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Pictures of quantum mechanics

Fundamental pictures of qguantum mechanics:

¢ Heisenberg (1925) = Operators (“black box”)
¢ Schodinger (1926) = Deterministic wave fields

¢ Feynman (1948) = Classical-like paths and waves

Quantum system = wave

Why trajectory pictures of quantum mechanics?




Why trajectory pictures of qguantum mechanics?
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Particle distributions behave as waves ...
(Born’s statistical interpretation of quantum mechanics)

... but individual particles behave as individual point-like particles!

Is there any chance to understand
guantum-mechanical processes and phenomena
as in classical mechanics,

l.e., iIn terms of exact (non approximate) and
well-defined trajectories in configuration space
(where real experiments take place)?




Why trajectory pictures of qguantum mechanics?
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Particle distributions behave as waves ...
(Born’s statistical interpretation of quantum mechanics)

... but individual particles behave as individual point-like particles!

Explaining both behaviors
within the same theoretical framework
IS precisely the reason why
trajectory pictures of quantum mechanics
are needed and/or desirable
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Trajectory pictures of qguantum processes

BOHMIAN MECHANICS
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Demonstration of single-electron buildup of an interference pattern
Tonomura, Endo, Matsuda, Kawasaki and Ezawa, Am. J. Phys. 57, 117 (1989)




Trajectory pictures of quantum processes
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1 frame 10 frames 200 frames 1000 frames

5000 frames 20'000 frames 100'000 frames 500'000 frames

The wave-particle duality of light: A demonstration experiment

Dimitrova and Weis, Am. J. Phys. 76, 137 (2008)
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Trajectory pictures of quantum processes

1000 frames

20'000 frames

500'000 frames
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Davidovic, Sanz, Arsenovic, Bozic and Miret-Artés, Europhys. Lett. (submitted, 2008); arxiv:quant-ph/0805.3330
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Some nice features of Bohmian mechanics

Conceptually, Bohmian mechanics is as simple as classical mechanics
(particles are always regarded as particles).

Unlike other interpretations based on classical and/or semiclassical trajectories,
those arising from Bohmian mechanics are fully grounded on quantum-
mechanical/dynamical rules of motion.

Bohmian quantum trajectories evolve in the (real) configuration space, where
real experiments take place (this is an advantage with respect to other
alternative quantum trajectory formalisms, e.g., complex quantum trajectories).

The ensemble dynamics describes the quantum flux allowing, at the same time,
to monitor the behavior of each individual particle, something which is forbidden
in standard time-dependent wave-packet techniques.

The statistical predictions of standard quantum mechanics are also obtained,
without violating the uncertainty and complementarity principles, which have a
simple explanation (meaning) within the Bohmian framework.

A Comprehensive Trajectory-based Formulation of Quantum Mechanics

Sanz and Miret-Artés, Lecture Notes in Physics Springer Series (20097?)



A “completeness” diagram of dynamics
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Classical Bohmian
Mechanics < > Mechanics
Statistical Quantum

Mechanics Mechanics
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The discussion in this talk

* Superposition

* Nonlocality

» Contextuality



The discussion in this talk
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» Wave-packet collisions and interference effective potentials

« Slit systems: from simple slit arrays to the Talbot effect

* Quantum fractals and fractal quantum trajectories

» Decoherence and reduced quantum trajectories
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The superposition principle revisited

(1 @)
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The superposition principle revisited

superposition principle
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The superposition principle revisited
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A trajectory based understanding of quantum interference

Sanz and Miret-Artés, J. Phys. A (submitted, 2008); arxiv:quant-ph/0806.2105



The superposition principle revisited
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A trajectory based understanding of quantum interference

Sanz and Miret-Artés, J. Phys. A (submitted, 2008); arxiv:quant-ph/0806.2105
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The superposition principle revisited
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A trajectory based understanding of quantum interference

Sanz and Miret-Artés, J. Phys. A (submitted, 2008); arxiv:quant-ph/0806.2105




The superposition principle revisited
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A trajectory based understanding of quantum interference

Sanz and Miret-Artés, J. Phys. A (submitted, 2008); arxiv:quant-ph/0806.2105
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Sanz and Miret-Artés,



1, 2, ... N-slit diffraction. The Talbot effect
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A causal look into the quantum Talbot effect

Sanz and Miret-Artés, J. Chem. Phys. 126, 234106 (2007)
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1, 2, ... N-slit diffraction. The Talbot effect
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A causal look into the quantum Talbot effect

Sanz and Miret-Artés, J. Chem. Phys. 126, 234106 (2007)



1, 2, ... N-slit diffraction. The Talbot effect
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Fraunhofer

(convergence of
real experiments)
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A causal look into the quantum Talbot effect

Sanz and Miret-Artés, J. Chem. Phys. 126, 234106 (2007)




1, 2, ... N-slit diffraction. The Talbot effect
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A causal look into the quantum Talbot effect

Sanz and Miret-Artés, J. Chem. Phys. 126, 234106 (2007)




1, 2, ... N-slit diffraction. The Talbot effect
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The trajectories contributing to each diffraction peak can be associated with a
specific slit (A) or, the other way around, one can determine the contribution of each

slit to each final diffraction peak (B)
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Sanz, Borondo and Miret-Artés, J. Phys.: Condens. Matter 14, 6109 (2002).
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1, 2, ... N-slit diffraction. The Talbot effect

When the number of slits becomes infinity, the Fresnel region also extends to infinity
and we observe the Talbot effect (a near-field affect)

Talbot structure or quantum carpet

periodicity in X: d

periodicity in z: 27, ="

A causal look into the quantum Talbot effect

Sanz and Miret-Artés, J. Chem. Phys. 126, 234106 (2007)
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1, 2, ... N-slit diffraction. The Talbot effect
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Analogously, in elastic surface scattering problems, when the number of
unit cells (= slits) becomes infinity, the Fresnel region also extends to
infinity and we observe the Talbot-Beeby effect (an also near-field affect)

fr
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A causal look into the quantum Talbot effect by
Sanz and Miret-Artés, J. Chem. Phys. 126, 234106 (2007) X

Causal trajectories description of atom diffraction by surfaces

Sanz, Borondo and Miret-Artés, Phys. Rev. B 61, 7743 (2000)
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1, 2, ... N-slit diffraction. The Talbot effect

Analogously, in elastic surface scattering problems, when the number of

unit cells (= slits) becomes infinity, the Fresnel region also extends to
infinity and we observe the Talbot-Beeby effect (an also near-field affect)
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A causal look into the quantum Talbot effect

Sanz and Miret-Artés, J. Chem. Phys. 126, 234106 (2007)

Causal trajectories description of atom diffraction by surfaces

Sanz, Borondo and Miret-Artés, Phys. Rev. B 61, 7743 (2000)
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1, 2, ... N-slit diffraction. The Talbot effect
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The same can be found when working with photons (EM waves)
instead of massive particles
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Fractal Bohmian mechanics
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Quantum fractals in boxes

M V Berry
H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 ITL, UK

Received 22 April 1996

Abstract. A quantum wave with probability density P (r,t) = |W(r, 1)|*, confined by Dirichlet
boundary conditions in a D-dimensional box of arbitrary shape and finite surface area, evolves
from the uniform state W(r, 0) = 1. For almost all positions r = x|, x»...xp, the graph of the
evolution of P is a fractal curve with dimension Dy, = 7/4. For almost all times ¢, the graph
of the spatial probability density P is a fractal hypersurface with dimension Dgyaee = D +1/2.
When D = 1, there are, in addition to these generic time and space fractals, infinitely many
special ‘quantum revival® times when P is piecewise constant, and infinitely many special
spacetime slices for which the dimension of P is 5/4. If the surface of the box is a fractal with
dimension D — 1 + y (0 < » < 1), simple arguments suggest that the dimension of the time
fractal is Dime = (7 + ) /4, and that of the space fractal is Dgpaee = D+ 1/2 4 /2.

Berry, J. Phys. A 29, 6617 (1996)
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Fractal Bohmian mechanics

fractal
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Figure 1. Probability density (a) and phase (b) associated with a highly delocalized particle in a box
atr = T/\/E(lhill solid line) and r = 0.77 (thick solid line). () Measure of the fractal dimension
of the probability densities displayed in part (¢). To compare, measures of the fractal dimension
of initial probability densities associated with triangular (T) and parabolic (P) wavefunctions are
also shown.

behavior

A Bohmian approach to quantum fractals

Sanz, J. Phys. A 38, 6037 (2005)
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Incompleteness of trajectory-based interpretations
of quantum mechanics

Michael J W Hall

Theoretical Physics, IAS, Australian National University, Canberra ACT 0200, Australia

Received 9 June 2004, in final form 4 August 2004
Published 22 September 2004

Online at stacks.iop.org/JPhysA/37/9549

doi: 10.1088/0305-4470/37/40/015

Abstract

Trajectory-based approaches to quantum mechanics include the de Broglie—
Bohm interpretation and Nelson’s stochastic interpretation. It is shown that
the usual route to establishing the validity of such interpretations, via a
decomposition of the Schrédinger equation into a continuity equation and a
modified Hamilton—Jacobi equation, fails for some quantum states. A very
simple example is provided by a quantum particle in a box, described by a
wavefunction that is initially uniform over the interior of the box. For this
example, there is no corresponding continuity or modified Hamilton—-Jacobi
equation, and the space-time dependence of the wavefunction has a known
fractal structure. Examples with finite average energies are also constructed.

Hall, J. Phys. A 37, 9549 (2004)
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Fractal Bohmian mechanics

Bohmian mechanics can indeed be generalized to account for fractal
guantum states, the corresponding trajectories being fractal curves

Fractal quantum dynamics:
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A Bohmian approach to quantum fractals

Sanz, J. Phys. A 38, 6037 (2005)



Fractal Bohmian mechanics
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Bohmian mechanics can indeed be generalized to account for fractal
guantum states, the corresponding trajectories being fractal curves
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Figure 2. (¢) QF-trajectories associated with a highly delocalized particle in a box. (b) Measure of
the fractal dimension of a sample of QF-trajectories with initial positions: xo = 0.01 (m), xo = 0.1
(o), x0 = 0.4 (A), xo = 0.49 (O), xg = 0.499 (o), and xo = 0.5 (7).

A Bohmian approach to quantum fractals

Sanz, J. Phys. A 38, 6037 (2005)
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Many-body systems and reduced trajectories

wave function  W¥(r)

J(r) = :; Im[¥" (r)V, ¥(r)]
p(r) =¥ (r)¥(r)

[
p(r)

e

A quantum trajectory description of decoherence

Sanz and Borondo, Eur. Phys. J. D 44, 319 (2007)

density matrix p(r,r')=(r'¥) (¥ r'

J(r)= z Im[V, p(r,r)] _

p(r)=Re[p(r,r)] .

[
p(r)




Many-body systems and reduced trajectories
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wave function  ¥(r) density matrix p(r,r')=(r'¥) (¥ r'
IO =" mlY (v, IO =", o],
p(r)=¥"(r)¥(r) p(r)=Relp(r.r)],
p(r) p(r)

reduced density matrix
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A quantum trajectory description of decoherence

Sanz and Borondo, Eur. Phys. J. D 44, 319 (2007)



Many-body systems and reduced trajectories
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A simple example:
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A quantum trajectory description of decoherence

Sanz and Borondo, Eur. Phys. J. D 44, 319 (2007)



Many-body systems and reduced trajectories
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Many-body systems and reduced trajectories
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Many-body systems and reduced trajectories
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Conclusions

CSIC

Bohmian mechanics provides a robust and consistent
framework to analyze and understand the dynamical
behavior of quantum systems, which allows to treat
particles as in classical mechanics (i.e., as individual

entities) and, at the same time, to observe the well-known
wave-like behaviors characteristic of the standard version of
guantum mechanics.

Bohmian mechanics thus constitutes an important tool
to create the quantum intuition necessary to think the
guantum world, and particularly to better understand

the physics underlying real experiments.
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