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Propagating beliefs in spin-glass models
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We investigate the dynamics of an inference algorithm called belief propagation (BP)
when employed in spin glass (SG) models and show that its macroscopic behavior can be
traced by recursive updates of certain auxiliary field distribution, the stationary states
of which reproduce the replica symmetric solution obtained by equilibrium analysis.
We further provide a compact expression for the instability condition of the BP’s fixed
point which turns out to be identical to that of the instability for breaking the replica
symmetry in equilibrium when the number of couplings per spin is infinite. This corre-
spondence is extended to the case of finite connectivity in order to determine the phase
diagram, which is validated numerically.
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1. Introduction

Recently, there has been growing interest in the similarity between research on spin glass (SG)
and that on information processing (IP).l) Since the employment of methods from SG theory have
resulted in significant progress in solving several problems related to IP, including problems in
machine learning,?) error-correcting®®) and spreading codes,”8) it is natural to expect that the
opposite might also be possible.

The purpose of the present paper is to provide one such example. More specifically, we show
herein that the investigation of the dynamics of an iterative inference algorithm called belief prop-
agation (BP), which has been developed in IP research,® 19 provides a new understanding of the
thermodynamical properties of SG when employed in SG models.

This paper is organized as follows. In the next section, we introduce BP to a family of SG
models. This model family covers a variety of SG models that has been actively studied,'*12) which
is convenient for relating the results reported herein to the existing knowledge. In section 3, we
investigate the macroscopic behavior of BP in the SG models. We show that the replica symmetric
(RS) solution obtained in equilibrium analysis can be characterized as a macroscopically stationary
state in BP. However, this does not imply that BP microscopically converges to a certain state. In
section 4, we provide a compact expression of the microscopic instability condition around the fixed

point in the BP dynamics, which is found to be identical to that of the instability for breaking the
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Fig. 1. (a): Graphical expression of SG models in the case of K = 3 and ¢ = 4. In this expression, each spin
S; denoted as O is linked to €' = 4 couplings J,, (O), each of which is connected to K = 3 spins. £(u) and
M(1) represent sets of indices of spins and couplings that are related to J, and Si, respectively. In the figure,
L(p) = {li,l2,ls} and M(1) = {p1, 2, p3, ppa}. (b): Cycles in a graph. A cycle is composed of multiple paths to
link an identical pair of nodes. It is shown that BP can provide the exact spin averages in a practical time scale if
a given graph is free from cycles.”)

replica symmetry in equilibrium, referred to as the de Almeida-Thouless (AT) instability,'® when
the connectivity per spin is infinite. The efficacy of this expression for a sparsely connected SG
model is also numerically confirmed. The final section is devoted to a summary of the findings of

the present study.

2. Belief propagation in spin-glass models

We herein take up a family of Ising SG models defined by the Hamiltonian

H(S|J) = ZJ IT s (1)

pw=1 leL(n)

where L£(u) denotes a set of indices which are connected to a quenched coupling .J,,. We assume

that each coupling is independently generated from an identical distribution
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We further assume that for each p, £(p) is composed of randomly selected K ~ O(1) spin indices

(2)

and that each spin index [ is associated with C' couplings, the set of which is denoted as M({).
Jo > 0and J > 0 are parameters to control the mean and the standard deviation of .J,,, respectively,
which naturally links the current system (1) to the Sherrington-Kirkpatrick (SK) model') in the

case of K =2 and C' ~ O(N), and to sparsely connected SG models!? 14:15)

in general.

A major goal of statistical mechanics in the current system is to calculate the mi-
croscopic spin average my = TrgSyexp[-FH(S|J)]/ Trgexp[-BH(S|J)] from the given
Hamiltonian (1). This is formally identical to an inference problem for a posterior dis-
tribution P(S|J) Hﬁil P(J,|S) derived from a conditional probability P(J,|S) =

exp |BJ, Hleﬁ(u) S /ZJM:iJ/\/gexp BJ, Hleﬁ(u) S;| and a uniform prior, which can be ex-

pressed as a bipartite graph, as shown in Fig. 1 (a). In this expression, spins and couplings
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are denoted as two different types of nodes and are linked by edges when they are directly con-
nected. This is useful to explicitly represent statistical dependences between estimation variables
(spins) and observed data (couplings).

BP is an iterative algorithm defined over the bipartite graph to calculate the spin average for
a given set of couplings J = (JM).9’10) In the current system, this is performed by passing beliefs

(or messages) between the two types of nodes via edges at each update as

mjj;l = tanh (8J,) H m, (3)
keL(p)\l
m; = tanh Z tanh™' !, |, (4)
vEM(D\u

where beliefs m’;l and m;l are parameters to represent auxiliary distributions at the tth update

P(SI{ugn}) = (1 my80/2 and PO, (k) = Trs PULIS)P(SI{uga}) o (14
m},51)/2, respectively. L(u)\l denotes a set of spin indices which belong to L(u) excluding /, and
similarly for M ({)\p. Calculating 1, iteratively, the estimate of the spin average at the tth update

is provided as

m} = tanh Z tanh™' il | . (5)
neM(l)

BP is very similar to the transfer matrix method (TMM) and the Bethe approximation,®:17)

which are frequently used in physics. For example, BP provides the exact spin averages by the
convergent solution when the bipartite graph is free from cycles (Fig. 1 (b)), which can be regarded
as a generalization of a known property of TMM. In IP research, the process of convergence of BP
has been investigated extensively,'®) whereas little has been examined for TMM in the study of
SG. This strongly motivates us to examine the dynamical properties of BP in the current system,

which we will focus on hereafter.

3. Macroscopic behavior and the replica symmetric solution

Let us first discuss the macroscopic behavior of BP dynamics (3) and (4). Although the
current randomly constructed system is not free from cycles, the typical length of the cycles can
be shown to grow as O(In N) with respect to the system size N as long as C' is O(1),'®) which
imply that the self-interaction caused by the past states is negligible in the thermodynamic limit.
On the other hand, the self-interaction is also expected to be sufficiently small, even if C' is large,
since the strength of the coupling becomes weak as 0(0_1/2). This expectation together with

egs. (3) and (4) imply that the time evolution of the macroscopic distributions of beliefs 7*(z) =

(L/NC) Yy 3 ey S —mty) and #(2) = (1/NC) Y05y 3 e aaqry (& =1t} is likely to be well
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captured by recursive equations

K-1 K-1
H(3) = / I daimt (1) <5 (x —tanh(37) ] xl)> : (6)
=1 J

=1

c-1 c-1
rl(z) = / H dz,7#"(%,)8 | « — tanh Z tanh™' 2, , (7)
pn=1 p=1

where (---) ; represents the average with respect to J following distribution (2).

The validity of the current argument and its link to the replica symmetric (RS) ansatz in the
equilibrium analysis have already been shown for finite €'.2%:21) Here, we further show that these
can be extended to the case of infinite C', even if the AT stability of the RS solution is broken in
equilibrium.

When ' becomes infinite, dealing with an auxiliary field of finite strength hil =
> veMI\u tanh™t !, ~ > vem(i\u T, I8 more convenient than 1, because i, becomes in-
finitesimal. Due to the central limit theorem, the distribution of the auxiliary field p'(h) =
(1/NC) N, > pem O(h = h;) can be regarded as Gaussian

t c—1 L c—1 L ) (h— BY)?
p'(h) = / H dz, 7" (2,)6(h — Ztanh z,) ~ S exp [—T] , (8)

p=1 p=1
where E' and F! are the average and the variance, respectively, to parameterize the Gaussian
distribution p’(h). The center expression implies 7'(z) = [ dhp'(h)d(z — tanh(h)). Plugging this
into eq. (6) and recursively employing eq. (8), we obtain a compact expression for the update of

Et and F? as

BN = B (M) T P =g ()T (9)

Mt = /thanh(\/ﬁz—l—Et)7 Qt:/thanhz(\/lﬁz—I—Et)7 (10)

where Dz = exp[—22/2]/v27 and M' and Q' can be expressed as M! ~ (1/N) SN, mt, o~
(1/N) SN m! and Q' ~ (1/N) Ef\;l(mil)Q ~ (1/N) 2N (mh)2, respectively, due to the law of
large numbers. Equations (9) and (10) serve as alternative expressions of eqs. (6) and (7).

These equations can be regarded as the forward iteration of the saddle point equations to
obtain the RS solution in the replica analysis of the multi-spin interaction infinite connectivity SG
models?) and, in particular, of the SK model for K = 2.1V In order to confirm the validity of the
above argument, we compared the time evolution of the belief update (3) and (4) (BP) with that
of eqs. (9) and (10) (RS) for the SK (K = 2) model, which is shown in Fig. 2 (a) and (b). We also

compared these values with the trajectory of the naive iteration of the BP’s fixed-point condition
2

m; = tanh Z B8J, H my— Z (3J,)* Z H my | (1=m3)my |, (11)

peM(l) ke L(u)\l peM(l) FEL(INI \EEL()\L,5
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(TAP) which can be obtained by inserting m,; =~ m; — (1 — m})i, at the fixed point of eqs. (3)
and (4) le = My, m;l = My and m}f = my. This becomes identical to the famous Thouless-
Anderson-Palmer (TAP) equation of the SK model, in particular, for K = 2.22)

The experiments were performed for Jo = 1.5, 0.5 keeping J = 1 and T = 0.5, where the AT
stability of the RS solution in equilibrium is satisfied for Jy = 1.5, but is broken for Jy = 0.5.1%)
Figures 2 (a) and (b) show that BP and RS exhibit excellent consistency with respect to the
macroscopic variables, irrespective of whether the AT stability is satisfied. This strongly validates
the reduction from BP (3) and (4) to the macroscopic dynamics (9) and (10). On the other
hand, TAP is considerably different from the others. This is natural because naively iterating
eq. (11) is just one of the procedures for obtaining a solution and its trajectory in dynamics does
not necessarily have any consistency with BP or RS whereas the BP’s fixed point is correctly
characterized by the TAP equation (11), which has a certain relationship to the RS solution in

23) These figures also imply that the dynamics of BP cannot be traced

equilibrium, as shown in.
by a closed set of equations with respect to singly indexed variables m!, even for C' — oo, whereas
the fixed point condition in this limit is provided as coupled equations of m; (11). The necessity of
keeping such extra variables for tracing the trajectory of m! in the BP dynamics is also observed

in a similar system of infinite connectivity.®)

4. Microscopic stability and the AT stability

Although Figures 2 (a) and (b) show that the macroscopic variables rapidly converge to those of
the RS solution in BP, this does not imply that BP microscopically converges to a certain solution.
In order to probe this microscopic convergence, we numerically examined the squared difference of
the spin averages between successive updates D' = (1/N) Zf\;l(m}f —m!™")2, the time evolution of
which is shown in the insets of Figures 2 (a) and (b). These figures illustrate that the (microscopic)
local stability of the BP’s fixed point can be broken even if the macroscopic behavior appears to
converge, which cannot be detected by simply examining the reduced macroscopic dynamics (9)
and (10).

In order to characterize such instability, we next turn to the stability analysis of BP updates
(3) and (4). Linearizing the updates with respect to the auxiliary field A, = tanh™! m,; around a
fixed point solution m’;l = my, we obtain the dynamics of the auxiliary field fluctuation 5hil as

tanh(ﬁjy) erﬁ(l/)\l myk « Z 1 - m2

Shitt = L% hy;. (12)

2
UEM(I)\M 1 - (tanh(ﬁJl,) erﬁ(l/)\l myk) je,c(y)\l ml/]

Analytically solving this linearized equation for a large graph is generally difficult. However, since
the current system is constructed randomly, the self-interaction of 5hil from the past can be

considered to be as small as those of the beliefs. This implies that the time evolution of the
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Fig. 2. Time evolution of macroscopic variables M* = (1/N) le\il m} and Q' = (1/N) Zi\;l(mff in the SK model
for the BP updates (3) and (4) (BP: (), the reduced dynamics (9) and (10) (RS: lines) and the naive iteration of
the TAP equation (11) (TAP: 4) for (a) Jo = 1.5 and (b) Jo = 0.5 keeping J = 1 and 7' = 0.5. TAP is plotted only
for Q' in the case of Jo = 0.5 in order to save space. Each marker is obtained from 100 experiments for N = 1000
systems. The AT stability is satisfied for Jo = 1.5 but broken for J; = 0.5. Irrespective of the AT stability, the
behavior of the macroscopic variables in the BP dynamics can be well captured by the reduced dynamics while the
naive iteration of the TAP equation does not exhibit any convergence, even on a macroscopic scale. Insets: Squared
deviation of spin averages between the successive updates D' = (1/N) Zi\;l(mf — m{™")? is plotted for the BP
dynamics. The deviation vanishes to zero indicating convergence to a fixed point solution for Jo = 1.5, but remains
finite, showing the instability of the fixed point for Jo = 0.5. The microscopic trajectory of the BP dynamics
for Jo = 0.5 exhibits not simple oscillatory but chaotic behavior, although D' converges to a constant value. In
experiments, such chaotic motion was observed even when control parameters were set much closer to the onset of
the AT instability. The origin of this non-trivial behavior may be due to the the (continuous) semi-circular eigen
value distribution of the interaction matrix of the SK model for which many modes of fluctuations simultaneously
become unstable at the critical point.

fluctuation distribution f*(y) = (1/NC) Zf;l > ey 0y — dh!,;) can be provided by a functional

equation

C-1K-1
#w) = [ T T duaf
pn=1 =1
-1 K-1 K-1 2
tanh(87,) [Tey' @uk Lz
p=11— (tanh(ﬁju) T xuk) =1 H
- jﬂvl’pl
where (- ‘>‘7N7$Ml denotes the average over 7, and z,; according to eq. (2) and the stationary distri-

bution of 7!(z) = 7 (z), respectively, and the stability of the BP’s fixed point can be characterized
by whether the stationary solution f*(y) = f(y) = é(y) in update (13) is stable. This formulation
makes analytical investigation possible to a certain extent.

In order to relate eq. (13) to the existing analysis, let us first investigate the limit
C — oo, for which much more is known compared to the case of finite C'. Due to the cen-
tral limit theorem, the distribution of the field fluctuation can be assumed as a Gaussian f*(y) =
(1/v27b%) exp [~ (y — a?)?/(2b")], where a® and b’ are the mean and the variance of the distribution,
respectively. Plugging this expression into eq. (13) offers update rules with respect to a’ and b’ as

At = (K —1)BJoME=2(1-Q)al and b+ = (K —1)(3J)2Q%~2 [ D= (1 — tanh?(VFz + E))2 bt 4+
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. 2 .
((K — 1)(8J)2QK-2 [ D= (1 — tanh?(vFz + E)) — (K — 1)2(8Jo)2M2E—4(1 — Q)2> (a")?, where
M, Q, F and F represent the convergent solutions of eqs. (9) and (10). In order to examine the
stability of f(y) = &(y), we linearize these equations around a' = b’ = 0, which provides the critical

condition of the instability with respect to the growth of b
. 2
(K —1)(8J)2Q" 2 / Dz (1 — tanh?*(VFz + E)) =1, (14)

which becomes identical to that of the AT stability for the infinite range multi-spin interaction
SG models and, in particular, for the SK model when K = 2.'3 Furthermore, in the case of the
SK model (K = 2), the critical condition with respect to a' around the paramagnetic solution
M = @ = 0 corresponds to the para-ferromagnetic transition. Therefore, the two different phase
transitions from the paramagnetic solution can be linked in a unified framework to the dynamic
instabilities of BP by eq. (13).

When C'is finite, one can numerically perform the stability analysis using eq. (13), the details
of which will be reported elsewhere. In addition, analytical investigation also becomes possible for
K =2, as described below, since transitions from the paramagnetic solution in this case occur due
to the local instability.

For a small 3, the paramagnetic solution 7(z) = #(z) = é(z) (my = M, = 0) expresses
the correct stable fixed point of the BP dynamics. Inserting this into eq. (13) does not provide
a closed set of equations with respect to a finite number of parameters since f'(y) is no longer
a Gaussian. However, assuming f'(y) ~ &(y), the stability analysis can be reduced to coupled
equations with respect to the mean and the variance of f*(y) as «'*' = (C' — 1) (tanh(8.7)) ; o'
and o't = (C' - 1) (<tanh2(ﬁj)>jbt + (<tanh2(ﬁj)>j — <tanh(ﬁj)>§) (at)z). Linearizing these

around a' = b' = 0 provides the critical conditions with respect to the growth of «! and ' as
(€= 1) (anh (57)) ;= 1, (15)
and
(€= 1) (tanh®(5)),, = 1. (16)

respectively. These critical conditions around the simple paramagnetic solution have already been

24-26) However, the current scheme may

obtained in similar systems using perturbation methods.
be superior to previously employed methods because expression (13) is compact and therefore can
be easily applied to the stability analysis of the non-trivial ferromagnetic solution with the aid of
numerical methods (A in Fig. 3), even in the case of multi-spin interaction (K > 3), whereas such
extension in the other schemes requires higher-order expansion and becomes highly complicated.
Equations (15) and (16) may correspond to the para-ferromagnetic and the para-SG phase

transitions, respectively, since this is the case for €' — 0o. In order to examine this possibility, we
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Fig. 3. Phase diagram for K = 2 and C = 4 suggested by egs. (15) and (16). P, F and SG denote the paramagnetic,
ferromagnetic and spin glass phases, respectively. The boundary between F and SG is based on conjecture. In
order to examine the validity of this diagram, 100 Monte Carlo experiments were performed for N = 2000 systems
at conditions denoted by +. For each condition, frequencies of macroscopic magnetizations My = (1/N) le\il my

and overlaps Qup = (1/N) le\il m{m? (a > b) were evaluated, where m{ is the average of .S; obtained from 20000
Monte Carlo steps per spin for experiments a,b = 1,2,...,100 (insets). For both of the two conditions in P, all
M, and Qg fall into the first bin. On the other hand, sharp peaks indicate the order to be the ferromagnetic state
in F, and a broad distribution of (.3 indicates the breaking of the replica symmetry in SG. Markers (A) in the
ferromagnetic phase represent the critical condition with respect to the stability of the BP’s fixed point numerically
obtained from eq. (13), which may correspond to the AT instability in equilibrium of the non-trivial ferromagnetic
solution.

performed numerical experiments for N = 2000 and C' = 4. Although further investigation may
be necessary, the data obtained from 100 experiments of 20000 Monte Carlo steps per spin exhibit
good consistency with analytical expressions (15) and (16), indicating that the correspondence
between the phase transitions in equilibrium and the dynamic instabilities of BP holds for finite C

(Fig. 3).

5. Summary

In summary, we have investigated the dynamic behavior of BP when employed in SG models.
We have shown that the time evolution of macroscopic variables can be well captured, even in the
transient stage and even when the replica symmetry is broken in equilibrium, by recursive updates of
auxiliary field distributions, which is identical to the forward iteration of the saddle point equations
under the RS ansatz in the replica analysis. We have further shown that the dynamic instability
of the BP’s fixed point is closely related to the AT instability of the RS solution, which has been
numerically supported.

The relationship between the current scheme and an existing AT analysis for finite connectivity

SG models®™ that generally requires complicated calculation and is not frequently employed in



Propagating beliefs in spin-glass models 9

practice is under investigation. Extending the current framework to the local stability analysis of

the replica symmetry breaking solution

28,29) ig a challenge that will be taken up in future studies.

This study was partly supported by Grants-in-Aid from MEXT, Japan, Nos. 13680400,
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