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Introduction and Motivation

• Global Magnetic Disturbances (GMD) have the potential to disrupt power 
delivery

• May 1806 – June, 1807: Alexander von Humboldt, Berlin
• August 28 - September 2, 1859: United States and Europe
• March 13, 1989: Hydro-Québec blackout

• Motivates studies of power system fragility
• Transformers
• Generators
• Control components

• Motivates studies on mitigation and prevention
• Blocking devices (Overbye 2013, 2015)
• Generator dispatch, line switching, load shedding (this talk)

• Presentation Focus
• Modeling GMD effects in a power system
• Deriving constraints that ensure system protection
• Optimized decisions to meet these constraints
• Key application for advances in space weather modeling
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Power Grids

• Modeled as a network
• Nodes

• Generators (producers 
of power)

• Loads (consumers of 
power)

• Inject or consume 
power

• Edges
• Power lines
• Transformers
• Transport power from 

one location to another

• GMD Events
• Introduce a DC current on 

the system
• Combination of existing AC 

current and extra DC current 
can cause problems
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Power Grids during GMD (E3)

Transmission grid Distribution grid

The quasi-DC GIC flow in 
transformer windings can 
cause half-cycle saturations 
of transformer cores, 
resulting in increased 
transformer hotspot heating, 
accelerated aging of the 
cellulosic insulation and gas 
generation. 

Source: https://en.wikipedia.org/wiki/Geomagnetic_storm
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Steady-State Power Flow Modeling - Overview

Minimize generation cost and load shedding cost  
Subject to:

a) Power flow balance constraints
b) Power flow equations
c) Power losses equations
d) Magnitude of AC current flow equations
e) Operational limits constrains

f) GICs calculation equations
g) Magnitude of GICs  injection equations
h) Transformer thermal limits constraints
i) Reactive power losses equations
j) Topology decisions

AC-OTS with reactive 
power losses induced 
by GIC

DC-induced 
network by GMD
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Nomenclature
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Steady-State Power Flow Modeling - Details

Minimize generation and load 
shedding costs

Power flow balance 
constraints

Real and Reactive 
Power Flow 
Equations

Power loss 
equations

Apparent and Current 
Power Flow Equations
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Normal Operating Constraints

Thermal line limits

Current limits

Voltage limits

Phase angle limits

generation limits
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GIC Modeling

GIC injections

GIC magnitudes and constraints

Transformer heating safety limits

Induced reactive losses
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Information Science Challenges

What makes this problem computationally 
difficult?

• Discrete variables
• Opening or closing a line
• Not a bottleneck… so far

• Non-convex constraints
• Bi-linear terms, cosines, sines
• Solution: replace non-convex terms with 

convex envelopes
• See Coffrin, van Hentenryck, and Hijazi 
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• Solution with convex envelope is a lower 

bound on the solution to the original problem
• Often tight in practice
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Novel Algorithm

• The convex envelopes yield good 
results when the upper and lower 
bounds on variables are tight

• GIC voltages and currents do not 
have tight bounds

• We developed a novel algorithm 
for problems with loose bounds

• Delivers strong performance on 
standard academic benchmarks 
(outside the scope of this talk)

• Improved the computational 
performance on Optimal Power Flow 
under Geomagnetic Disturbances
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Novel Algorithm: Key Idea 1

Infer new bounds

1. Find a “local” solution to the original 
non-convex formulation

1. Gradient descent
2. This solution is an upper bound

2. Introduce a constraint that restricts 
solutions to have a value <= this upper 
bound

3. For each variable (i.e. GIC DC current) 
solve 2 problems with the convex 
formulation

1. Maximize the upper bound
2. Minimize the lower bound
3. Possible to iterate

4. This procedure deduces tighter 
variable bounds that tighten the convex 
envelopes and improve solution quality

�𝒙𝒙𝒙𝒙
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Novel Algorithm: Key Idea 2

Discretize the bounds

1. Solve the convex relaxation problem

2. Split the bounds the variables into valid 
ranges, focused where the values these 
variables have in the solution

1. Applies different convex envelopes 
depending on the variable choice

2. Further tightens the relaxation
1. Drawback: introduces binary 

variables

3. Solve again

4. Further split the bounds for any 
variable whose value changes (xlocal) 

5. Repeat until solution does not change 
more than a small value
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Results

• IEEE RTS-96 Test System

• GMD event with 
symmetric field strength 
gradients

• Analyzed how the solution 
changed depend on event 
direction and magnitude
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Overview Results
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Drill down on 30 V per mile

Thermal heating generally 
not an issue
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Drill Down on 40 V per mile

Some directions now require 
mitigation options
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Drill Down on 50 V per mile

Impacts have increased
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Drill Down on 60 V per mile

Needs more expensive 
generation

Forces lines to open

Transformer approaching heating limits
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Analysis of Switching Needs: Event Strength
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Analysis of Switching Needs: Event Strength

Able to maintain system performance, but a 
line must be switched
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Analysis of Switching Needs: Event Strength

System performance starts to degrade
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Analysis of Switching Needs: Event Strength

System forced to dispatch expensive 
generation
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Analysis of Switching Needs: Event Direction
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Analysis of Switching Needs: Event Direction

System performance starts to degrade
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Analysis of Switching Needs: Event Direction

System performance continues to degrade, 
and line is forced to be switched
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Analysis of Switching Needs: How much does it matter?

• Assume base topology

• How much thermal 
overheating is 
experienced?

• As the event magnitude 
increases, the overheating 
risk increases
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Conclusions and Future Work

Conclusions and Contributions

• A model of GIC physics combined with AC power flow physics
• A model of power system component safety margins
• Optimized the operations to stay within safety margins 

• Builds on previous work
• Focus on placing blocking devices
• Minimized a safety metric (reactive power loading at transformers)

• Overbye et al., 13, 15
• To the best of our knowledge, we have the first model that builds in the safety margins directly

Future Work

• Stochastic events
• We assume the characteristics of the event are known

• Connection to space weather and earth modeling and prediction
• Robust operations

• Modeling
• Improved algorithms
• Other GMD impacts
• Real system studies
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