Instanton approach for codes without/with loops

Vladimir Chernyak, Misha Chertkov, Misha Stepanov, Bane Vasic

Outline

- Basics
- Instanton method
- Codes without loops
- Bit-error-rate (BER)
- Dodecahedron code
- 4D cube code
- 4D cube code - BER
- Conclusions

Basics

MAP, Symbol-to-symbol MAP: too costly
Iterative decoding (Message passing, Believe propagation):
Gallager (1963), Pearl (1988), MacKay (1999), Bethe (1935)

"Instanton" method

$$
\begin{aligned}
& \text { BER }=\int \mathrm{d}(\text { noise }) \text { WEIGHT (noise) } \\
& \text { BER } \sim \text { WEIGHT }\binom{\text { instanton conf }}{\text { of the noise }} \\
& \text { instanton conf } \\
& \text { of the noise }=\begin{array}{c}
\text { Point at the ES } \\
\text { closest to " } 0 \text { " }
\end{array}
\end{aligned}
$$

Saddle-point method
Method of steepest descent

"Optimal" noise configuration

$$
m=2, l=3, n=3
$$

"Optimal" noise configuration

$$
m=3, l=5, n=2
$$

"Optimal" noise configuration

Different symmetry noise configurations and bifurcation picture. The area of circles on Tanner graph \propto the value of the noise.

Bit-Error-Rate

$Q^{(n)}$ - length ${ }^{2}$ of the $n^{\text {th }}$ solution for "optimal" noise configuration.
$Q^{(n+1)}=Q^{(n)}$ - transition points

Error floor is due to the change of "optimal" noise configuration with SNR

"Optimal" noise configuration

Iterative decoding, 2 iterations

"Optimal" noise configuration

Iterative decoding, 8 iterations

"Optimal" noise configuration

2 iterations

$\mathrm{SNR}=0.6$

$\mathrm{SNR}=0.824$

$\mathrm{SNR}=0.125$

8 iterations

"Optimal" noise configuration

Iterative decoding, 8 iterations

Iterations dynamics

Bit-Error-Rate

Conclusions

- While Signal-to-Noise Ratio (SNR) passes certain values, the symmetry of "optimal" noise configuration changes. There could be several bifurcations for one code.
- At low SNR the optimal noise configutations are localized on Tanner graph.
- If the cycles in the Tanner graph of the code are long enough, and the number of iterations is not so large, the bifurcation picture from a tree code is correct at low SNR.
- Even if the volume of the vicinity of the instanton that contributes to error probability is not known, the position of instanton gives the main part of the error probability logarithm (the only thing one actually wants to know).
- The bifurcations lead to flattening of the error probability vs. SNR curve, that provides an insight to error-floor phenomenon.
- The length of "optimal" noise configration could decrease with SNR.

We are thankful to I. Gabitov for many fruitful discussions and support, we also acknowledge very useful comments of D. Sherrington, A. Montanari and O. Milenkovic that stimulated the development of the project on its early stages.

