Codeword polytopes and linear programming relaxations for error-control decoding

Martin Wainwright Department of Electrical Engineering and Computer Science Department of Statistics UC Berkeley, CA Email: wainwrig@{eecs,stat}.berkeley.edu

Collaborators

LP decoding: Jon Feldman (Columbia), David Karger (MIT)

Tree-reweighted max-product: Tommi Jaakkola (MIT), Alan Willsky (MIT)

Expander-based bounds: Jon Feldman (Columbia), Tal Malkin (Columbia), Rocco Servedio (Columbia), Cliff Stein (Columbia)

Outline

1. Introduction

2. Linear programming relaxations for decoding

- (a) Basic LP relaxation
- (b) Link to standard iterative methods
- (c) Tree-reweighted max-product

3. Properties of LP decoding

- (a) Polytope vertices and pseudocodewords
- (b) BSC: fractional distance and expander-based bounds
- 4. Higher-order LP relaxations
 - (a) Canonical full relaxation: metric polytope
 - (b) Open issues
- 5. Summary and open questions

§1. Introduction

replacements any modern codes (e.g., turbo, LDPC) based on bipartite graph

 $V \equiv$ set of variable nodes

 $C \equiv \text{set of check nodes}$

 $E \equiv \text{variable-check edges}$

- $x_i \in \{0, 1\}$ is bit associated with node $i \in V = \{1, \dots, n\}$
- check a connected to bit neighbors in V(a) defines local parity check

$$f_a(x_{V(a)}) = \begin{cases} 1 & \text{if } \oplus_{i \in V(a)} x_i = 0\\ 0 & \text{otherwise.} \end{cases}$$

 $\bullet\,$ over all code $\mathbb C$ defined by product of checks

$$\mathbb{C} := \{ x \in \{0,1\}^n \mid \prod_{a \in C} f_a(x_{V(a)}) = 1 \}.$$

Decoding problem

- channel provides noisy observation vector $\mathbf{y} \in \mathcal{Y}^n$
- defines a probability distribution over codewords:

$$p(\mathbf{x}|\mathbf{y}) \propto \prod_{v \in V} f_v(x_v) \prod_{a \in C} f_a(x_{V(a)})$$

where $f_v(x_v) = p(y_v | x_v)$.

- different types of decoding:
 - for minimal *bit error rate*, compute the marginal probability $p(x_v = 1 | \mathbf{y})$ and then set

$$\widehat{x}_{v} = \begin{cases} 1 & \text{if } p(x_{v} = 1 \mid \mathbf{y}) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

- for minimal word error rate, decode to

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}\in\mathbb{C}} p(\mathbf{x} | \mathbf{y})$$
 and $\left\{ \max_{\mathbf{x}\in\mathbb{C}} p(\mathbf{x} | \mathbf{y}) \right\}$ maximum likelihood decoding

Iterative decoding of graphical codes

- iterative "message-passing" techniques (sum-product or belief propagation; max-product or min-sum) have become the standard approach
- exact for trees, but approximate for graphs with cycles
- remarkably good practical performance
- behavior well-understood for random code ensembles in asymptotic regime as blocklength $n \to +\infty$ (e.g., Luby et al., 2001; Richardson & Urbanke, 2001)
- open issues: performance guarantees for intermediate length codes?

§2. Our approach: Linear program relaxation

- reformulate maximum-likelihood (ML) decoding as a linear program over the *codeword polytope*
- solve the LP over a relaxed polytope: linear programming (LP) decoder
- linear programs are graph-structured, and can be solved either by standard LP solvers, or variants of iterative message-passing
- error analysis reduces to study of linear program with random cost function
- amenable to some analysis in finite-length setting

Codeword polytope

Definition: The codeword polytope $CH(\mathbb{C}) \subseteq [0,1]^n$ is the convex hull of all codewords

$$CH(\mathbb{C}) = \left\{ \mu \in [0,1]^n \mid \mu_s = \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) \; x_s \right\}$$

- the codeword polytope is always contained within the unit hypercube $[0,1]^n$
- vertices correspond to codewords

From integer program to linear program

Given a noisy observation y, define cost vector $\theta = \theta(y)$.

Example: For the BSC, set $\theta_s = 1$ if $y_s = 0$ and $\theta_s = -1$ if $y_s = 1$.

Key: Given received word **y**, optimal maximum likelihood (ML) decoding can be re-formulated linear program (LP) over the codeword polytope:

$$\min_{\mathbf{x}\in\mathbb{C}}\sum_{s=1}^{n}\theta_{s}x_{s} = \min_{\mu\in\mathrm{CH}(\mathbb{C})}\sum_{s=1}^{n}\theta_{s}\mu_{s}$$

LP relaxation for approximate decoding

- each parity check $a \in C$ defines PSfrag replacements a *local codeword polytope* LOC(a)
- impose all local constraints:

 $\operatorname{LOC}(\mathbb{C}) := \cap_{a \in C} \operatorname{LOC}(a).$

Properties:

- 1. For trees, $LOC(\mathbb{C}) = CH(\mathbb{C})$.
- 2. In general, $LOC(\mathbb{C})$ is a relaxation (i.e., $CH(\mathbb{C}) \subset LOC(\mathbb{C})$).

Strategy: Solve the relaxed LP $\min_{\mu \in \text{LOC}(\mathbb{C})} \sum_{s=1}^{n} \theta_s \mu_s$.

Solve with standard LP solver (e.g., simplex), or tree-reweighted max-product algorithm. (Feldman, Karger & Wainwright, IEEE Info. Theory (to appear))

Different representations of relaxed polytope

The polytope $\text{LOC}(\mathbb{C})$ has distinct representations:

- 1. Lifted representation
 - (a) polytope defined with variables

 $\mu_s \in [0,1]$ for each bit $s = 1, \ldots, n$ $w_{a,J} \in [0,1]$ auxiliary var. for check aJ even-sized subset of V(a)

- (b) interpret $w_{a,\cdot}$ defining the local codeword polytope associated with check a
- (c) most closely related to belief propagation and Bethe formulation $\left(\mathbf{c} \right)$
- 2. Projected representation:
 - (a) auxiliary variables $w_{a,\cdot}$ can be eliminated by projection
 - (b) leads to a reduced representation over $\mu = \{\mu_1, \ldots, \mu_n\}$

Lifted representation and local codeword polytopes

- for each check a, let $\mathbb{C}(a)$ denote set of local codewords
- for example, for a 3-check of the form $a = \{1, 2, 3\}$, then

 $\mathbb{C}(a) = \{000, 110, 101, 011\}$

• define prob. distribution $w = \{w_{a,J} \mid J \in \mathbb{C}(a)\}$ over local codewords and impose constraints

Projected form of relaxed codeword polytope

- involves imposing constraints only on vector $\mu = \{\mu_1, \dots, \mu_n\}$
- <u>Probability constraints</u>: Require that μ_v are marginal probabilities $0 \le \mu_v \le 1$
- <u>Check constraints</u>: for each check, let V(a) be the set of bit neighbors
 - let S be an *odd-sized* subset of the check neighborhood V(a), indexing an odd-parity subvector \mathbb{I}_S over V(a)
 - require that $\mu_{V(a)}$ is separated from \mathbb{I}_S by Hamming distance at least 1:

$$\sum_{v \in S} (1 - \mu_v) + \sum_{v \in V(a) \setminus S} \mu_v \ge 1.$$

– leads to a total of $2^{|V(a)|-1}$ constraints per check a

Pseudocodewords as fractional vertices in the relaxed polytope

 μ_{int}

 μ_{frac}

 $\operatorname{CH}(\mathbb{C})$

Two vertex types in relaxed polytope:

integral: codewords (e.g., $\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$) fractional: pseudocodewords rag replacements (e.g., $\begin{bmatrix} 1 & \frac{1}{2} & 1 & \frac{1}{2} \end{bmatrix}$) LOC(\mathbb{C})

Possible outputs of LP decoder

- 1. codeword with guarantee of ML correctness
- 2. pseudocodeword

Link to standard iterative methods

The relaxed polytope $LOC(\mathbb{C})$ is closely related to the standard sum-product and max-product algorithms:

- 1. Relation to sum-product:
 - (a) polytope LOC(ℂ) imposes constraints equivalent to the Bethe formulation of belief propagation (Yedidia et al., 2001)
 - (b) this equivalence guarantees exactness for trees
 - (c) optimum of BP not necessarily attained at polytope vertex
- 2. Relation to max-product:
 - (a) link to graph cover and ordinary max-product algorithm (Koetter & Vontobel, 2003)
 - (b) max-product is an algorithm for solving dual of LP relaxation on trees, but not in general (Wainwright et al., 2003)

Tree-reweighted max-product algorithm

Message update from node t to node s:

reweighted messages

$$M_{ts}(x_s) \leftarrow \kappa \max_{x'_t \in \mathcal{X}_t} \left\{ \underbrace{\left[\psi_{st}(x_s, x_t)\right]^{\frac{1}{\rho_{st}}}}_{\text{reweighted potential}} \psi_t(x'_t) \frac{\prod_{v \in \mathcal{N}(t) \setminus s} \left[M_{vt}(x_t)\right]^{\rho_{vt}}}{\left[M_{st}(x_t)\right]^{(1-\rho_{ts})}} \right\}.$$

Properties:

- 1. Modified updates have same complexity as standard updates.
 - Messages are reweighted with $\rho_{st} \in [0, 1]$.
- 2. Key differences: Potential on edge (s, t) is rescaled by $\rho_{st} \in [0, 1]$.
 - Update involves the reverse direction edge.
- 3. The choice $\rho_{st} = 1$ for all edges (s, t) recovers standard update.

(Wainwright, Jaakkola & Willsky, 2003)

Edge appearance probabilities

Experiment: What is the probability ρ_e that a given edge $e \in E$ belongs to a tree T drawn randomly under ρ ?

Properties of tree-reweighted max-product (TRMP)

- TRMP updates can be understood as a iterative method for solving the LP dual
- any TRMP message fixed point specifies a collection of pseudo-max-marginals ν_s^* for each node $s \in V$ and ν_a^* for each check $a \in C$.

Tree agreement: Vector $\mathbf{x}^* \in \{0, 1\}^n$ satisfies tree agreement if:

(a) for each node s, the bit
$$x_s^*$$
 is optimal for ν_s^* (i.e.,
 $\nu_i^* x_s^*) = \max_{u \in \{0,1\}} \nu_s^*(u))$

(b) for each check a, the subvector $x_{V(a)}^*$ is optimal for ν_a^* .

Theorem: Any vector \mathbf{x}^* that satisfies tree agreement with respect to ν^* is an ML optimal codeword.

§3. Properties of LP decoding

- A desirable feature of LP decoding is its amenability to analysis:
- A. behavior completely determined by set of pseudocodewords
- B. stopping set characterization for binary erasure channel (BEC)
- C. guarantees for the BSC based on the *fractional distance*
- D. stronger guarantees for codes based on *expander graphs*

A. Pseudocodewords

- other researchers have identified "pseudocodewords" for different channels and codes:
 - (a) deviation sets for LDPCs (e.g., Wiberg, 1996; Horn, 1999)
 - (b) pseudocodewords for tail-biting trellises (Forney et al., 2001)
 - (c) stopping sets for the BEC (e.g., Luby et al., 1999)
 - (d) signal space characterization of decoding (Frey et al., 2001)
 - (e) near codewords (McKay et al., 2002)
- the polytope view (i.e., fractional versus integral vertices) unifies these various notions
- pseudocodewords provide a geometrically intuitive distinction between success and failure for LP decoding

LP decoding finds optimum pseudocodeword

Two vertex types in relaxed polytope:

integral:codewords(e.g., $\begin{bmatrix} 0 & 1 & 0 \text{ PSfrag replacements} \end{bmatrix}$ fractional:pseudocodewords(e.g., $\begin{bmatrix} 1 & \frac{1}{2} & 1 & \frac{1}{2} & 1 & \frac{1}{2} \end{bmatrix}$)

Proposition: Given the channel cost vector θ , the LP decoder finds the pseudocodeword with minimum weight $\sum_{s} \theta_{s} \mu_{s}$. Therefore, there are two possible outcomes:

- (a) if it finds a codeword, it must be ML optimal.
- (b) otherwise it finds a pseudocodeword (acknowledged failure).

Construction of a pseudocodeword

Refer to a fractional vertex of the relaxed codeword polytope $\text{LOC}(\mathbb{C})$ as a *pseudocodeword*.

The pseudocodeword is locally-consistent for each check \implies it *does* belong to the first-order relaxed polytope $LOC(\mathbb{C})$.

• this generates an inconsistent set of requirements for the remaining bits \implies vector does *not* belong to exact codeword polytope $CH(\mathbb{C})$

Geometry of LP decoding

Proposition: The LP relaxation is code-symmetric. Therefore, for the purposes of analysis, can assume that codeword **0** was sent.

Prob. of successful ML decoding = $\Pr \left[\theta \in N_{CH}(\mathbf{0}) \right]$ Prob. of successful LP decoding = $\Pr \left[\theta \in N_{LOC}(\mathbf{0}) \right]$

B. Performance for the BEC

- standard iterative decoding (sum-product; belief propagation) takes a very simple form in the BEC: (e.g., Luby et al., 2001)
 While there exists at least one erased (*) bit:
 - 1. Find check node with exactly one erased bit nbr.
 - 2. Set erased bit neighbor to the XOR of other bit neighbors.
 - 3. Repeat.
- success/failure is determined by presence/absence of stopping sets in the erased bits (Di et al., 2002)

• for LP decoding, cost vector takes form $\theta_s = \begin{cases} -1 & \text{if } y_s = 1 \\ 1 & \text{if } y_s = 0 \\ 0 & \text{if } y_s \text{ erased} \end{cases}$

• stopping sets correspond to cost vectors that lie outside the relaxed normal cone $N_{\text{LOC}}(\mathbf{0})$

Stopping sets for the BEC lacements **Definition:** A *stopping set* S is a set of bits such that: • every bit in S is erased • every check that is adjacent to S has degree at least two (with respect to S) 0 0 0 0 0 0 * *

LP decoding in the BEC

The performance of the LP decoder in the BEC is completely characterized by stopping sets:

Theorem:

(Feldman et al., 2003)

- (a) LP decoding succeeds in the BEC if and only the set of erasures does *not* contain a stopping set.
- (b) Therefore, the performance of (first-order) LP decoding is equivalent to sum-product/belief propagation decoding in the BEC.

Corollary: With appropriate choices of low-density parity check codes, LP decoding can achieve capacity in the BEC.

C. Guarantees based on fractional distance

• the *minimum distance* of a code is given by

$$d_{\min} = \min_{x,y \in \mathbb{C}, x \neq y} \|x - y\|_1$$

• for a linear code, this reduces to $d_{\min} = \min_{x \neq 0} ||x||_1$.

Classical result: optimal maximum-likelihood decoding (ML) can correct up to $\lfloor \frac{d_{\min}}{2} \rfloor$ bit flips (in the BSC).

Polytope-based view of minimum distance

- classical minimum distance is smallest ℓ₁ norm between vertices of the codeword polytope CH(C)
- natural to define an analogue for the *relaxed* polytope $\text{LOC}(\mathbb{C})$

- **Definition:** Define the *fractional distance* d_{frac} to be the minimum ℓ_1 -distance between any pair of vertices of LOC(\mathbb{C}).
- for a code-symmetric polytope and linear code, the fractional distance is the ℓ_1 distance from $\mathbf{0}^n$ and the *nearest pseudocodeword*

Error-correction in terms of frac. distance

Theorem:

- (a) In the binary symmetric channel, the LP decoder will succeed as long as no more than $\lfloor \frac{d_{\text{frac}}}{2} \rfloor$ bits are flipped.
- (b) For any factor graph with variable degree $\Delta_v \geq 3$, check degree $\Delta_c \geq 2$ and girth g, the fractional distance satisfies

$$d_{\text{frac}} \geq \frac{2}{\Delta_c} (\Delta_v - 1)^{\left[\frac{g}{4} - 1\right]}.$$

(a), (b), Feldman, Karger & Wainwright, IEEE Trans. Info Theory (to appear)

D. Guarantees for expander graph codes

- exploit graph expansion properties to obtain stronger results beyond girth
- previous work on expander codes (Spielman et al., 1995; Burshtein & Miller, 2002; Barg & Zemor, 2002)

• **Definition:** Let $\alpha \in (0, 1)$. A factor graph G = (V, C, E) is a

 (α, ρ) -expander if for all subsets $S \subset V$ with $|S| \leq \alpha |V|$, at least $\rho |S|$ check nodes are incident to S

LP decoding corrects a constant fraction of errors

• let \mathbb{C} be an LDPC described by a factor graph G with regular variable (bit) degree Δ_v .

Theorem: Suppose that G is an $(\alpha, \delta \Delta_v)$ -expander, where $\delta > 2/3 + 1/(3\Delta_v)$ and $\delta \Delta_v$ is an integer. Then the LP decoder can correct at least $\frac{3\delta-2}{2\delta-1}(\alpha n-1)$ bit flips in the binary symmetric channel. (Feldman et al., ISIT 2004)

- idea of proof:
 - $-\,$ given a code-symmetric polytope, can assume that 0 was sent.
 - decoder works if and only if primal LP optimum $p^* = 0$.
 - dual certificate of optimality: use expansion to construct a dual-optimal solution with cost $q^* = 0$
- "dual certificate" proof technique is more generally applicable (e.g., capacity-achieving expander codes: Feldman & Stein, SODA 2005)

Dual certificate proof technique

Primal decoding LP:

min.
$$\sum_{i} \theta_{i} \mu_{i} \quad \text{s.t.} \begin{cases} w_{a,J} \ge 0 \\ \sum_{J \in \mathbb{C}(a)} w_{a,J} = 1 \\ \sum_{J \in \mathbb{C}(a), J_{v} = 1} w_{a,J} \end{cases} = \mu_{v}$$

Dual LP:

max.
$$\sum_{a} v_{a} \quad \text{s.t.} \begin{cases} v_{a} \forall a \in C, \quad \tau_{ia} \forall (i,a) \in E \quad \text{free} \\ \sum_{i \in S} \tau_{ia} \geq v_{a} \text{ for all} \quad a \in C, J \in \mathbb{C}(a), S \in C(a) \\ \sum_{a \in N(i)} \tau_{ia} \leq \theta_{i} \quad \text{for all } i \in V \end{cases}$$

§4. Beyond the first-order relaxation: Hierarchies of LP decoders

Intuition: pseudocodewords can be "pruned" by adding constraints.

- several natural ways to generate constraints:
 - 1. generating additional checks: redundant for the code, but tighten the LP relaxation
 - 2. other "lift-and-project" methods (e.g., Lovasz & Schrijver, 1990)
- similar in spirit to generalized belief propagation procedures (Yedidia et al., 2002)
- desirable property: decoding performance is guaranteed to improve (or at least not degrade) for any channel

A conjecture

Canonical full relaxation: add a local codeword polytope for every possible check (i.e., one for each dual codeword).

Illustration (Hamming code):

$$H_1 = \begin{bmatrix} A: & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ B: & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ C: & 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix} \quad H_2 = \begin{bmatrix} A \oplus B: & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ B \oplus C: & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ A \oplus C: & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$H_3 = \begin{bmatrix} A \oplus B \oplus C : 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Add a local codeword polytope constraint for each such check.

Conjecture: This relaxation provides an exact description of the codeword polytope.

Counterexample: Dual of (7,4,3) Hamming code

• consider the dual \mathbb{C}^{\perp} of the (7, 4, 3)-Hamming code:

0	0	0	0	0	0	0]		1	1	1	1	0	0	0
0	1	1	0	1	1	0]	[()	0	1	1	0	1	1
$\begin{bmatrix} 1 \end{bmatrix}$	0	0	1	1	1	0]	[()	1	0	1	1	0	1
[1	1	0	0	0	1	1]		1	0	1	0	1	0	1

- can show that the point $\mu^* = (\frac{2}{3}, \dots, \frac{2}{3})$ satisfies all constraints in the canonical full relaxation
- moreover, there holds

$$(-\mathbf{1}^T)\mu^* = -\frac{14}{3} < -4 = \min_{\mathbf{x}\in\mathbb{C}^{\perp}}(-\mathbf{1})^T\mathbf{x}$$

so that μ^* is a vertex (i.e, a pseudocodeword)

Sum-of-circuits property

- for a subclass of binary linear codes, the full metric relaxation is *exact*
- based on matroids with the "sum-of-circuits" property (Seymour, 1981)
- the subclass is characterized by forbidding three particular subcodes obtained via sequence of
 - (a) code puncturing
 - (b) code shortening
- includes as special cases:
 - (a) all tree and trellis codes
 - (b) all cycle codes
 - (c) all cutset codes on planar graphs

Polynomial-time algorithms

- full relaxation involves imposing an exponential number of constraints (a local polytope for each dual codeword)
- naively might expect that resulting LP not polynomial-time solvable
- for sum-of-circuits codes, there exists a separation oracle for canonical full relaxation \implies ellipsoid algorithm is applicable (Groetschel et al., 1987)
- hence, binary linear codes satisfying sum-of-circuits are ML decodable in polynomial time

Various open questions

- provides a considerably larger class of ML-decodable codes
 - (a) are any such codes useful (in isolation)?
 - (b) which are useful in a concatenated or turbo setting?
- multi-stage adaptive decoding methods
 - solve first-order relaxation
 - stop if ML correct; else refine set of constraints and re-solve
- other techniques for forming hierarchies: complexity versus decoding performance

Summary

- LP relaxations for error-correcting decoding
- amenable to analysis in finite-length setting
- provides some insight into standard iterative methods

Open directions:

- 1. beyond worst-case: average-case performance analysis
- 2. extremely fast methods for solving LP relaxations? (e.g., flow-based formulations; combinatorial algorithms)
- 3. stronger relaxations (e.g., semidefinite) and performance guarantees
- 4. study of trade-off complexity of LP decoder and error probability

Contact information

Martin Wainwright wainwrig@{eecs,stat}.berkeley.edu Papers at: http://www.eecs.berkeley.edu/~wainwrig