the Richardson law. They will also
allow one to follow more than one or two particles making
it possible to study not only the statistics of pair separa-
tions but also the geometry of particle configurations. The
latter is interesting because it provides information about
the dispersion process which goes beyond Richardson scal-
ing and probes the effect of transiently coherent turbulent
fluctuations.

Indeed, there is much more to turbulent mixing than
the random meander of particles. The complexity of the
process is evident in the structure of an advected scalar
field which tends to organize into fronts of high gradient
observed in experiment [6–9]. Recent work on the pas-
sive scalar problem [10–12] has attributed the breakdown
of the Kolmogorov-Obukhov-Corrsin scaling theory to the
appearance of such structures. Formation of “fronts” is as-
sociated with transient domains of hyperbolic flow which
because of the volume preservation distort and necessarily
“flatten” blobs of fluid. The same mechanism would re-
sult in a relatively high probability for multipoint �n . 3�
clusters to become nearly coplanar. The distortion of the
cluster due to larger scales of the flow is opposed by the
independent and uncorrelated random motion of its con-
stituent points due to small scale turbulence. The average
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degree of this distortion is a measure of relative impor-
tance of the correlated and incoherent relative Lagrangian
motion of particles and provides insight into the geometric
structure of turbulent fluctuations. It can be measured by
following three or more material points in the flow and is
the main subject of the present work.

In this work we investigate the geometrical aspects of
Lagrangian dispersion, and, in particular, the dynamics
of small n � 3, 4 clusters of material points via (1) di-
rect numerical simulations (DNS) of the Navier-Stokes
equations at moderate Reynolds numbers �Rl � 82�, and
(2) a simple phenomenological model of the Lagrangian
kinematics (first advanced in the context of passive scalar
[10]) which describes the combined action of coherent
and incoherent random strain. The DNS demonstrate that
initially regular clusters of points, whose scale R0, at
t � 0, lies in the dissipation range rapidly evolve into
very strongly distorted configurations, while clusters of
larger size, comparable with the integral scale, relax to-
wards a uniform shape distribution. The phenomenologi-
cal model allows us to qualitatively extrapolate the DNS
measurements to the high Reynold’s number regime. We
argue here in favor of the existence, within the iner-
tial range of scales, of a self-similar state where the
average size of the cluster increases, but the statistical
distribution of shapes is stationary and nonuniform, so
that most likely clusters are strongly distorted. Finally,
we discuss the nontrivial relation between the kinemat-
ics of Lagrangian clusters and the anomalous scaling es-
tablished for the multipoint correlators of the advected
scalar [10,12–16].

To describe a cluster of n particles, located at �xi �i �
1, n�, we define n 2 1 vectors involving position differ-
ences only. A convenient choice is �r1 � � �x2 2 �x1��

p
2,

�r2 � �2 �x3 2 �x1 2 �x2��
p

6, �r3 � �3 �x4 2 �x1 2 �x2 2 �x3��p
12 (the center of mass has no influence on the shape of the

cluster). The radius of gyration, defined by R2 �
Pn21

i�1 �r2
i

measures the spatial extent of the swarm of particles. To
characterize the shape of the object, we introduce a “mo-
ment of inertia-like” tensor by
© 2000 The American Physical Society
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gab �
n21X
i�1

ra
i rb

i , (1)

where r
a
i is the a component of the vector �ri . The

eigenvalues of this tensor gi �g1 $ g2 $ g3 � R2�
provide a way of quantifying the shapes of the set of
points. For example, for n $ 4, g1 � g2 � g3 corre-
sponds to an isotropic object. The case g1 � g2 ¿ g3
corresponds to a pancakelike object and g1 ¿ g2, g3
to a needlelike object. The same considerations apply
for a triangle, n � 3, with the restriction that g3 � 0.
A convenient way to describe the overall shape of the
swarm consists of monitoring the ratio I2 � g2�R2

�0 # I2 # 1�2�. Alternatively, for n � 3, the area of a
triangle, A � j �r1 3 �r2j, and, for n � 4, the volume of
a tetrahedron, V � j det� �r1, �r2, �r3�j may also be used to
construct dimensionless measures of the cluster shape;
e.g., for the triangle, v � 2A�R2 � 2

p
I2�1 2 I2�.

Statistically, the geometry of the evolving Lagrangian
cluster is characterized by a (time dependent) probability
distribution function (pdf) of these invariants. Their pdf
should be compared with the case of the isotropic Gauss-
ian distribution PG� �r1, . . . , �rn21� � N exp�2

P
i �r2

i �.
In the triangle case, one can explicitly compute the
pdfs of I2:pG�I2� � 4�1 2 2I2� ��I2�G,3 � 1�6�, and of
area A:pG�A� � 4A exp�22A� (see also [17]). For
n � 4 the pdfs of volume and of I2 may be determined
by a straightforward Monte Carlo (MC) calculation
��I2�G,4 � 0.222�.

Numerically, we consider a turbulent flow in a periodic
box, forced at large scale. The Navier-Stokes equations
are integrated with a standard pseudospectral code, with
1283 resolution. The Reynolds number is Rl � 82. Reg-
ular tetrahedra with an edge of size r0 are initiated at the
vertices of a regular sublattice of size �27�3 of the full do-
main. The initial radius of gyration is R0 �

p
3�2 r0. The

integration of the advection equation for the particles re-
quires a precise interpolation of the velocity field; we use
a third order interpolation algorithm [18]. The results dis-
cussed below do not depend qualitatively on the Reynolds
number in the range 21 # Rl # 82.

The evolution of �I2� as a function of time for initially
regular tetrahedra with r0 � qh with q � 1�4, 1, 4, 16,
32, and 64 is shown in Fig. 1(a). A rapid decrease of
I2 corresponding to strong initial growth of distortion is
observed, more so as the initial size of the swarm gets
smaller. At very short times, all the curves corresponding
to the dissipative scale �r0 & 5h� superpose. A systematic
comparison with data at a lower Reynolds number demon-
strates that the characteristic distortion time in the dissi-
pation range is the Kolmogorov time, tK � �n�e�1�2. For
R * 10h, the characteristic time of distortion is t�r0� �
r

2�3
0 e21�3. When r0 � h�4, the shape distortion is maxi-

mum when �R� � 10h, at the low end of the inertial range.
At larger scales/times, the distributions of I2, V , and R all
appear to approach asymptotically the Gaussian distribu-
FIG. 1. Evolution of the ratio �I2� (a) and of �V � (b) for a
set of �27�3 initially regular tetrahedra, with an edge size of
r0 � nh, n � 1�4, 1, 4, 16, 32, and 64. The integral size is
L � 64h; Rl � 82. In (a), the dashed horizontal line shows the
Gaussian value, �I2�G,4 � 0.222. Time has been scaled by the
Kolmogorov time scale. The smaller the value of r0, the lower
the minimal value of �I2�. (b) shows the growth of the averaged
value of the volume, �jV j� of the tetrahedra. No convincing
Richardson scaling is seen ��jV j� ~ e3�2t9�2; compare with the
dashed line). The results obtained for triangles are qualitatively
very similar.

tion: �I2�G,4 � 0.222. For values of R0 close to L, the
integral scale, the dip of �I2� preceding the relaxation to
the uniform distribution is very weak. The results ob-
tained for triangles are qualitatively completely similar.
Figure 1(b) shows the mean value of the volume of the
tetrahedra. At short times, and for r0 & 4h, the volume is
approximately conserved, as expected, since the velocity
field in the dissipative range is well approximated locally
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by ya�r , t� � Mab�t�rb with trM � 0 due to incompress-
ibility. Because of this constraint, the growth of R is due to
shape distortions. Once R reaches inertial scale values, the
contribution of small scale fluctuations becomes important
and Lagrangian dynamics deviates from the linear volume
preserving map which it was in the dissipative range: the
average volume begins to grow. The pdf of volumes cor-
responding to a value of r0 in the dissipative range shows
very wide tails. The number of tetrahedra followed �273�
was not large enough to obtain a reliable estimate of the
second moment of the distribution.

The kinematics of Lagrangian dispersion may be mod-
eled by the following equation for the evolution of �r
[10,11,19]:

dr
a
i

dt
� rb

i Mba 1 ua
i , (2)

where Mba � �≠bVa� with trM � 0 represents the smooth
velocity gradient due to the components of velocity at wave
numbers of order � 1�R (in a Fourier decomposition)
which coherently strains and shears the cluster, whereas
ua

i denotes the incoherent random velocity component aris-
ing from Fourier modes with wave number .R21. The
long wavelength part of the velocity field is irrelevant as
it simply advects the cluster as a whole. Dimensionally,
the strain is M � e1�3R22�3, and should evolve on a time
scale t�R� � e21�3R2�3. Similarly, the small scale ve-
locity fluctuations are of order u � e1�3R1�3, and evolve
with a characteristic time smaller than t�R�. For our
purely kinematic purpose, let us consider a simple Gauss-
ian model of the inertial range:

dMab

dt
� 2

Mab

t�R�
1 hab , (3)

�hab�t�hcd�t0�� � C2
hd�t 2 t0�

3

≥
dabdcd 2

1
d

dacdbd

¥
�t�R� , (4)

�ua
i �t�ub

j �t0�� �

µ
Cy

3

∂2

d�t 2 t0�dijdabR2�t�R� . (5)

The growth of distortion is clearly due to the action
of the coherent strain [20], while the incoherent, small
scale term �ua

i � acting by itself would produce a uniform
distribution of shapes. The two dimensionless factors Cy

and Ch describe the relative importance of the two terms
with the ratio Cy�Ch , a priori of order 1 in the inertial
range. For R comparable to the integral scale however,
most of the velocity field becomes effectively “small scale”
(compared to R), so relaxation towards the Gaussian shape
distribution is expected.

We have studied Eqs. (2)–(5) numerically using the
MC approach. As expected dimensionally, the scale
R eventually grows as t3�2. More importantly for our
purpose, the ratio �I2� reaches a finite value when t ! `.
This corresponds to the appearance of a dynamical
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self-similar state with stationary distribution of shapes:
P�r, t� ! P�R�t3�2, g�R2�. Indeed, all the distributions
we have computed numerically converge to a time inde-
pendent limit when t is large. In the self-similar state the
“coherent” distortion generated by scales comparable to
R is balanced by the randomizing effect of small scale
fluctuations. Thus the limiting value of �I2� depends
monotonically on the ratio Cy�Ch , as Fig. 2 demon-
strates, in the case of tetrahedra. The Gaussian value
is recovered when Cy�Ch ! `, whereas the distortion
increases without limit ��I2� ! 0� when Cy�Ch ! 0. For
the case of triangles the “shape” tensor g is parametrized
by a single variable v � 2A�R2 �w # 1�. Figure 3
presents the pdf of w, as well as the pdf of w conditioned
on several values of R��R�. We observe that the clusters
with the radius of gyration larger than average are more
distorted, as evidenced by the shift of the maximum of P
towards smaller values of w. A systematic variation of the
pdfs of radii of gyration/pair separation as a function of
Cy�Ch ratio is observed: when Cy�Ch decreases as the
coherent straining term becomes larger, the pdfs develop
wider tails. We expect a similar nontrivial distribution
of pair separation/radius of gyration to appear in real
turbulent flows with large enough inertial ranges. It would
be interesting to determine the effective Cy�Ch ratio by
fitting the data.

In summary, we have investigated the statistical geom-
etry of Lagrangian trajectories of n � 3, 4 particles. We
find that Lagrangian shapes are strongly distorted by the
coherent action of larger scale flow and on the basis of a
phenomenological model predict that in flows with wide

FIG. 2. The value of the anisotropy of the tetrahedra reached
asymptotically evolving according to the stochastic model
Eqs. (2)– (5) at long times, as a function of the ratio Cy�Ch .
The dotted line is the Gaussian ensemble value. Qualitatively
very similar results are obtained for the triangles.



VOLUME 85, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 18 DECEMBER 2000
FIG. 3. The pdf of w 	w � 2
p

I2�1 2 I2�
, and the pdf of
w conditioned on R characterizing the self-similar state solu-
tion of Eqs. (2)– (5) �Cy�Ch � 1�. The total distribution of
w is different from the distribution in the Gaussian ensemble
	PG�w� � 2w
. The maximum probability shifts towards low
values of w, implying a higher degree of distortion when con-
ditioning on a higher value of R��R�.

inertial range (in contrast to our DNS) multipoint con-
figurations should achieve a nontrivial statistically self-
similar shape distribution. We also observe a correlation
between the rate of dispersion (defined as growth of the
average interparticle distance) and the degree of distortion
which indicates the importance of high strain events. Re-
cent work on the passive scalar problem [10,12–16] has re-
lated the appearance of anomalous scaling with zero modes
of the evolution operator governing multipoint correlators.
Configurational degrees of freedom proved essential since
without them there would not be zero modes. The non-
trivial configurational statistics of a dispersing Lagrangian
cluster which we discussed above is intimately, but not
directly, related to the zero modes dominating static corre-
lators. Both are governed by the same evolution operator
H, but whereas the zero modes are annihilated by it, the
inertial range self-similar state that we described satisfies
d�dt � aR1�3d�dR � H. Further interest in multipoint
Lagrangian statistics is justified as it extends beyond kine-
matics and into “dynamics” of turbulent fluctuation [21]
and quantifies the intermittent nature of turbulent disper-
sion. Finally, Lagrangian statistics is becoming accessible
experimentally and is offering a possibility of a novel and
insightful comparison of observation and theory.
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