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Fokker-Planck equation

Quiet-time

Storm-time Shprits et al., 2008
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A number of different processes determine the evolution of the
radiation belt electrons at different levels of geomagnetic activity




VERB code scheme
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The VERB code uses an unconditionally stable, implicit scheme and the
operator-splitting method to numerically solve the Fokker-Planck equation.



LONG-TERM SIMULATIONS



Long-term simulation with the VERB code
and comparison with Van Allen Probes observations

Initial conditions  Steady state Boundary conditions
10*
Boundary PSD for the whole range of time and energy obtained with E:Z
conditions MagkIS 0.9 MeV flux variation and averaged spectrum "g 10'
% 10°
Grid Energy, 0.01 - 10 MeV 101 points. g ‘ ‘
. . 10/12 01/13 04/13 07/13 10/13
Pitch-angle, 0.7-89.3 91 points. Date, mmyy
L*,1-5.5 46 points.

Time step, 1 hour.

Radial diffusion

Simulation * 365 days, Oct 1%, 2012 — Oct 1%, 2013

Losses Coulomb scattering (loss into atmosphere), Magnetopause —9.325 / TBOutigam and Albert [2000]
shadowing

Plasmapause Carpenter and Anderson, 1992

Table of wave parameters

Amplitude <Kp=2>, Density model MLT Spectral properties and wave

[pT] averaging normal angle
Chorus day Kp scaled, <30> 35° Sheeley et al. 2001  25% See Subbotin at al. 2011
Chorus night Kp scaled, <35> 15° 25%
Plasmaspheric hiss Kp scaled, <45> 45° Denton et al. 2004, 60% Realistic,

2006 Orlova et al. 2014 (CRRES)

Lighting, Kp scaled, <4>, 45° Carpenter and 100%, 4x2.4% See Subbotin at al. 2011
2xVLF 0.8 Anderson 1992




Observations

Simulation

Long-term VERB code simulation
Oct 2012 - Oct 2013

We reproduce the dynamics

of relativistic electrons, but

not for the ultra-relativistic
energies
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Simulation Observations

L*=4

Flux,

Decay rates comparison at L*=4
Oct, 01 - Nov, 30, 2012

Relativistic electrons. 900 keV

Flux, Energy = 0.9 MeV, Qo = 85°
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EMIC waves are important!

Thorne and Kennel [1971]; Summers and Thorne [2003]; Li et al. [2007]
Ukhorskiy et al., [2010] suggested that EMIC waves may provide efficient

scattering mechanism for relativistic electrons.

Loss timescale (days)

The loss time scale for EMIC
and hiss waves
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Usanova et al. 2014
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EMIC waves
Oct, 01 — Nov, 30, 2012

Electron flux, REPT, E=2.3+ 0.3 MeV

Normalized (90°) pitch angle, L*=4.5 + 0.1, REPT, E = 3.6 + 0.4 MeV

The presence of the EMIC waves
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We see the presence of the
EMIC waves during this period.



EMIC WAVES



EMIC waves parametrizations

The presence of the EMIC waves
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L*~4 Simulation Observations

Index and

EMIC
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L*~4 Simulation Observations

Index and

EMIC
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Observations

Simulation

Index and

EMIC

Flow Pressure, nPa

Solar wind pressure 2 5nT parametrization
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VERB 4D CODE



Convective and Diffusive simulations of
March 17, 2013 storm

ot
Convection 12

During the March 2013 storm energetic relativistic and
ultra-relativistic electrons show very different dynamics.
The comparison with observations at various energies
can help validate the code and reveal if the dominant
physical mechanisms operate at a wide range of
energies. Simulations show similar dynamics as
observations.

h) VERB4D simulation, E = 1 MeV, Coq = 50°

Shprits et al, 2015




VERB 4D code scheme

Waves
Parameterization

Initial Boundary Magnetopause Diffusion Drift
PSD PSD location coefficients velocities
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NOWCAST AND FORECAST



Data assimilation and GREEP

 We can reconstruct the PSD by
combining the observations with
the VERB code through a split-
operator Kalman filter technique.

Kellerman et al. (2014), Three-dimensional
data assimilation and reanalysis of
radiation belt electrons: Observations of a
four-zone structure using five spacecraft
and the VERB code, JGR

log(J), (#ﬁcmz.s.sr.keV)

* Geosynchronous Radiation belt
Electron Empirical Prediction model
(GREEP) is based on the solar wind
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R S R - radiation belt electron fluxes .
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Kellerman et al. (2013), A Geosynchronous
Radiation—belt Electron Empirical Prediction
(GREEP) model, Space Weather



Radiation Belt Forecast Framework

Real-time Van Real time GOES Real time and Real time
Allen Probes 13 and 15 forecast Kp ACE solar
wind
L* and PSD on the GREEP
B equator (T89) \
L* and PSD N \ ¢ PSD V Forecast PSD
(T89) oweas —> VERB €| atL*=7

\m/
- -

I Data I
: Model |
| Process |
1 Product :

Kalman Filter

Nowcast radiation

belt state

Forecast radiation
belt state




Forecast
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Forecast
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Conclusions

The Versatile Electron Radiation Belt (VERB) code is capable of solving the Fokker-
Planck equation, accounting for radial diffusion and local scattering.

Comparison between long-term VERB code simulation and the observations shows
good agreement for the relativistic (~1 MeV) electrons. However, the fluxes for the
ultra-relativistic energies (>3 MeV) are overestimated.

Most likely, EMIC waves are necessary additional losses. The simulation with
parametrizes EMIC waves by solar pressure provides better results.

The new VERB-4D code includes convection processes and uses new invariant grid
to calculate radial and local diffusion. Simulations with the 4D code will allow to

compare simulations at various MLT with multi point observations provided by Van
Allen Probes, THEMIS, Cluster I, MMS, and other missions.

The reanalysis provides a global reconstruction of the state and evolution of the
radiation belts, as compared to sparse spacecraft observations.

Data assimilation is currently applied to conduct operational forecasting of the
electrons radiation belt for 1-2 days into the future.
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