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Abstract. An iterative algorithm for the multiuser detection problem that
arises in a code division multiple access (CDMA) systems is developed on the
basis of Pearl’s belief propagation (BP). We show that the BP-based algorithm
exhibits nearly optimal performance in a practical time scale by utilising the
central limit theorem and self-averaging property appropriately, whereas direct
application of BP to the detection problem is computationally difficult and far
from practical. We further present close relationships of the proposed algorithm to
the Thouless- Anderson-Palmer approach and replica analysis known in spin-glass
research.
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1. Introduction

Code division multiple access (CDMA) is a core technology of today’s wireless
communication employing data transmission between multiple terminals and a single
base station [1]. Although this technology is already in use, a strong demand still
exists for improvements to respond to the ever-increasing use of mobile communication
devices such as cellular phones and wireless LANs.

In the general scenario of a CDMA system, the binary signals of multiple users are
modulated by spreading codes assigned to each user, and these modulated sequences
are transmitted to a base station. The base station receives a mixture of the modulated
sequences and possible noise. After that, a detector at the base station extracts the
original binary signals from the received signals using knowledge of the users’ spreading
codes.

Multiuser detection is a scheme used in the detection stage [2]. By simultaneously
detecting multiple user signals following the Bayesian framework, this scheme
suppresses mutual interference and can provide optimal detection performance.
However, as following the Bayesian approach exactly i1s computationally hard, the
development of approximation algorithms is necessary for practical implementation.

The purpose of this paper is to answer such a demand. More specifically,
we develop and analyse a practical multiuser detection algorithm using statistical
mechanics. The algorithm is developed on the basis of Pearl’s belief propagation (BP)
[3] which is defined over graphically expressed statistical models. Tt is known that BP
can be carried out at low computational cost if a given graph is sparse. Unfortunately,
the graph for the multiuser detection problem is dense, which implies that the actual
use of BP is still highly time-consuming. However, we show that one can derive an
efficient algorithm of complexity proportional to the square of the number of users
starting from BP and appropriately introducing the central limit theorem and self-
averaging property, which are useful notions from statistical mechanics.

This paper is organised as follows. In the next section, the multiuser detection
problem is formulated in the Bayesian framework. In section 3, a graphical expression
is introduced. For the given graph, we offer a BP algorithm, which turns out to be
time-consuming. In section 4, we derive a practical algorithm on the basis of the offered
BP. Examining properties of the fixed point, it is shown that the derived BP-based
algorithm provides a solution for the Thouless-Anderson-Palmer (TAP) mean field
approach [4]. In section 5, we show that the macroscopic trajectory of this algorithm
can be captured well by iterative updates of distributions of certain auxiliary fields, the
stationary state of which turns out to reproduce the replica symmetric (RS) solution
of the equilibrium state [5]. In addition, the microscopic instability condition of the
fixed point turns out to coincide with the de Almeida-Thouless (AT) condition [6]
for the RS solution. A comparison with other detection schemes is also presented
to demonstrate the practical efficacy of the derived algorithm. The final section is
devoted to a summary.

2. Multiuser detection

We focus on a K-user direct-sequence binary phase shift-keying (DS/BPSK) CDMA
system using random binary spreading codes of the spreading factor N with unit
energy over an additive white Gaussian noise (AWGN) channel. For simplicity, we
assume that the signal powers are completely controlled to unit energy, but the
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extension to the case of distributed power is straightforward. In addition, we assume
that chip timing as well as symbol timing are perfectly synchronised among users.
Under these assumptions [5], the received signal can be expressed as

| X
Yp = —F—= Sukbr + oony, (1)
et

where p € {1,2,...,N} and k € {1,2,..., K} are indices of samples and users,
respectively. s, € {—1,1} is the spreading code with unit energy independently
generated from the identical unbiased distribution P(sur = +1) = P(su = —1) =
1/2. by is the bit signal of user k, n, is a Gaussian white noise sample with
zero mean and unit variance, and oy is the standard deviation of AWGN. Using
these normalisations, the signal to noise ratio is defined as SNR = 3/(203) where
B = K/N||. In the following, we assume a situation where both N and K are
large, keeping § finite, which may not be far from practicality since a relatively large
spreading factor up to N = 256 can be adopted in one of the third generation cellular
phone systems “cdma2000” [7].

The goal of multiuser detection is to simultaneously detect bit signals
b1,bs, ..., b after receiving the signals y;, ys, ..., yn. The Bayesian approach offers a
useful framework for this. Assuming that the bit signals are independently generated
from the unbiased distribution, the posterior distribution from the received signals is
provided as

[T P(yul®)

P(bly) = , 2
SRS S THIVEPATS ¥
where
1 1 9
P(yu|b) = W eXp _W (i‘/u - AM) ) (3)

and A, = \/LN Zle surbr. Here, the detector’s noise parameter ¢ is introduced for

the case when the true value oy 1s not known.

Following the Bayesian framework, one can systematically derive the optimal
detection strategy from the posterior distribution (2) for various cost functions
assuming the posterior is correct [8, 9]. In particular, it can be shown that the bit
error rate (BER), which is the cost function that is most frequently argued in CDMA
research and we will focus on in this paper, is minimised by the maximiser of the
posterior marginal (MPM) detector [5]

by = argmax P(bly). (4)
bke{-l—l,—l}ljl%

3. Graphical representation and belief propagation

Unfortunately, the necessary cost for exactly computing the MPM detector increases
exponentially with respect to the number of users K in the current system, which
implies that one has to resort to an approximation in practice. The belief propagation
(BP), or the sum-product algorithm, is known as one of the most promising approaches
|| Although pattern ratio & = N/K = 871 and inverse temperature ﬁ~ = fo~2 are usually employed

for characterising systems in statistical mechanics, we will follow notations frequently used in CDMA
research.
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Figure 1. Graphical representation of the CDMA multiuser detection problem.
Each edge corresponds to a component of spreading codes s, .

to such tasks. Recent research has revealed that this algorithm is closely related to
the transfer matrix method and the Bethe approximation [10, 11], which are standard
techniques in statistical mechanics, and exhibits excellent performance when a given
statistical model is expressed by a sparse graph [12, 13, 14]. However, the properties
of BP in dense graphs have not yet been sufficiently studied. In the following, we show
that BP can also serve as an excellent approximation algorithm for dense graphs by
appropriately utilising the randomness of the underlying model, and apply it to the
current CDMA problem.

To introduce this algorithm to the current system, let us graphically denote the
received and bit signals by two kinds of nodes, and connect them by an edge when
they are related. The conditional probability of y,, (3) depends on all of b1, bs, ..., by,
implying that the posterior distribution (2) can be expressed as a (dense) complete
bipartite graph, as shown in Figure 1.

The BP can then be defined as an algorithm that passes messages between the
two kinds of nodes through edges as

PR (gl oz d) o<kt 30 Ponl0) [T PP 0illmnad),  5)
buser I#k
P* (b {2 }) = aly [T P (wolbw {wo }) (6)
vER
where ¢ = 1,2,... 1s an index for counting the number of updates, and @Lk and
O‘Lk are constants for normalisation constraints y-, _y, P* (yulbx, {yp2u}) = 1 and

> p=i1 P (0k{yozu}) = 1, respectively [3, 12]. The marginalised posterior at the
. N
tth update is given by P (yu|be, {yv2u}) as P'(bsly) = ak [T,z P* (yulbe, {vwza}),
where oy, 1s a normalisation constant.
As by 1s a binary variable, one can parameterise the above functions as
P (yplbr, gz }) o (14 1y bk) /2, PP (b [{yzn}) = (14 mibi)/2 and P! (bly) =
(1 4+ mf by)/2 without loss of generality, which simplifies expressions (5) and (6) to

> b ok P (yulb) [Tz, (Hn;:”bl)
_ A (7)
26 P(ulb) [z ( 7 )

Al
Mg

mzk = tanh Z tanh™ 7!, | . (8)

vER
Employing these variables, the approximated posterior average of by at the tth update
can be computed as mf = tanh (Zi\;l tanh ™! m;k) Because each received signal

y, 1s connected to every bit signal by, evaluating eq. (7), unfortunately, produces a
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computational explosion when K is large, so that performing BP exactly is hopeless
in the current system.

4. Propagating beliefs in a large complete bipartite graph

However, by appropriately applying the central limit theorem and the self-averaging
property, which are useful notions from statistical-mechanical analysis [15], it becomes
possible to approximately carry out the belief updates (7) and (8) in a practical time
scale [16, 17, 10].

4.1. Gaussian approzimation

Since surbk/v' N is small for large N, we can expand the conditional probability as
2
exp l— = D) skl A“k)bk]

Pyulb) ~ ——

20?2 VN2

1 Y — Apg)’ Sk (Y — Dk
= Vanor [—(27) (1+ 22 ) o

where Ay, = Zlik subi/vVN in eq. (7). As the spreading codes are generated
independently, s,; and le are statistically uncorrelated because le is regarded as

2ro

the posterior average of b; in a system from which y, and s,r=1 . x are excluded.
Therefore, the correlation between s,; and & can be considered as sufficiently weak
when by is generated from P*(bi[{y,zu}) = (14 mj,;b;)/2 for typical realisations of
codes and signals. This, in conjunction with the central limit theorem, implies that

Ay = Zlik sulbl/\/ﬁ obeys a Gaussian distribution A <<AL,€> ,B(1 = Lk)),
1

where <AL,€>N =D ik Sulle/\/N and @, = (1/K) Zl;ék(mzl)z' Furthermore, the

self-averaging property implies that the macroscopic variable sz typically converges
to a certain value independently of each realisation of codes and signals for large
K and N, and is highly likely to be well approximated by Q' = (1/K) Zle(mf)z.
Substituting these, one can write eq. (7) as

St4l o4t [ YuSu I ¢
1 .
where s, = (s.1), mL = (mzk) and A! = (0'2 +5(1 - Qt)) P = (/K (suksu)
and I = (dg;) are the projection and the identity matrices, and (---); denotes the
kth component of the vector ---. Eq. (10) can be evaluated in O(K) computations
per pair (uk), which implies that a total of O(N K?) computations are required per

update.

4.2. Further reduction of computational cost

Computational cost can be further reduced to O(K?) when N is large by employing
eq. (8). As m;k typically scales as O(N~=Y2), eq. (8) can be expanded as
mzk ~ mj, — (37”16/37?121@)7%1@ =mj — (1 - (mz)z) mzk

(10) provides a recursive equation with respect to ’ﬁl; = (m;k) as

Substituting this into eq.

1
it = Al —y&% _ At (Pu - E) m' + BA'P,Clan,, (11)
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where C' = ((1 — (m!)?)éx;). Using the relationships P,C's, = (1 — Q')s, and
P,C'P, = (1 - Q")P, and omitting negligible terms, the solution of eq. (11) can be
expressed as

it = Rt% ~U + %ﬁAtmt, (12)
where R and U? are obtained from recursive equations

RY = A"+ A'B(1 — QYR (13)

Ul = A'BP,m' + A'B(1 — Q"YU (14)

Since my typically scales as O(N_l/z), the posterior average can be expressed as

m!, = tanh (Zﬁ;l tanh ™! m;k) ~ tanh (Zﬁ;l m;k) This implies that the belief

updates (5) and (6) are finally summarised as

Rt = RR - U' + A'm!, (15)

U' = A"Wm' + A'B(1 - QHU' !, (16)
and eq. (13), where m{ = tanh(h%), h® = (h)) = (Zﬁ;l Yusuk /VN), h' = (k)
and W = (W) = (Eﬁ;l suksul/N) = Eﬁ;l GP,. From the posterior average
m!,, the MPM detector at the ¢{th update is evaluated as IBZ = sign(m}) where
sign(z) = 1(# > 0), —1(otherwise). Two points are worthy of note. Firstly, the
most time-consuming operation in eqs. (13), (15) and (16) is Wm®, which requires a

total of O(K?) computations. This implies that the computational cost for performing
the current scheme is similar to that of conventional multistage detection [18]

bt =sign | AL = > Wb | . (17)
I#k
Secondly, as the fixed point condition, coupled nonlinear equations

B(1 — Q)my
o?(0? + (1 - Q))

my = tanh o2 hg —ZWklml —
12k

;o (18)

are obtained from our update scheme, where @ = (1/K) 2221 m?. This is identical
to the Thouless-Anderson-Palmer (TAP) equation for the current system developed
in statistical mechanics [4, 19]. However, it should be emphasised here that the naive
iteration of eq. (18) does not serve as a useful detection algorithm, as finding the fixed
point from a practically reasonable initial state turns out to be difficult. This will be
illustrated by numerical experiments in the next section.

5. Macroscopic analysis

5.1. Density evolution and the replica symmetric solution

Density evolution is a framework for analysing the dynamical behaviour of BP pursuing
a macroscopic distribution of messages [20, 21]. In the current system, this analysis is
considerably simplified since the distribution of the gauged field by hzk, where b is kth
user’s true binary signal and hzk = tanh™* mzk = ZV#M tanh™! mt . ~ ZV#M mb, | is
likely to be well approximated by a Gaussian as a result of the central limit theorem.
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Let us assume that by hzk is independently sampled from a Gaussian distribution
with an average and variance E' and F!, respectively. Notice that we assumed
that E' and F! are independent of index u due to the self-averaging property.
The self-averaging property also leads us to expect that macroscopic variables
Sy bemly /K = MY oand Y (bem!y )}/ K = Sl (ml)?/K = Q' are
independent of p as Mﬁ ~ M! = Zle bymi /K and QL ~ @' These indicate
that macroscopic variables M* and @' can be evaluated as

/thanh (VF z—|—Et /thanh (VF z—i—Et) (19)

where Dz = dz exp[—2?/2]/v/27. Since the MPM detector is given as b, = sign(m,) ~
sign(mzk) = sign(hzk), BER is given by P! = (1/K) Zle (1 —sign(bym}))/2 ~
(1/K) Sy (1 =sien(buhty))/2 = (22T D

On the other hand, as bkhuk is mdependently sampled, s, mL/\/N in the
right hand side of eq. (10) becomes an uncorrelated Gaussian random number
with respect to index g due to the central limit theorem, since hzk 1s composed
of mty(iu)k, which has a sufficiently small correlation with the randomly generated
code s,. This, in conjunction with statistical uniformness with respect to indices
¢ and k, implies that the average and variance at the t 4+ 1st update are

given by B!l = > _1(1/A)Zk b AH'l = (I/K)Z 1 b L and Fitl =

S [0/ T (b)) (2 bt | = wm s
respectively. Evaluating these using egs. (1) and (10), B! and F'+! become

t+1 _ 1 t+1 B(1-2M'+ Q") + af

o2+ 81— Q) o2 +8(1- Q)

Egs. (19) and (20) express the density evolution of the current algorithm.

It should be noted that the expression obtained for the density evolution directly

links the proposed algorithm to the replica analysis of the equilibrium state presented

in [5] since eqs. (19) and (20) can be regarded as the naive iteration dynamics of the

saddle point equations provided by the replica method under the replica symmetric

(RS) ansatz [22]. This implies that our algorithm can practically calculate the MPM

detector (4) in O(K?) computations, obtaining the fixed point solution when K is
large as replica analysis is likely to give an exact evaluation for K — co.

(20)

5.2. Microscopic stability and the de Almeida-Thouless condition
Although egs. (19) and (20) indicate that the distribution of the gauged field bkhzk

converges to a stationary state provided by the RS solution, this does not necessarily
imply the convergence of the microscopic variables, such as ht (or mzk) and m}.
To examine whether BP dynamics converge to a certain solutlon microscopically, we
perform stability analysis.

For this, the update of huk = vt tanh™! 1!, ~ >y, My, is linearised around
a fixed point solution h,x using eqs (8) and (10), yielding

t+1 _ Suksuy t
Shit! = 02+6 e ZZ m2;)dht;, (21)
V#uyik

where @) and m,; are the fixed point values of @ and ml,], respectively. The following
two remarks are useful for analysing the linear stability. Firstly, since spreading codes
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s, are generated randomly, the summation in the right hand side gives a Gaussian
random number due to the central limit theorem, as the Jhl. are uncorrelated.
Secondly, as both of the indices p and k are excluded from the summation in the right
hand side, correlations of (5ht‘£1 with respect to indices p, k& and ¢ become negligible.
This makes it possible to analyse the stability of the fixed point by examining whether
the first and second moments of the fluctuations (5th grow or not with each update
(21).

Since the average of s, 1s zero, the first moment becomes negligible after single
application of eq. (21) when K and N are large. However, squaring eq. (21) to
examine the time evolution of the second moment yields a non-trivial equation,

SpkSvj
(6%*;;1)2—[— DD = ml)dhi,

+5(01 v ik

2

~ N[o? +6 )] 2 K Z i) (Ohy;)”

vER J#k

1 t
= N [o? +6 2 Z K Z mzzxj)z I Z(éh 632

vER J#k J#k

where (--) denotes average over the spreading codes s,; and we replaced a sample
average of products Z];ék(l —m? ) ((5ht )2 with a product of sample averages

(% > i2n(l— m2 )2) X (% Zjik(éhij) ), which is valid when K is large since m,;

my;
and (5hf,j are uncorrelated. Further, it can be expected that due to the self-averaging

property, the macroscopic variable % Zjik( - 12,]»)2 can be expressed as
1
=> (- /Dz 1— tanh?(VF z + E)) (23)
{
J#k

independently of v, where F' and F are the fixed point values of F! and E!, and
% D ik ((5hf,j)2 coincides with the second moment of the fluctuation which does not
depend on v for large K and N. This means that the second moment is enlarged
through the belief update and, therefore, the fixed point solution becomes unstable if

___F /Dz (1 — tanh?(VFz + E))2 > 1. (24)
[o2 + (1 — Q)]

It should be emphasised here that this is nothing but the de Almeida-Thouless (AT)
condition for the RS solution of the current system [5, 6]. Similar correspondence
between the microscopic stability of BP and the AT condition for the RS solution
has been also pointed out in a family of spin-glass models [23]. Although it is known
that several non-replica-based approaches to the equilibrium state also provide certain
critical conditions which are equivalent to that of AT [15, 24], this, as well as the link
between the density evolution and the RS solution, might offer a non-trivial bridge
between a dynamical analysis of BP and a fully static theory on the basis of the replica
method in spin-glass research.

5.8. Method comparison

To validate the results obtained so far, we performed numerical experiments in systems
of N = 2000. Figure 2 shows the time evolution of BER in the case of 8 = K/N = 0.5
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Figure 2. Time evolution of BER for the proposed algorithm (PA:0),
conventional multistage detection (MSD:x ), naive iteration of the TAP equation
(TAP:+) and density evolution (DE: lines) in the case of N = 2000, 8 = 0.5 and
SNR = 4,9 (data for TAP are shown only for SNR = 9). Each marker represents
the averaged BER at the ¢th update evaluated from 10000 experiments. In the
experiments, the correct noise parameter ¢ = og was used and the initial condition
for t = 0 was set as m) = tanh(h{ /o?) for PA and TAP, and m{ = sign(h9) for
MSD. Values of macroscopic variables induced by PA-TAP initial conditions were
provided for DE. PA exhibits the fastest convergence and excellent consistency

with DE.

obtained from 10000 experiments for the proposed algorithm (egs. (13), (15) and
(16): PA), conventional multistage detection (eq. (17): MSD), iteration of the TAP
equation (eq. (18): TAP) and density evolution (egs. (19) and (20): DE). In the
experiments, the noise parameter o was set to the correct value og.

Firstly, 1t is clear that PA converges to the fixed point considerably faster than
MSD, which is a highly desirable property in practical use. In [21], it is shown that
self-reaction from the past states works to disturb the convergence in the conventional
multistage detection. On the other hand, such reaction is appropriately cancelled at
each update in the proposed algorithm by the last terms of the right hand side of eqgs.
(15) and (16), which may serve as an intuitive explanation for the superiority of PA.
Secondly, PA and DE exhibit excellent consistency as we speculated, which implies
that application of the central limit theorem and the self-averaging property in deriving
egs. (19) and (20) is fully validated. Finally, TAP does not serve as a useful detection
algorithm. This is because iteration of eq. (18) does not correctly approximate BP
and, therefore, subtraction of a diagonal term 3(1 — Q)my/0?(c? + B(1 — Q)) does
not provide appropriate cancellation of the self-reaction in the transient dynamics,
whereas it does provide the correct fixed point condition in the stationary state.

Figure 3 shows the influence of noise parameter ¢ on PA. This indicates that
discrepancies between the detector’s noise parameter ¢ and the correct value o
degrade the detection performance. It has been shown that performance of inference
is generally optimised by the correct parameter choice, which corresponds to the
Nishimori condition [25] known in spin-glass research, when exact evaluation of MPM
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Figure 3. Influence of the noise parameter o on the proposed algorithm. 10000
experiments were performed to evaluate BER in the case of N = 2000, 8 = 0.25
and o9 = 1. Markers indicate experimentally obtained BER for ¢ = 09 = 1
(the correct choice: O) and for ¢ = 1/3 (a smaller value: V), and lines
represent trajectories of the density evolution for each case. These data show
that performance becomes optimal when the true parameter ¢ = o¢ is used and
errors in this parameter choice degrade the detection performance. Although BER
seems to converge in both cases, this does not necessarily mean that the algorithm
is microscopically attracted to a certain solution. To probe such microscopic
convergence, the time evolution of the squared difference of the posterior averages
?:1 (mfC - mz_l )2 is plotted in the inset.
It is shown that D! for ¢ = 1/3 (V) does not vanish and converges to a finite
value, indicating the microscopic instability of a fixed point while rapid decay to
zero is observed for ¢ = o9 = 1 (O). In the numerical data, residual motion for
o = 1/3 is not simple but seems chaotic. The left hand side of eq. (24) becomes
1.404(> 1) and 0.165(< 1) for ¢ = 1/3 and ¢ = og = 1, respectively, which is
consistent with the behaviour observed in experiments.

between successive times D' = (1/K)

estimator is possible [8, 9]. The current result, in conjunction with the previously
mentioned relationship between the density evolution and replica analysis, implies that
the optimality of the Nishimori condition also holds for the proposed approximation
algorithm.

The inset shows that the microscopic stability of the fixed point can be broken
due to condition (24) when ¢ is sufficiently smaller than og, even though macroscopic
trajectory seems to converge. Such microscopic instability does not occur for o > oy,
whereas the performance is also degraded due to mismatch of the parameter. This
implies that it may not be easy to adjust ¢ to oy only by monitoring the microscopic
behaviour of the algorithm.

In the regime of instability, non-trivial chaotic motion was observed numerically
even when control parameters were set close to the critical values. This may be due
to highly degenerated eigenvalues of the interaction matrix W for which many modes
of fluctuations would become unstable simultaneously at the critical condition.
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6. Summary

In summary, we have developed a novel algorithm for CDMA multiuser detection
from belief propagation by appropriately applying the central limit theorem and self-
averaging property. The new algorithm exhibits considerably faster convergence than
conventional multistage detection without increasing computational cost significantly,
and 1s likely to provide a nearly optimal MPM detector when the spreading factor N
is large. We have also clarified the relationship between the obtained algorithm and
the existing equilibrium analysis presented in [5] using the density evolution scheme.
Finally, we have shown a non-trivial link between microscopic stability of BP dynamics
and the AT condition of replica analysis.

After completing this work, another detection algorithm of O(K?) computational
cost was proposed by other authors [26]. The algorithm is obtained by subtracting
self-reaction terms from conventional multistage detection and can be carried out at
about a half cost by a serial computer. However, the current algorithm still exhibits
faster convergence in terms of necessary updates and, therefore, would be preferable
when implemented in an electrical circuit.

Extension of the current scheme to cases of non-random code generation and small
system size [27] is under way. Besides this, performance evaluation for data encoded
by error-correcting codes is a challenging and practically important future work.
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