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§1. Introduction

• many modern codes (e.g., turbo, LDPC) based on bipartite graph

G = (V, C, E):
PSfrag replacements

x1 x2 x3 x4 x5 x6 x7 x8

a b c d

V ≡ set of variable nodes

C ≡ set of check nodes

E ≡ variable–check edges

• xi ∈ {0, 1} is bit associated with node i ∈ V = {1, . . . , n}

• check a connected to bit neighbors in V (a) defines local parity check

fa(xV (a)) =





1 if ⊕i∈V (a) xi = 0

0 otherwise.

• overall code C defined by product of checks

C := {x ∈ {0, 1}n |
∏

a∈C

fa(xV (a)) = 1}.



Decoding problem

• channel provides noisy observation vector y ∈ Yn

• defines a probability distribution over codewords:

p(x|y) ∝
∏

v∈V

fv(xv)
∏

a∈C

fa(xV (a))

where fv(xv) = p(yv |xv).

• different types of decoding:

– for minimal bit error rate, compute the marginal probability

p(xv = 1 |y) and then set

bxv =

8
<
:

1 if p(xv = 1 |y) > 0.5

0 otherwise

– for minimal word error rate, decode to

bx = arg min
x∈C

p(x |y)

)
maximum likelihood decoding



Iterative decoding of graphical codes

• iterative “message-passing” techniques (sum-product or belief

propagation; max-product or min-sum) have become the standard

approach

• exact for trees, but approximate for graphs with cycles

• remarkably good practical performance

• behavior well-understood for random code ensembles in asymptotic

regime as blocklength n → +∞ (e.g., Luby et al., 2001; Richardson &

Urbanke, 2001)

• open issues: performance guarantees for intermediate length codes?



§2. Our approach: Linear program relaxation

• reformulate maximum-likelihood (ML) decoding as a linear

program over the codeword polytope

• solve the LP over a relaxed polytope: linear programming (LP)

decoder

• linear programs are graph-structured, and can be solved either

by standard LP solvers, or variants of iterative message-passing

• error analysis reduces to study of linear program with random

cost function

• amenable to some analysis in finite-length setting



Codeword polytope

Definition: The codeword polytope CH(C) ⊆ [0, 1]n is the convex hull

of all codewords

CH(C) =
{
µ ∈ [0, 1]n | µs =

∑

x∈C

p(x) xs

}
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• the codeword polytope is always contained within the unit

hypercube [0, 1]n

• vertices correspond to codewords



From integer program to linear program

Given a noisy observation y, define cost vector θ = θ(y).

Example: For the BSC, set θs = 1 if ys = 0 and θs = −1 if ys = 1.

PSfrag replacements

θ

CH(C)

Key: Given received word y, optimal maximum likelihood (ML) decoding

can be re-formulated linear program (LP) over the codeword polytope:

min
x∈C

nX

s=1

θsxs = min
µ∈CH(C)

nX

s=1

θsµs.



LP relaxation for approximate decoding

• each parity check a ∈ C defines

a local codeword polytope

LOC(a)

• impose all local constraints:

LOC(C) := ∩a∈CLOC(a).
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Properties:

1. For trees, LOC(C) = CH(C).

2. In general, LOC(C) is a relaxation (i.e., CH(C) ⊂ LOC(C)).

Strategy: Solve the relaxed LP min
µ∈LOC(C)

∑n
s=1 θsµs.

Solve with standard LP solver (e.g., simplex), or tree-reweighted max-product

algorithm. (Feldman, Karger & Wainwright, IEEE Info. Theory (to appear))



Different representations of relaxed polytope

The polytope LOC(C) has distinct representations:

1. Lifted representation

(a) polytope defined with variables

µs ∈ [0, 1] for each bit s = 1, . . . , n

wa,J ∈ [0, 1] auxiliary var. for check a

J even-sized subset of V (a)

(b) interpret wa,· defining the local codeword polytope associated

with check a

(c) most closely related to belief propagation and Bethe formulation

2. Projected representation:

(a) auxiliary variables wa,· can be eliminated by projection

(b) leads to a reduced representation over µ = {µ1, . . . , µn}



Lifted representation and local codeword

polytopes

• for each check a, let C(a) denote set of local codewords

• for example, for a 3-check of the form a = {1, 2, 3}, then

C(a) = {000, 110, 101, 011}

• define prob. distribution w = {wa,J | J ∈ C(a)} over local

codewords and impose constraints

Non-negativity: wa,J ≥ 0

Normalization:
∑

J∈C(a) wa,J = 1

Marginalization:
∑

J∈C(a),Js=1 wa,J = µs for any bit node s



Projected form of relaxed codeword polytope

• involves imposing constraints only on vector µ = {µ1, . . . , µn}

• Probability constraints: Require that µv are marginal

probabilities 0 ≤ µv ≤ 1

• Check constraints: for each check, let V (a) be the set of bit

neighbors

– let S be an odd-sized subset of the check neighborhood

V (a), indexing an odd-parity subvector I S over V (a)

– require that µV (a) is separated from I S by Hamming

distance at least 1:
∑

v∈S

(1 − µv) +
∑

v∈V (a)\S

µv ≥ 1.

– leads to a total of 2|V (a)|−1 constraints per check a



Pseudocodewords as fractional vertices in the

relaxed polytope

Two vertex types in relaxed polytope:

integral: codewords

(e.g.,
h

0 1 0 1 0 1
i

)

fractional: pseudocodewords

(e.g.,
h

1 1
2

1 1
2

1 1
2

i

)
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µint

LOC(C)

CH(C) µfrac

Possible outputs of LP decoder

1. codeword with guarantee of ML correctness

2. pseudocodeword



Link to standard iterative methods

The relaxed polytope LOC(C) is closely related to the standard

sum-product and max-product algorithms:

1. Relation to sum-product:

(a) polytope LOC(C) imposes constraints equivalent to the Bethe

formulation of belief propagation (Yedidia et al., 2001)

(b) this equivalence guarantees exactness for trees

(c) optimum of BP not necessarily attained at polytope vertex

2. Relation to max-product:

(a) link to graph cover and ordinary max-product algorithm (Koetter

& Vontobel, 2003)

(b) max-product is an algorithm for solving dual of LP relaxation on

trees, but not in general (Wainwright et al., 2003)



Tree-reweighted max-product algorithm

Message update from node t to node s:

reweighted messages

Mts(xs) ← κ max
x′

t
∈Xt

(h
ψst(xs, xt)

i 1

ρst

| {z }
ψt(x

′
t)

Q
v∈N (t)\s

z }| {ˆ
Mvt(xt)

˜ρvt

ˆ
Mst(xt)

˜(1−ρts)

| {z }

)
.

reweighted potential opposite message

Properties:

1. Modified updates have same complexity as standard updates.

2. Key differences:

• Messages are reweighted with ρst ∈ [0, 1].

• Potential on edge (s, t) is rescaled by ρst ∈ [0, 1].

• Update involves the reverse direction edge.

3. The choice ρst = 1 for all edges (s, t) recovers standard update.

(Wainwright, Jaakkola & Willsky, 2003)



Edge appearance probabilities

Experiment: What is the probability ρe that a given edge e ∈ E

belongs to a tree T drawn randomly under ρ?
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(a) Original (b) ρ(T 1) = 1
3

(c) ρ(T 2) = 1
3

(d) ρ(T 3) = 1
3

In this example: ρb = 1; ρe = 2
3 ; ρf = 1

3 .

The vector ρe = { ρe | e ∈ E } must belong to the spanning tree

polytope, denoted T(G).



Properties of tree-reweighted max-product

(TRMP)

• TRMP updates can be understood as a iterative method for

solving the LP dual

• any TRMP message fixed point specifies a collection of

pseudo-max-marginals ν∗
s for each node s ∈ V and ν∗

a for each

check a ∈ C.

Tree agreement: Vector x∗ ∈ {0, 1}n satisfiies tree agreement if:

(a) for each node s, the bit x∗
s is optimal for ν∗

s (i.e.,

ν∗
( x∗

s) = maxu∈{0,1} ν∗
s (u))

(b) for each check a, the subvector x∗
V (a) is optimal for ν∗

a .

Theorem: Any vector x∗ that satifies tree agreement with

respect to ν∗ is an ML optimal codeword.



§3. Properties of LP decoding

A desirable feature of LP decoding is its amenability to analysis:

A. behavior completely determined by set of pseudocodewords

B. stopping set characterization for binary erasure channel (BEC)

C. guarantees for the BSC based on the fractional distance

D. stronger guarantees for codes based on expander graphs



A. Pseudocodewords

• other researchers have identified “pseudocodewords” for

different channels and codes:

(a) deviation sets for LDPCs (e.g.,Wiberg, 1996; Horn, 1999)

(b) pseudocodewords for tail-biting trellises (Forney et al., 2001)

(c) stopping sets for the BEC (e.g., Luby et al., 1999)

(d) signal space characterization of decoding (Frey et al., 2001)

(e) near codewords (McKay et al., 2002)

• the polytope view (i.e., fractional versus integral vertices)

unifies these various notions

• pseudocodewords provide a geometrically intuitive distinction

between success and failure for LP decoding



LP decoding finds optimum pseudocodeword

Two vertex types in relaxed polytope:

integral: codewords

(e.g.,
h

0 1 0 1 0 1
i

)

fractional: pseudocodewords

(e.g.,
h

1 1
2

1 1
2

1 1
2

i

)

PSfrag replacements

µint

LOC(C)

CH(C) µfrac

dmin
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Proposition: Given the channel cost vector θ, the LP decoder finds

the pseudocodeword with minimum weight
∑

s θsµs. Therefore, there

are two possible outcomes:

(a) if it finds a codeword, it must be ML optimal.

(b) otherwise it finds a pseudocodeword (acknowledged failure).



Construction of a pseudocodeword

Refer to a fractional vertex of the relaxed codeword polytope LOC(C)

as a pseudocodeword.
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The pseudocodeword is locally-consistent for each check =⇒ it does

belong to the first-order relaxed polytope LOC(C).



Verifying global inconsistency

• first set all non-fractional bits to their preferred values
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• this generates an inconsistent set of requirements for the remaining

bits =⇒ vector does not belong to exact codeword polytope CH(C)



Codeword and pseudocodeword spectra
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Geometry of LP decoding

Proposition: The LP relaxation is code-symmetric. Therefore, for the

purposes of analysis, can assume that codeword 0 was sent.

PSfrag replacements

0

θ1θ2

CH(C)

LOC(C)

NLOC(0) = normal cone of LOC(C)

NCH(0) = normal cone of CH(C)

Prob. of successful ML decoding = Pr
[
θ ∈ NCH(0)

]

Prob. of successful LP decoding = Pr
[
θ ∈ NLOC(0)

]



B. Performance for the BEC

• standard iterative decoding (sum-product; belief propagation) takes

a very simple form in the BEC: (e.g., Luby et al., 2001)

While there exists at least one erased (∗) bit:

1. Find check node with exactly one erased bit nbr.

2. Set erased bit neighbor to the XOR of other bit neighbors.

3. Repeat.

• success/failure is determined by presence/absence of stopping sets

in the erased bits (Di et al., 2002)

• for LP decoding, cost vector takes form θs =





−1 if ys = 1

1 if ys = 0

0 if ys erased

.

• stopping sets correspond to cost vectors that lie outside the relaxed

normal cone NLOC(0)



Stopping sets for the BEC

Definition: A stopping set S is a set of bits such that:

• every bit in S is erased

• every check that is adjacent to S has degree at least two (with

respect to S)

PSfrag replacements

0 0 ∗ 0 0 0 0 ∗
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LP decoding in the BEC

The performance of the LP decoder in the BEC is completely

characterized by stopping sets:

Theorem: (Feldman et al., 2003)

(a) LP decoding succeeds in the BEC if and only the set of

erasures does not contain a stopping set.

(b) Therefore, the performance of (first-order) LP decoding is

equivalent to sum-product/belief propagation decoding in the

BEC.

Corollary: With appropriate choices of low-density parity check

codes, LP decoding can achieve capacity in the BEC.



C. Guarantees based on fractional distance

• the minimum distance of a code is given by

dmin = min
x,y∈C, x6=y

‖x − y‖1

• for a linear code, this reduces to dmin = min
x6=0

‖x‖1.

PSfrag replacements

x y

dmin

bdmin

2 c

Classical result: optimal maximum-likelihood decoding (ML) can

correct up to bdmin

2 c bit flips (in the BSC).



Polytope-based view of minimum distance

• classical minimum distance is smallest `1 norm between vertices of

the codeword polytope CH(C)

• natural to define an analogue for the relaxed polytope LOC(C)

PSfrag replacements µint

LOC(C)

CH(C) µfrac

dmin
dfrac

• Definition: Define the fractional distance dfrac to be the minimum

`1-distance between any pair of vertices of LOC(C).

• for a code-symmetric polytope and linear code, the fractional

distance is the `1 distance from 0n and the nearest pseudocodeword



Error-correction in terms of frac. distance

Theorem:

(a) In the binary symmetric channel, the LP decoder will succeed

as long as no more than b dfrac

2 c bits are flipped.

(b) For any factor graph with variable degree ∆v ≥ 3, check degree

∆c ≥ 2 and girth g, the fractional distance satisfies

dfrac ≥
2

∆c

(∆v − 1)[
g

4
−1].

(a), (b), Feldman, Karger & Wainwright, IEEE Trans. Info Theory (to

appear)



D. Guarantees for expander graph codes

• exploit graph expansion properties to obtain stronger results beyond girth

• previous work on expander codes (Spielman et al., 1995; Burshtein & Miller,

2002; Barg & Zemor, 2002)

PSfrag replacements

|S| ≤ α|V |

|C(S)| ≥ ρ|S|

• Definition: Let α ∈ (0, 1). A factor graph G = (V,C,E) is a

(α, ρ)-expander if for all subsets S ⊂ V with |S| ≤ α|V |, at least ρ|S|

check nodes are incident to S



LP decoding corrects a constant fraction of errors

• let C be an LDPC described by a factor graph G with regular

variable (bit) degree ∆v.

Theorem: Suppose that G is an (α, δ∆v)-expander, where

δ > 2/3 + 1/(3∆v) and δ∆v is an integer.

Then the LP decoder can correct at least 3δ−2
2δ−1 (αn−1) bit flips

in the binary symmetric channel. (Feldman et al., ISIT 2004)

• idea of proof:

– given a code-symmetric polytope, can assume that 0 was sent.

– decoder works if and only if primal LP optimum p∗ = 0.

– dual certificate of optimality: use expansion to construct a

dual-optimal solution with cost q∗ = 0

• “dual certificate” proof technique is more generally applicable

(e.g., capacity-achieving expander codes: Feldman & Stein, SODA 2005)



Dual certificate proof technique

Primal decoding LP:

min.
∑

i

θiµi s.t.





wa,J ≥ 0
∑

J∈C(a)

wa,J = 1

∑
J∈C(a),Jv=1

wa,J = µv

Dual LP:

max.
∑

a

va s.t.





va∀a ∈ C, τia∀(i, a) ∈ E free
∑

i∈S τia ≥ va for all a ∈ C, J ∈ C(a), S ∈ C(a)
∑

a∈N(i) τia ≤ θi for all i ∈ V



§4. Beyond the first-order relaxation:

Hierarchies of LP decoders

Intuition: pseudocodewords can be “pruned” by adding

constraints.

• several natural ways to generate constraints:

1. generating additional checks: redundant for the code, but

tighten the LP relaxation

2. other “lift-and-project” methods (e.g., Lovasz & Schrijver, 1990)

• similar in spirit to generalized belief propagation procedures

(Yedidia et al., 2002)

• desirable property: decoding performance is guaranteed to

improve (or at least not degrade) for any channel



Illustration: Hamming code
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(a) First-order relaxation (a) Higher-order relaxation

Key: Adding the additional check fA⊕B removes a subset of

pseudocodewords from the first-order relaxation.



A conjecture

Canonical full relaxation: add a local codeword polytope for every

possible check (i.e., one for each dual codeword).

Illustration (Hamming code):

H1 =

2

6

6

4

A : 1 1 1 1 0 0 0

B : 0 1 1 0 1 1 0

C : 0 0 1 1 0 1 1

3

7

7

5

H2 =

2

6

6

4

A ⊕ B : 1 0 0 1 1 1 0

B ⊕ C : 0 1 0 1 1 0 1

A ⊕ C : 1 1 0 0 0 1 1

3

7

7

5

H3 =
h

A ⊕ B ⊕ C : 1 0 1 0 1 0 1
i

Add a local codeword polytope constraint for each such check.

Conjecture: This relaxation provides an exact description

of the codeword polytope.



Higher-order pseudocodeword spectra
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Counterexample: Dual of (7,4,3) Hamming code

• consider the dual C
⊥ of the (7, 4, 3)-Hamming code:

h

0 0 0 0 0 0 0
i h

1 1 1 1 0 0 0
i

h

0 1 1 0 1 1 0
i h

0 0 1 1 0 1 1
i

h

1 0 0 1 1 1 0
i h

0 1 0 1 1 0 1
i

h

1 1 0 0 0 1 1
i h

1 0 1 0 1 0 1
i

• can show that the point µ∗ = ( 2
3 , . . . , 2

3 ) satisfies all constraints

in the canonical full relaxation

• moreover, there holds

(−1T )µ∗ = −
14

3
< −4 = min

x∈C⊥

(−1)T x

so that µ∗ is a vertex (i.e, a pseudocodeword)



Sum-of-circuits property

• for a subclass of binary linear codes, the full metric relaxation

is exact

• based on matroids with the “sum-of-circuits” property

(Seymour, 1981)

• the subclass is characterized by forbidding three particular

subcodes obtained via sequence of

(a) code puncturing

(b) code shortening

• includes as special cases:

(a) all tree and trellis codes

(b) all cycle codes

(c) all cutset codes on planar graphs



Polynomial-time algorithms

• full relaxation involves imposing an exponential number of

constraints (a local polytope for each dual codeword)

• naively might expect that resulting LP not polynomial-time

solvable

• for sum-of-circuits codes, there exists a separation oracle for

canonical full relaxation =⇒ ellipsoid algorithm is applicable

(Groetschel et al., 1987)

• hence, binary linear codes satisfying sum-of-circuits are ML

decodable in polynomial time



Various open questions

• provides a considerably larger class of ML-decodable codes

(a) are any such codes useful (in isolation)?

(b) which are useful in a concatenated or turbo setting?

• multi-stage adaptive decoding methods

– solve first-order relaxation

– stop if ML correct; else refine set of constraints and re-solve

• other techniques for forming hierarchies: complexity versus

decoding performance



Summary

• LP relaxations for error-correcting decoding

• amenable to analysis in finite-length setting

• provides some insight into standard iterative methods

Open directions:

1. beyond worst-case: average-case performance analysis

2. extremely fast methods for solving LP relaxations? (e.g.,

flow-based formulations; combinatorial algorithms)

3. stronger relaxations (e.g., semidefinite) and performance

guarantees

4. study of trade-off complexity of LP decoder and error

probability
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