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Polymer Stretching by Turbulence
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The stretching of a polymer chain by a large-scale chaotic flow is considered. The steady state which
emerges as a balance of the turbulent stretching and anharmonic resistance of the chain is quantitatively
described, i.e., the dependency on the flow parameters (Lyapunov exponent statistics) and the chain
characteristics (the number of beads and the interbead elastic potential) is made explicit.

PACS numbers: 83.10.Nn, 05.40.–a, 47.27.– i, 61.25.Hq
A great task is to develop a theory of turbulence for a di-
lute polymer solution which explains, particularly, polymer
drag reduction, the so-called Toms’ effect [1]. Although a
very plausible qualitative theory of polymer’s drag reduc-
tion, describing the bulk viscosity and the size of the vis-
cous boundary layer increase, was given by Lumley [2,3],
no quantitative theory of the phenomenon is available. It
is also widely accepted that the enormous increase of the
polymer contribution into the stress tensor (by a factor of
10 000 in a turbulent flow, e.g., [4], and up to 130 times in
the recent experiment of Groisman and Steinberg on elastic
turbulence at very low Reynolds number [5]) is associated
with extreme polymer stretching [2,4] (there exists an al-
ternative theory suggesting that the connection between the
turbulent strain rates and the elongational viscosity is cir-
cumstantial [6]; see also a comprehensive discussion of the
subject in [7]). Therefore, it seems logical to start a theo-
retical exploration of the whole problem of the polymer
solution hydrodynamics from the description of a single
polymer stretching.

In the present Letter I discuss a polymer chain placed
in a statistically known random flow under the assumption
that the back reaction of the polymer on the flow is neg-
ligible, i.e., the polymer is passive. Polymer stretching in
laminar flows was extensively studied in the past, e.g., [4].
A recent experimental advance has come with the state-of-
the-art capability to visualize a polymer (DNA molecule)
and therefore to study its stretching directly [8,9]. A quali-
tative theory of polymer stretching by chaotic flow [3] has
predicted the jump of the mean square polymer length
at O�1� value of the stretching-to-linear elasticity ratio.
Based on the recent progress in the theory of the passive
scalar advection by a large-scale flow [10–19], Balkovsky
et al. [20] have developed the approach of [3] and have
constructed a quantitative theory of the transition onset. In
the present Letter I generalize the approach of [20]. Non-
linear, but still passive theory of polymer stretching above
as well as below the aforementioned threshold is delivered.
Of special note is the described dependence on the equi-
librium polymer contour length.

Equilibrium and even extended-by-flow lengths of a
polymer chain are typically much smaller than the Kol-
mogorov viscous scale. This allows one to model a
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velocity field (counted from a reference point, say, one
of the polymer’s end points) advecting the polymer by
ua�t; r� � sab�t�rb (i.e., the velocity at all scales under
consideration changes linearly with the separation). Here
the statistics of the traceless ŝ (we consider incom-
pressible flow) is assumed to be known. I will analyze a
sequence of models moving steadily from (1), introduced
in [20], through (6) to (16). Polymers will be modeled
by a chain of beads [two beads in the cases of (1) and
(6) and N beads for (16)] connected by elastic [harmonic
for (1) and anharmonic for (6) and (16)] springs. Forces
of friction acting on a bead, which occur as the bead is
moving against the local flow, are equilibrated by elastic
tension within the springs attached to the bead and by
thermal forces. The goal is to describe statistics of the
passive polymer(s) advected by u�t; r�.

I start by elaborating on the features and defects of the
two-bead-one-linear-spring model. The basic equation of
motion for the interbead separation r is

d
dt

ra 2 sab�t�rb � 2kra 1 ja�t� , (1)

where the friction force on the right-hand side of (1) is
equated by elastic and thermal forces on the left-hand side.
In (1) k is the ratio of the string linear tension to the fric-
tion coefficient; �j�0�j�t�� � 2kd�t�, and k is the ther-
mal (molecular) diffusion coefficient. The solution of (1)
is given by

r�t� � e2ktŴ�t�
∑
r�0� 1

Z t

0
ekt0Ŵ21�t0�j �t0�

∏
, (2)

with Ŵ�t� as the time-ordered exponential T exp�
Rt

0 dt0 3

ŝ�t0��. The temporal evolution of Ŵ is described by two
Lyapunov exponents at times greater than the inverse of the
exponents, while all other (“angular”) degrees of freedom
are frozen [18]. Respectively, tr�ŴŴ1� grows as exp�2lt�
and one gets the following estimation for the length of
the polymer, r2�t� � max�1, exp�2�l 2 k�t�	k
jl 2 kj.
Here the long-time statistics of the leading Lyapunov ex-
ponent (according to a matrix version of the large deviation
theory [19]) is described by the weight

dl exp�2tS�l�� . (3)
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The entropy function S�l� is concave with a zero minimum
at l � l̄. At the largest times, the moments of r are
governed by a saddle point value, l � ln, S0�ln� � n,

�r�t�n�
kn
2 � max

Ω
1

jl̄ 2 kjn
2 ,
et�2nk1nln2S�ln��

jln 2 kjn
2

æ
. (4)

This result shows, particularly, that only the lowest mo-
ments (and only if k . l̄) are steady. However small the l̄

(in comparison with k) may be, it cannot prevent the higher
moments from an asymptotic in time growth, the steady
probability distribution function (PDF) of r decays alge-
braically [20] with a large-r-cutoff growing in time. The
threshold for the nth moment convergence is given by

S0�ln� � n, kn � ln 2 S�ln�
n . (5)

kn as a function of n has a minimum, l̄, at n � 0. The n �
2 value of the threshold is associated with the convergence
of the dilute polymer solution contribution into the overall
strain rate, and therefore can be identified as the onset of
the drag reduction [20]. The dependence of the onset value
on the number of elements in a long polymer chain (i.e., on
square equilibrium radius of gyration of the polymer) will
be discussed later in the Letter. A problem, however, is that
the linear theory does not allow one to describe statistics
of polymer (and, particularly, to find the steady length of
the stretched polymer) above the drag reduction onset.

Accounting for the elastic elasticity solves the latter
problem. The anharmonic generalization of (1) to con-
sider is

d
dt

ra 2 sab�t�rb � 2≠a
r U�r� 1 ja�t� , (6)

where U�r� is an arbitrary bounded potential. Isotropy
dictates that the distribution function of ra should depend
on the polymer length only. For the dynamically rele-
vant times, t ¿ 1
l̄, the problem reduces to a study of
(6) projected on the major stretching direction. First, con-
sider the case of the Gaussian entropy function, S�l� �
�l 2 l̄�2
2D, for which the reduction from the stochastic
differential equation (6) to the Fokker-Planck equation for
the distribution function of the separation r, P , is espe-
cially simpleΩ

≠t 1
D

2
≠rr≠rr 2 l̄≠rr 1

2k≠2
r 1 ≠rU 0�r�

æ
P � 0 . (7)

The stationary solution of (7) is

P �r� � Cr21 exp

∑
2

Z r

0
dr 0

U 0�r 0� 2 l̄r 0

2k 1 Dr 02
2

∏
, (8)

where C is the normalization coefficient. One observes
that when the molecular diffusivity is small it enters only as
an ultraviolet cutoff, rd �

p
k
D in the large-scale (r ¿

rd) behavior. In the forthcoming calculations the diffusion
will be considered small. We will not be counting for effect
4762
of diffusion explicitly and yet introducing the rd cutoff if
appropriate. The general case of a non-Gaussian entropy
function does not lead to a simple differential equation for
the PDF. However, it may always be described by the
path integral

P �r� �
Z r�0��r

Dl�t�Dr�t�Dp�t�

3 exp

∑
2

Z 0

2`
L dt

∏
, (9)

L � 2p� �r 2 lr 1 U 0�r�� 1 S�l� . (10)

The effective action in (9) is as large as the time of evo-
lution in the strong flow is. Therefore, the semiclassical
saddle-point approximation should work. The saddle sys-
tem of equations, supplied by the final condition (at the
observation time) r�0� � r , is8<

:
�rsp 2 lsprsp 1 U 0�rsp� � 0 ,
2 �psp 2 lsppsp 1 pspU 00�rsp� � 0 ,
psprsp 1 S0�lsp� � 0 .

(11)

Notice also that this system of equations is consistent with
the conservation of energy

E � 2psp�2lsprsp 1 U 0�rsp�� 1 S�lsp� � const.
(12)

Because one is looking for finite action during an infinite
time (beginning at t � 2`) evolution, the choice E � 0
is mandatory. The saddle point PDF is given by

Psp�r� � exp

∑
2

Z r

0

drsp

rsp
S0�lsp�

∏
, (13)

with lsp and rsp related to each other locally through
U 0�rsp�
rsp � lsp 2 S�lsp�
S0�lsp�. For the Gaussian
S�l�, one derives �rsp;G 1 l̄rsp;G 2 U 0�rsp;G� � 0 and

Psp;G�r� � exp

∑
2

2
D

Z r

rd

dr 0

r 02
�U 0�r 0� 2 l̄r 0�

∏
. (14)

Comparing the semiclassical expression (14) with the exact
one (8), one concludes that the algebraic 1
r factor is
gained through the fluctuations calculated on the top of the
saddle solution. [Notice also, that the saddle-point solution
becomes exact after changing to log ln�r
rd� variables.]
To find the steady length of the polymer, one should also
perform an additional variation of the effective action in
(14) with respect to r . The result is given by the time-
independent solution of (11)

l̄rst � U 0�rst� . (15)

The last equation is valid for an arbitrary form of S�l�.
Consider now the case of a long polymer modeled by

N anharmonic springs connected in a chain

d
dt

ra
i � sabr

b
i

2 �≠aU�ri;i21� 1 ≠aU�ri;i11�� 1 ja
i , (16)
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with ri;k � ri 2 rk , and the boundary condition, r1;0 �
rN11;N � 0, imposed at the fictitious end points of the
polymer, added for convenience. As the strong flow regime
when the chain is extremely stretched (so that anharmonic-
ity becomes more important while off-linear conformations
of the polymer are less relevant) one can (1) take into ac-
count only linear (straight-line) conformations of the poly-
mer; (2) neglect diffusion; and (3) replace the projected (on
the major stretching direction) ŝ by the leading Lyapunov
exponent. The continuous version of the scalar projection
of (16) (to be considered for N ¿ 1, the major case of
interest) is

d
dt

rn � l�t�rn 1 ≠nU 0�≠nr� , (17)

supplemented by ≠nr�0� � ≠nr�N� � 0. The saddle-
point method explained above in detail for the single-
spring model is also valid (it is even enhanced as N
appears to be an additional saddle parameter) for analyz-
ing the following system of equations:8><

>:
�rsp 2 lsprsp 1 ≠nU 0�≠nrsp� � 0 ,
2 �psp 2 lsppsp 1 ≠2

npspU 00�≠nrsp� � 0 ,RN
0 psprsp dn 1 S0�lsp� � 0 .

(18)

The zero energy condition, consistent with (18), isRN
0 dn psp�2lsprsp 1 ≠nU 0�≠nrsp�� � S�lsp�. The

saddle-point system of equations supplied by the final con-
dition rn�t � 0� � r�n� has a unique solution. The func-
tional PDF is given by P �r�n�	 � exp�

R0
2` psp �rsp dt�.

If, however, one is interested in the PDF of the final point
(polymer length) only, variation with respect to all the
r�n� except the end of the polymer, r�N�, should be taken.
A very symmetric solution of the enhanced saddle-point
system is available. The hint is that not only the global
energy vanishes but also the energy density (for each and
every value of n) does. This leads to

lsp 2
≠nU 0�≠nrsp�

rsp
�

S�lsp�
S0�lsp�

�
�rsp

rsp
. (19)

The first equation in (19) can be integrated

n 1 �N 2 2n�u
µ

N
2

2 n

∂
�

Rt
0

U 00�x� dxq
2
Rt�

x
yU 00� y� dyr

lsp 2
S�lsp �
S0�lsp�

,

where t � ≠nrsp , and u�x� is the step function. Therefore,
the maximal tension on the string t��t� and the length of
the polymer, r��t� � rsp�t; N�, are related to each other
through

N

s
lsp 2

S�lsp�
S0�lsp�

�
p

2
Z t�

0

U 00�x� dxqRt�

x yU 00� y� dy
, (20)

r2
�

4

∑
lsp 2

S�lsp�
S0�lsp�

∏
�

Z t�

0
xU 00�x� dx . (21)
Finally, according to the second part of (19), applied
to n � N , the dynamics of all the time-dependent
fields ���lsp�t�, r��t�, t��t���� is unambiguously fixed by
d ln�r��t��
dt � S�lsp�
S0�lsp�, r��0� � R. The proba-
bility to observing a polymer of length R is given by
(13) with rsp replaced by r�, r�, and lsp related to each
other through (20) and (21). The PDF has a pronounced
maximum at some value, R�, which is the steady state
polymer length. R� is described by (20) and (21) taken at
lsp ! l̄ (then r� ! R�).

The algebraic system of Eqs. (20) and (21), with the
result substituted in the r� ! rsp version of (13), solves
unambiguously the problem of finding the probability for
the N-chain polymer characterized by the interbead inter-
action U�x� to be stretched to the length R in the flow de-
scribed by S�l�. For the Gaussian entropy function S�l�
and the algebraic potential U�x� � qx21a one derives

P �R� �
µ

R
rd

∂2l̄
D

exp

∑
2

2l̄

�2 1 a�D

µ
R
R�

∂21a∏
, (22)

R� �
2�l̄
q�1
a

�1 1 a�1
a

√
G� 413a

412a �

G� 11a

21a �
p

2p
N

!112
a

. (23)

Notice also that (23) holds for an arbitrary form of S�l�.
For the linear harmonic chain, U � kx2, and the Gauss-
ian entropy function, one gets D ln�P�R��
�2 ln�R
rd�� �
l̄ 2 p2k
N2; i.e., for N greater than p

p
l̄
k the pure

harmonic consideration has no sense as the resulting PDF
is not normalizable. In other words, a transition to the
nonlinear regime is taking place at a very small (p2k
N2)
value of l̄.

Knowledge of P�R� allows one to calculate any corre-
lation functions of R. I will briefly discuss two examples
of interest. First of all, as was already mentioned above,
the kinetic theory estimate for the polymer contribution
into strain tensor is proportional to �R2� �

R
R2P�R� dR

[20]. Therefore, (20), (21), and (13) applied to the case of
a complex potential U�x� � kx2 1 qx21a will describe
the “first order phase transition” ( jump of the �R2� value)
from the linear theory estimate, �r2

d , valid at l̄ 1 2D ,

p2k
N2, up to �R2
� , correspondent to the nonlinear

case. The second example explains how to recalculate the
probability, Pdeg, of the polymer to degrade (to break
in two pieces) under the action of turbulence. Indeed,
assume that the polymer string breaks if the maximal
(along the polymer) tension exceeds the critical value, tc.
Then, Pdeg is given by the integration of P�R� from Rc up
to `, where Rc solves the system (20) and (21) with r�

and t� replaced by Rc and tc, respectively.
Let me briefly mention other passive problems of inter-

est which remained beyond the scope of the present Letter.
First of all, it is known that in the case of fully devel-
oped turbulence, the degenerate (or very close to degen-
erate) sheetlike flow configurations (associated with the
so-called Vieillefosse tail of the velocity gradient PDF) can
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be favored, especially in the viscous range [21]. Polymer
stretching in the degenerate case requires a separate in-
vestigation accounting for off-straight-line but planar con-
formations of the polymer. Notice also that turbulent
stretching of a flexible but inextensible polymer [4] (the
one which is considered to be a good model of B-DNA
[22]) is yet another problem which requires an accurate
account for the off-straight-line conformations. Second,
excluded volume effect along with hydrodynamic self-
interaction of the polymer, known to be of great importance
in the equilibrium theory [23,24], may also play a signifi-
cant role in the random flow case. Third, compressibility
of the flow (responsible for the sign change of l̄ [25])
may cause new effects interesting enough to study (the
saddle-point approach will not work if l̄ is negative). Fi-
nally, steady statistics of comblike, starlike, and randomly
branched polymers, dendrimers, or polymeric membranes,
placed in a chaotic flow, can also be studied within the pas-
sive approach demonstrated above for the linear polymer.

If concentration of polymer solution is small enough,
the passive approach developed above is valid. How-
ever, the elastic contribution into the strain tensor grows
with the concentration. Once the elastic contribution into
the stress tensor becomes of the order of the kinetic one the
problem cannot be treated as passive. The steady length
of the polymer may still be much smaller than the vis-
cous scale. The scale separation, in principle, allows one
to generalize the passive approach of the present work and
to describe various chaotic effects of the non-Newtonian
hydrodynamics (see [26] for an attempt to proceed in the
active direction).
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