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* GOES continuously monitors the interplanetary SEP flux
— Operational warnings/alerts are based on observations.

* POES observes the interplanetary SEP flux in the polar
regions and the low altitude trapped SEPs in the SAA.

— POES single event effects index for LEO orbits is derlved
from these observations. ==L




\/
Ny Does it meet our needs?

Orbits_ _ e PROTEL36.3Mey
GEO | Thdrsem o iy S B
5
&1 L
g | 2
=4 x
~ ’ 3
° 3 YT ikt ( 2L¥ :
g T L AR !” % L o A, Hi e o bt -
v [_H“”L““I" :||,|”|l,; “1 R R ,w|]|l'||hillHMﬂ J '
R umnunmnnmummmw «mmu..mﬂ mm A AR
o Lt I R
RN o> 9\ o> > > >
Q\N‘ o o ? o & 0

Date

« GOES and POES observations are relevant to GEO and
LEO orbits.

 For satellites in other orbits application of GOES and POES
observations has limitations.
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* Map interplanetary flux observations inside
GEO

* Map LEO observations outward
* Put a sensor on every satellite
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Mapping the interplanetary spectrum (IPS) inside GEO

Assumptions:
— We see the hazardous portion of the IPS (usually good)
— The interplanetary flux is isotropic

High level algorithm:
— Calculate shielding inside GEO
— Invoke Liouville’s theorem
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RIC=M/LT2 (1/1+V1+cosa

East-West Effect lllustration

cos3 4 )72
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* ais the angle between A -~
magnetic west and the particle = D e
«

velocity. ’ e s v
« Ais the latitude

« Lis the dipole Z parameter. T T
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Cutoffs vary with MLT

Cutoffs at location depend
on magnetospheric
configuration

Electric fields affect particle
access.

The solid Earth blocks some
particle trajectories creating
a shadow or penumbra.
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'/ Application to Geospace
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Figure 7. lllustration of the persistence of the first forbidden band
(called the primary band by N. Lund of the Danish Space Research
Institute).  This feature is shown for a balloon flight location.

Taken from Smart and Shea 1994
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Lorentz force equations
Integrated backward in time.

“Allowed” trajectories escape,
“forbidden” trajectories don't.

Search rigidity space for
penumbra.

Increase sampling resolution
In penumbra to calculate

density of allowed trajectories.

Lower bound is the threshold

density determined by
application.

Numerical Cutoff Calculations in
Geospace

Figure taken from Smart et al. 2000

We calculated west, vertical and east
cutoffs and interpolated to determine
cutoffs in other directions using dipole
cutoff like functions to increase
calculation speed.
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« For LT >4.5 the model
compares well with

observations, and best for
LTx =5,

« Below ZT* of about 3 the e
comparison is with AP9. o S A

e Between ZT* =3 and LT*  Figure:

* Gray dots are individual observations
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=4'5 the agreement Is * Solid lines are observed/mapped medians
poor and the median » Dashed lines are 10t and 90" percentiles.
observations are not * Blue represents observed

* Green represents mapped (individual
hazardOUS, bUt hazardOUS mapings not shown)

flux levels were observed. * 16 events, 105 passes through belts.
n
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The only two events with significant >35 MeV fluxes during the Van Allen Probes
mission during our study. Color coding represents ZJM in the large panels, where REPT
data are displayed. The small panels on the right show GOES data (top) and mean
spectrum (blue), max spectrum (green) and minimum spectrum (red) in bottom panel.
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« Empirical model based on comparisons between
observations at POES and the Van Allen Probes

F(LIM )=0.619CLPT (LIM )+1.85.

 Model relates POES SEM-2 P7 counts to a REPT
35-100 MeV integral flux.

» Based on the May 23-25, 2013 and the January 6-10,
2014 events — and tested against the same events.
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CISM-Dartmouth-TS05

Calculates reverse trajectories and the effective cutoffs
on-the-fly using the Tsyganenko TS05 magnetic field
model.

Smart and Shea

Interpolates/Extrapolates from a table of pre-calculated
cutoffs at an altitude of 450 km

Selesnick-Neal-Ogliore (SNO) model

Extrapolates Ogliore’s SAMPEX observation based
cutoff model in space using TS05-LANLstar and Neal’s
Kp dependent POES based model.

15
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Model Comparison

Data from 22 to 25 May 2013, peak flux = 1660pfu and Data from 6 to 10 Jan 2014, peak flux = 1033pfu

Log Error = log,,(model)-log ,(observed) for SNO model

3.00 <Lm < 7.00

Data

from 22 to 25 May 2013, peak flux = 1660pfu and Data from 6 to 10 Jan 2014, peak flux = 1033pfu

Log Error = log,,(model)-log,,(observed) for Smart and Shea model 3.00 < Lm < 7.00
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Data from 22 to 25 May 2013, peak flux = 1660pfu and Data from 6 to 10 Jan 2014, peak flux = 1033pfu

Log Error = log,,(model)-log,,(observed) for CISM-Dartmouth model

3.00 <Lm < 7.00

Combined Data from Multiple SPEs: 23 May 2013 (1660pfu), 09 Jan 2014 (1033pfu)
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Results of mapping
techniques are

similar at high

LIM.

GOES maps appear
to do somewhat

better at high

LIM , but the

POES mapping
may be more

accurate at low
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More statistics
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\/ Conclusions:
@ POES Mapping Technique

* The POES mapping did comparatively well using this simple
mapping model; more sophisticated models may do better.

* The current mapping is from POES to the equator with no
activity dependence. Further development is required for off
equatorial locations and to add activity dependence.

* These results are based on only two events, more events are
necessary to improve and understand the model’s accuracy.

* Improved POES SEM-2 response functions should improve
results.

* The POES mapping is good for specifications, but loses any
advantage for forecasting.
RL,
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\az»/ GOES Mapping Technique

« Magnetic field cutoffs depend on the magnetic field’s
configuration and its activity level.

* The static fields used here do not model the electric fields
seen during active time periods.

* More accurate magnetic field models are required to map
IP fluxes deep inside the magnetosphere.

* The IPS mapping technique can be used for forecasting
so further development is important.

20
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