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Wave-particle interactions are usually described by a multidimensional
diffusion equation. Waves include chorus, hiss, EMIC, MS waves.
Cyclotron-resonant quasi-linear theory are most common, but bounce
resonance and non-resonant interactions can also be formulated this way.

Including cross diffusion (D,,,) is now standard practice.

Several approaches work reasonably well, including FI and ADI (traditional,
grid-based), SDE (particle) and layer methods (grid-based, but SDE-like),
and diagonalization (grid-based).

When D,,, # 0, the traditional grid-based methods don’t guarantee good
behavior (f > 0) for arbitrary (discontinuous) ICs, BCs, D, even if formally
linearly stable.
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Albert et al., Quasi-linear simulations of inner radiation belt electron pitch angle
and energy distributions, Geophys. Res. Lett., 43, doi:10.1002/2016GL067938.



Other people are also still wrestling with this:

“The upper energy boundary (10 MeV) can be set to zero, because the flux
at this energy is very low. However, we found that the simulation maintains
a very low value of PSD at the upper boundary and is more stable when we
set up the derivative with respect to energy to zero, instead of setting up the
value of PSD to zero at this boundary”

— Drozdov, et al. (2015), Energetic, relativistic, and ultrarelativistic elec-

trons: Comparison of long-term VERB code simulations with Van Allen
Probes measurements, JGR, doi:10.1002/2014JA020637.

“Recently, Subbotin and Shprits [2012] suggested performing 3-D simula-
tions on one grid of modified adiabatic invariants. This approach allows
the elimination of interpolation between the numerical grids which can ei-
ther lead to numerical errors or, in the case of accurate spline interpolation,
cause unstable behavior of the code”

— Shprits, et al. (2015), Combined convective and diffusive simulations:
VERB-4D comparison with 17 March 2013 Van Allen Probes observations,
GRL, doi:10.1002/2015GL065230.



The 2D diffusion equation is
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where J = ‘%((ﬁ(;t?; , and in this notation Dy, q, ~ (Aag)?/At,

Dayp ~ (AagAp)/At, Dy, ~ (Ap)?/At.

Going from (aq,p) to any (Q1,Q2) gives
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We want Dlg = 0.



Simplest possible finite difference scheme:
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Because of the cross terms, no At > 0 can guarantee f{;ﬂ > 0.

Solution: change variables, make the cross terms vanish.
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(This was done in Albert and Young, GRL 2005.)

This equation is much better-behaved numerically.

[In all of this, can replace («g,p) with (sin g, logp) or (cos ayg,log F), etc.]



In the («g, p) plane, constant-(); curves are vertical and constant-Q)s
curves have slope D,/ Dagya,, Which is typically small.

But if Dy, > [Dagp| > Daga, (which can happen at large E),
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More generally, choose dfo]jg ol = Wj’ dozjo o = 7?, where
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This also leads to 1512 = 0, and
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Lots of nice properties, e.g., ()-curves are orthogonal, and
Dll > maX[Dao,aoa Dpp] > min[Dao,aoaDpp] > D22 > 0.

Also, generalizes to 3D.



Using bilinear interpolation of a table of D values,
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yields closed form expressions for ()1 and ()s:
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constructed separately in each cell.
(Can write the integrals in terms of the error function, and so on.)

0
This then gives &, etc.
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— Trace the constant-Q) curves to cell edges (only has to be done once)
— Interpolate f at edges
— Update f with finite differences in (Q1, Q2)



To get f at cell edges, want something better than linear interpolation.

For monotonic data, cubic splines work well. Another good choice
is piecewise-continuous Hermite interpolating polynomials (PCHIP):

0.8

X e
=

0.4

0.2

0.0

=
=]

0.2 0.4 0.5 o8 1.8



For non-monotonic data, splines can have oscillations. PCHIP doesn’t.
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For even better schemes, see Tao, X., L. Zhang, C. Wang, X. Li, J. M. Albert, and A. A. Chan (2016), An efficient and
positivity-preserving layer method for modeling radiation belt diffusion processes, J. Geophys. Res. Space Physics,
121, 305-320, doi:10.1002/2015JA022064.

For either, using 1D interpolants on a 2D staggered grid
is slightly involved:



Dnm

Staggered grid:



Trace Q,=c and Q,=c to cell edges: will need f there.




(splines, PCHIP, ...

Step 1a: Interpolate f this way ...
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to get f along vertical cell edges.




Step 1b: Interpolate f along vertical edges.
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to get f along horizontal cell edges.




Step 2b: Interpolate f along horizontal edges.




Finally, use the interpolated f values in FD scheme. Repeat.




Summary

As with the earlier approach, stability and positivity (f>0) are easily
guaranteed.

Using EVs requires tracing both sets of coordinate curves, but give an
orthogonal grid. Generalizable to 3D.

Bilinear approximation of D gives closed-form expressions for (Q,,Q,)

(but requires bilinear approximation of D). Also, coordinate curves
don’t connect across cells.

PCHIP interpolation in 2D takes a bit of time and trouble, but is better

behaved than other methods. Not clear how to combine with implicit
time steps.



