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General idea

e Success of LDPC codes in channel coding

e Seeking low density graphical codes in source coding

— Parity Source Coder: theoretically close to optimum, no good encoding
algorithm

— Nonlinear Source Coder: theoretically close to optimum, good encoding
with survey propagation
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e Seeking low density graphical codes in source coding
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— Nonlinear Source Coder: theoretically close to optimum, good encoding
with survey propagation

e | wo main issues:

- approaching the Shannon limit
— polynomial time encoding and decoding
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Lossy Data Compression

{y17y27°"y1\/[} ? {331,332...2131\]} ? {yikvy;yi\k/[}

encoding decoding

Ya,Ys € alphabet S; z; € {0,1}.

Here S = {0, 1}, and y, are iid, = 0,1 with probability 1/2.

Rate R = N/M. Distortion D = (1/M) 300 (1 = 8(ya, y2))
Shannon: the minimum achievable rate R given the distortion D is

R(D) = 1— hy(D)



Uncorrelated unbiased
binary source

R(D) = 1 — ho(D)

hao(-) being the binary
entropy

Shannon’s bound
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General strategy

Compressed message: {x1,ro...xx}= N bits
Initial message: M symbols. — M function nodes

Example: ‘Parity Source coder’: a LDPC code for compression

1000909117,




Distortion and energy

Encoding: y — x= Find a configuration of = which violates the smallest
number of checks. = Find a ground state.
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Distortion and energy

Encoding: y — x= Find a configuration of = which violates the smallest
number of checks. = Find a ground state.

Decoding: x — y*= trivial. Example: y7 =21 ® 22 ® 3

Distortion = number of violated checks in the encoding = ground state
energy of the encoding.



Theoretical performance of the Parity Source Coder |

'XORSAT'" problem in combinatorial optimization, or 'p-spin’ model in
statistical physics.

Instance= { Geometry, y1,...,ym}. E(z) =), [1 — 9 (@iev(a)xi,ya)}
SAT configuration: x with E(x) = 0. UNSAT instance: Vx : E(z) > 0.
MAX-XORSAT: ground state energy Ey (=distortion)
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'XORSAT'" problem in combinatorial optimization, or 'p-spin’ model in
statistical physics.

Instance= { Geometry, y1,...,ym}. E(z) =), [1 — 9 (@iev(a)xi,ya)}
SAT configuration: x with E(x) = 0. UNSAT instance: Vx : E(x) > 0.
MAX-XORSAT: ground state energy Ey (=distortion)

Analytic  study: “lI-step RSB"” cavity method (MM, Ricci-
Tersenghi,Zecchina 2002). Random K —XORSAT problem with M, N — oo
and M/N = «a (= 1/R). (Function nodes: degree K. Variable nodes:
degree Poisson(K «)). — Phase diagram, Ej.
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Rapidly approaching Shannon’s bound when K increases. Optimal data
compression...
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Rapidly approaching Shannon’s bound when K increases. Optimal data

compression... in theory!



Practical performance of the Parity Source Coder

Encoding: y — x= Find a configuration of = which violates the smallest
number of checks. = Find a ground state. DIFFICULT!!!

Belief propagation: does not converge (NB: random initial condition,
very different from the case of LDPC codes).



Practical performance of the Parity Source Coder

Encoding: y — x= Find a configuration of = which violates the smallest
number of checks. = Find a ground state. DIFFICULT!!!

Belief propagation: does not converge (NB: random initial condition,
very different from the case of LDPC codes).

Clusters of solutions



Clusters in the XORSAT problem
Random parity checks (graph, y,); N,M — oo, a = M/N fixed.

Topology of configurations with £ = Ej:

i i @
: 0 0 14 o
With probability one: E E‘ ‘i
a < a.: SAT : : ' ®
o > a.: UNSAT 5 O O Te ©
But three phases: : » |
Easy SAT, Hard SAT, UNSAT. N o o o
K |3 |4 |5 |6
a |92 |.97 |99 |1.00
o |82 |77 |70 | .63
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Why clusters ‘kill’ belief propagation

(a)
%P o) Belief propagation:
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Why clusters ‘kill’ belief propagation

(a) (@)
C%}P (x5) ép ) Belief propagation:

R Pa—>1($1) — Z:Bz,mg Ca(xla L2, xS)P(a) (xQ)P(a) (563)
ép (x)) PO (1) o [aev s Pam1(@1)

Basic underlying idea: P(®)(xq, 23) ~ P (29) P (z3). Correct if
1) xo, z3 distant (OK)

2) Measure restricted to one cluster (Wrong in the hard SAT phase).
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From belief propagation to survey propagation

Hard SAT phase: Message = Survey of the elementary messages in the
clusters of SAT configurations. Project: Belief — Warning — Survey

Belief P,_.;(x;), P{*(x;) are probabilities, in [0, 1].

For each belief, e.g. P, .;(x;), construct the warning p,_.;(x;) € {0, *}.

B (0 if Py_i(z) =0
p=1(P) _{ « if Py_i(x;) >0

Warning propagation: focuses on forced variables.
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From belief propagation to survey propagation

Hard SAT phase: Message = Survey of the elementary messages in the
clusters of SAT configurations. Project: Belief — Warning — Survey

Belief P,_,;(x;), P\“)(x;) are probabilities, in [0, 1].
For each belief, e.g. P, .;(x;), construct the warning p,_.;(x;) € {0, *}.

B (0 if Py_i(z) =0
p=1(P) _{ « if Py_i(x;) >0

Warning propagation: focuses on forced variables.

Survey: n,_; = probability of a warning being sent from constraint a to
variable 7, when a cluster is picked up at random. Propagate the surveys
along the graph, then use them to decimate. OK in satisfiability /colouring
problem.Not in XORSAT (totally symmetric messages)...
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Nonlinear nodes

Introduce generalized function nodes, different from parity checks

e Keep theoretical performances nearly as good as in parity checks

e Break the symmetry — SP converges and allows to encode a message

100000107,
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Random Nonlinear nodes

Parity check Random check
X 1 X 2 X
0 0 0 S S U
0 0 1 U S U
0 1 0 U U S
10 0 U gCRAMBLE S U
0 1 1 S \ U S
V4
1 0 1 S U S
1 1 0 S U S
1 1 1 U S U
~—

Symmetry
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Cavity analysis and Message Passing Algorithms

Warning propagation = hard constraint limit of belief propagation.
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Penalty when conflicting warnings
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Cavity analysis and Message Passing Algorithms

Warning propagation = hard constraint limit of belief propagation.Survey
Propagation (SP): On each edge a — i: survey = Proba(warning), when a
cluster of ground states is chosen at random.

Na—1: known exactly from
Tb—2 and Tlc—3-
Penalty when conflicting warnings

— works also in the UNSAT phase

May = Prodivaming Statistical analysis — phase diagram.

Single sample — SP algorithm
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Theoretical capacity (20 types of random nodes)
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Conclusions

e New approach for lossy data compression based on low density constraint
satisfaction problems

e Theoretical capacity =~ Shannon’s bound

e Message passing algorithms converge on CSP with non-linear nodes and

stop just above the ground state energy < approaching the Shannon's
bound
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Conclusions

e New approach for lossy data compression based on low density constraint
satisfaction problems

e Theoretical capacity =~ Shannon’s bound

e Message passing algorithms converge on CSP with non-linear nodes and

stop just above the ground state energy < approaching the Shannon's
bound

e To be improved: Encoding works, but still slow (limited to N < 10000,
using general purpose SP software...

e Perspectives: Generalize this algorithm in order to compress sequences of
. Revisit nonlinear function nodes in channel coding.
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