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Basics

Transmitter → Encoder → Channel → Decoder → Receiver

↑
LDPC code:

Parity check matrix

Ĥ =

 1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1


Tanner graph

MAP, Symbol-to-symbol MAP: too costly

Iterative decoding (Message passing, Believe propagation):
Gallager (1963), Pearl (1988), MacKay (1999), Bethe (1935)



“Instanton” method
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∫
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BER ∼ WEIGHT

(
instanton conf

of the noise

)
instanton conf

of the noise
=

Point at the ES

closest to “0”

Saddle-point method

Method of steepest descent



“Optimal” noise configuration
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“Optimal” noise configuration

SNR = 0.8 SNR = 1.05 SNR = 1.3
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“Optimal” noise configuration
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Different symmetry noise configurations and bifurcation picture.
The area of circles on Tanner graph ∝ the value of the noise.



Bit-Error-Rate

Q(n) — length2 of the nth

solution for “optimal” noise
configuration.

Q(n+1) = Q(n) — transition
points
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Error floor is due to the change of “optimal” noise configuration with SNR



“Optimal” noise configuration
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Iterative decoding, 2 iterations



“Optimal” noise configuration

SNR = 0.125

SNR = 0.6
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SNR = 2.

Iterative decoding, 8 iterations



“Optimal” noise configuration

2 iterations

8 iterations

SNR = 0.125 SNR = 0.6 SNR = 0.824 SNR = 2.



“Optimal” noise configuration

SNR = 0.861 SNR = 2.

Iterative decoding, 8 iterations



Iterations dynamics
noise 0 0+ 1 1+

2 2+ 3 3+ 4

4+ 5 5+ 6 6+

7 7+ 8 output



Bit-Error-Rate
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Conclusions

• While Signal-to-Noise Ratio (SNR) passes certain values, the symmetry of “optimal”

noise configuration changes. There could be several bifurcations for one code.

• At low SNR the optimal noise configutations are localized on Tanner graph.

• If the cycles in the Tanner graph of the code are long enough, and the number of

iterations is not so large, the bifurcation picture from a tree code is correct at low SNR.

• Even if the volume of the vicinity of the instanton that contributes to error probability

is not known, the position of instanton gives the main part of the error probability

logarithm (the only thing one actually wants to know).

• The bifurcations lead to flattening of the error probability vs. SNR curve, that provides

an insight to error-floor phenomenon.

• The length of “optimal” noise configration could decrease with SNR.
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