
Quantum Dynamics with UnQuantum Dynamics with Un--Real TrajectoriesReal Trajectories

Robert E. Wyatt
Department of Chemistry and Biochemistry

The University of Texas at Austin

Thanks to…

Brad Rowland
Chia-Chun Chou
Julianne David

The Robert Welch Foundation for funding



D.  Example: Wave packet barrier scattering on a 2 d.o.f. potential surface

E.  Exact wave packet dynamics for barrier scattering in the complex plane

F.  Exact (analytic) complex quantum trajectories for barrier scattering

B. Background on complex valued trajectories

Overview
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C. Approximate synthetic quantum trajectories: DPM equations of motion



Quantum trajectories in complex space

Some disadvantages and challenges…
1.  z, p, S, V, etc are all complex valued, as are the equations of motion.

The is part of the doubling problem:  a D-dimensional real space problem becomes
a 2D-dim complex space problem

2.  Given only point-wise data on the real-axis, it is non-trivial to generate V and it’s derivatives
in complex space, especially for multi-dimensional problems

3.  The potential off the real-axis may have nasty features, such as multiple poles.. 
These mess up trajectory propagation.

4.  The complex quantum potential can be just as nasty as the Bohm quantum potential
(they are both singular near nodes in the wave function)

5.  The isochrone problem: Locating isochrones is difficult, especially for multi-dimensional problems.   
However, at least for some problems, the isochrone search problem can be circumvented.

Some features and advantages…
1.  This approach is (in some sense) ‘more fundamental’ (according to C. D. Yang).. 
2.  Understanding complicated dynamics in the complex space can aid in predicting and understanding

dynamics on the real plane.
3.  For non-degenerate (and degenerate) stationary states, the trajectories are not fixed points

but display non-trivial dynamics.   They don’t just sit there.
4.  The complex quantum potential in the QHJE is constant if S is quadratic in z, so the quantum force 

vanishes (e.g., Gaussian wave packet)..   But for interesting problems this is temporary!
5.  The approximate equations of motion are much easier to derive in complex space.
6.  When running approximate QTs (using DPM), the convergence may be faster than for 

approximate Bohm QTs running in real-space.      This method works extremely  well for some
barrier scattering problems (but not very well for others)



Complex-valued classical trajectories have been used for decades in semiclassical approaches to barrier 
tunneling.   For example:

. Stine and Marcus (1972)
. Miller and George (1972-1973)
. Heller, Huber, Littlejohn GGWPD (1987);  Grossman, Heller (1995)
. Ikeda (1995-)
. Boiron and Lombardi (1998)
. de Aguiar and co-workers (mid-1990s-)
. Kay (2005-)
. Levkov and Sibiryakov (2005-)

Analytical approach to complex quantum trajectories: the wave function is known in advance of the 
trajectory propagation. These exact quantum trajectories are then generated from this wave function.   
Why do this?     Analysis, insight, interpretation

. Moncy John, 2002:  harmonic oscillator, potential step

. C.-D. Yang, 2005-present: H atom eigen-trajectories, harmonic oscillator
rectangular barrier tunneling, double slit diffraction, electron spin, chaos

. Chou and Wyatt, 2006-present: potential steps (soft and hard), barriers
(Eckart and Gaussian), reflection-less potential, and others

. Wyatt and Rowland, 2008: use NAC to study time-dependent barrier scattering
in the complex plane                  

. Sanz and Miret-Artes, 2008: head on collision of two Gaussian wave packets

Background on complexBackground on complex--valued trajectoriesvalued trajectories



Synthetic Approach using Approximate Complex Quantum TrajectorieSynthetic Approach using Approximate Complex Quantum Trajectoriess

The Goal: Use The Goal: Use QTsQTs to solve the to solve the complexcomplex--valued Hamiltonvalued Hamilton--Jacobi equation Jacobi equation for the complex action for the complex action 
function, function, S(z,tS(z,t). ). 

Develop equations of motion for Develop equations of motion for approximate individual quantum trajectoriesapproximate individual quantum trajectories using theusing the
derivative propagation method (DPM) *derivative propagation method (DPM) * The DPM was originally developed for realThe DPM was originally developed for real--space space QTsQTs:  :  

C. Trahan, K. Hughes, R. Wyatt, J. Chem. Phys. 1C. Trahan, K. Hughes, R. Wyatt, J. Chem. Phys. 118, 9911 (2003).  18, 9911 (2003).  

The idea: The idea: 

1.  Develop an infinite hierarchy of coupled 1.  Develop an infinite hierarchy of coupled DEsDEs for S and its spatial derivatives along the trajectory. for S and its spatial derivatives along the trajectory. 

2.  To make progress, truncate the system at some (low) order.  2.  To make progress, truncate the system at some (low) order.  Pray for convergence.Pray for convergence.

The highest spatial derivative retained has order n. The highest spatial derivative retained has order n. 

‘Regional non‘Regional non--locality’ is built in because some of the spatial derivatives oflocality’ is built in because some of the spatial derivatives of S are retained. S are retained. 

*  This method has similarities to *  This method has similarities to CIPCIP (cubic polynomial pseudo(cubic polynomial pseudo--particle method), used in classicalparticle method), used in classical
fluid dynamics and transport theory since 1985 (Yabe, Aoki, etc)fluid dynamics and transport theory since 1985 (Yabe, Aoki, etc)..



J. Chem. Phys. 125, 231103 (2006)

Also see…
J. Chem. Phys. 127, 197101(2007) comment by Sanz and Miret-Artes
J. Chem. Phys. 127, 197102(2007) reply to comment

The synthetic approach to complex valued quantum trajectoriesThe synthetic approach to complex valued quantum trajectories

More recent work…

Interference effects in reflected wave packet using low-order approx. QTs, 2007
Connection with TD-WKB, 2008



Substitute into the time-dependent Schrodinger equation to obtain…

This is the quantum Hamilton-Jacobi equation (QHJE) in the Eulerian frame.   
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However, it is just as complicated as QB, especially near nodes 
and quasi-nodes.
See: Rowland and Wyatt, CPL, published on-line.

Ansatz: exponential form for the time-dependent wave function ( , ) /( , ) iS x tx t eψ = h

S  is the complex-valued quantum action function

Equations of motion for complex-valued QTs

Origin of complex-valued dynamics

complex  action S complex  momentum  p  complex  coordinate  z

( , )S z t ( , ) ( , ) /p z t S z t z= ∂ ∂ / ( , ) /dz dt p z t m=
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The quantum HJ equation
Notation for derivs.
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Take the x-derivative 

Another x-derivative

Keep going, do it n times

Next, convert to the moving frame  

Up coupling to next
two ‘higher terms’

n nonlinear 1-st order     
DEs for derivatives

How to solve the QHJE using the DPM
to generate approximate quantum trajectories

Down-coupling
to lower terms

Now, start the DPM…(1)  take the spatial derivatives



(3) Truncation of the hierarchy

Hard truncation: Set the ‘next two’ higher spatial derivs. to zero 1 20, 0n nS S+ +

Soft truncation: Put in approximations for

= =

In either case, we now have a closed system of equations: 
(n+1) coupled DEs for the functions

0 1, ,... nS S S

(2) Convert equations of motion to the moving frame

1 2,n nS S+ +

This leads to the ‘usual’ DPM (derivative propagation method)

For example, run a small cluster and compute                    from nS1 2,n nS S

This leads to CDPM (cluster derivative propagation method), David and Wyatt
+ +

,df f f dxv v
dt t x dt

∂ ∂
= + =
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The ‘observer’ moves at ‘arbitrary’ velocity v

1 1 2 1( ,... , , )n n
n

n nS SdS F S S v
dt

S+ + += + n=0,1,2,…This gives

We still have a hierarchy of equations.  What to do?

Special case: Lagrangian dynamics 1
1

Lv S
m

=

These are the equations of motion in the ALE frame (Los Alamos!)
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DPM(2) … truncate the system at n = 2     

Equations of motion in the Eulerian frame
Now have 4 equations in the ALE frame

The result: complex classical trajectories
launched with quantum initial conditions
and carrying approximate quantum phase
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In the Lagrangian frame
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Application to wave packet barrier scatteringApplication to wave packet barrier scattering
on a 2 degree of freedom potential surfaceon a 2 degree of freedom potential surface

The The vibrationalvibrational force constant is lower in the barrier regionforce constant is lower in the barrier region

2
1 2 1 1 2

1( , ) ( ) ( ) .
2transV x x V x k x x= +

0V 1( )

Translational potential: Eckart or Gaussian barrier centered at  x1 = 0

xαsech2 2
0 1exp .( )V xβ−

trans.         harmonic vib.

Veiled Complexity: These potentials look very similar along the real axis
but differ greatly in the complex plane

barrier potential + harmonic barrier potential + harmonic vibrationalvibrational potentialpotential
2 real coordinates:    x2 real coordinates:    x11 translation, xtranslation, x22 vibrationvibration

1 1 1 1 2 2 2 2, .x z x i y x z x i y→ = + → = +

1 2 1 2( , ) ( , )V x x V z z→

Analytic continuation of the potential surfaces

Now have 4 coordinates

R. E. Wyatt and B. A. Rowland, J. Chem. Phys. 127, 044103 (2007).



The complex-valued potential energy surfaces

The real parts of these complex functions are shown in x1, y1, x2 coordinates

No poles in finite complex plane Periodic string of poles along the imaginary axis
These poles move closer to the real axis as the 
barrier becomes thinner.

Transmitted trajectories need to make it through ‘holes’ in the potential

Gaussian Eckart



Results for DPM(2) trajectoriesResults for DPM(2) trajectories

These are ‘classical trajectories’ propagating in complex phase These are ‘classical trajectories’ propagating in complex phase space.space.

These trajectories are launched with quantum initial conditions These trajectories are launched with quantum initial conditions 
(for S and its derivatives) and carry quantum phase information,(for S and its derivatives) and carry quantum phase information,
but follow ‘classical paths’.but follow ‘classical paths’.

A ‘thin’ A ‘thin’ EckartEckart barrier  and a Gaussian barrier were used.barrier  and a Gaussian barrier were used.



Launch Points: Isochrones for barrier scatteringLaunch Points: Isochrones for barrier scattering

Isochrone: the set of  launch points such that trajectories will be ‘detected’ on the real plane in 
the transmitted region at the same time.  These points fall on a surface in ‘initial coordinate space’.

Slow moving

Fast moving

Center of initial wave packet Arrival time  1200 a.u.
R denotes the initial
vibrational displacement



Transmitted density on real plane for the thin Transmitted density on real plane for the thin EckartEckart barrier surfacebarrier surface

backside side view
The front end is missing!
Extrapolate the density.

No ‘holes’ or missing regions
for the Gaussian case
The integrated density 
(reaction probability) is within 
10% of the exact value

Transmitted density forTransmitted density for
the Gaussian barrierthe Gaussian barrier
potential surfacepotential surface

Arrival time 1200 a.u.



Questions and DirectionsQuestions and Directions

1.        Why does low1.        Why does low--order DPM work much better for thick barriers than for thin onesorder DPM work much better for thick barriers than for thin ones
(Gaussian and (Gaussian and EckartEckart)?)?

2.         For 2.         For EckartEckart barriers, how can we ‘fill in’ the holes formed when trajectoribarriers, how can we ‘fill in’ the holes formed when trajectories diffract es diffract 
around poles in the complexaround poles in the complex--extended potential?extended potential?

3.        Many DPM trajectories run just fine, but others ‘blow 3.        Many DPM trajectories run just fine, but others ‘blow up’.   Why?up’.   Why?

4.        Isochrones (surfaces of launch points) are difficult t4.        Isochrones (surfaces of launch points) are difficult to locate…o locate…
brutebrute--force grid search is not practical in high dimensionality.force grid search is not practical in high dimensionality.

5.       Is it possible to avoid the 5.       Is it possible to avoid the isochroneisochrone problem? problem? 
(Yes, with non(Yes, with non--LagrangianLagrangian ALE constant speed trajectories)ALE constant speed trajectories)



Computational Investigation of Wave Packet Scattering In the Complex Plane

A. Accurate wave packet propagation on a computational grid in z-space
Low energy initial Gaussian wave packet scatters from an Gaussian barrier
Problem: how to deal with the huge numerical values off the real-axis
Introduce both damping of functions and absorbing potentials near grid edges
Follow evolution by plotting several functions: amplitude, QMF, etc.

B. Dynamics of exact quantum trajectories: analytic approach
Thousands of QTs were propagated and plotted
Some groups of trajectories form long-lived, highly correlated structures,

such as helical wrapping around stagnation curves.  
Also, trajectories display hyperbolic flow as they pass near quasi-nodes

C. Approximate quantum trajectories compared with exact ones
Compare the exact QTs with approximate (DPM) QTs of various orders
Work in progress
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The Scattering Problem and the Computational Grid 

Initial Gaussian wave packet ( ) 2
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Example of blow-up off of the real axis: 
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To propagate the wave packet on a finite (small) grid: 

(1) Damp the initial packet and the potential along the y-direction, 

(2)  Every M time steps, re-damp the wave packet along the y direction

(3)  Use absorbing (negative imaginary) potentials near all 4 grid boundaries



Initial time, t = 0

45 x 43 grid of 1935 quantum trajectoriesReal (wave function)

Quantum momentum function : note swirl around pinch point
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Pinch point

twist



Shearing deformation Clustering begins in upper right

Quasi-nodes and clusters move toward lower left Quasi-nodes cross real-axis: ‘observer’
detects ‘interference oscillations’

Evolution of exact quantum trajectories

Quasi-nodes form



The  quantum momentum function and the Polya vector field

Quantum momentum function, QMF

Polya vector field
Conjugate field

Streamlines near nodes and stagnation points

Near node

Near stagnation point

QMF Polya field

Hyperbolic*

Circular

Circular

Hyperbolic
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Vortices: C. C. Chou and R. E. Wyatt, JCP 128, 234106 (2008)
Streamlines: C. C. Chou and R. E. Wyatt, JCP, submitted

* Compare with vortices in real space: circular flow around node
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Quantum momentum field and Polya vector field

Quasi-nodes:

Stagnation points: circular flow

hyperbolic flow

t=1000 a.u.

Quasi-nodes: circular flow

Note: The Polya vectors are always
parallel to contours of the Born density.



Vortical tubes* and hyperbolic quantum trajectories

Isosurfaces of wave function amplitude
show formation and persistence of tubes

Trajectories experience ‘hyperbolic
indentations’ as they pass near the tubes

* Vortical tubes were introduced into classical hydodynamics by Helmholtz in 1858

Launch points for trajectories



Trajectory wrapping around stagnation curves

Stagnation curves and vortical tubes alternate with each other. 

Trajectories from different launch points end up wrapping around the same stagnation curve… 
this is a type of long-range correlation.

The first trajectories to arrive wrap tightly to form the inner core.  The late
arrivals must be content to form the outer sheath.  As time proceeds, the
trajectories form a helical wrapping around the stagnation curve.



Summary

1. This is the first study in the complex plane of  ‘exact’ wave
packet propagation for a barrier scattering problem.

2. Special care was exercised to handle the very large
values of the analytically extended initial wave packet and
the scattering potential.

3. Important dynamical feature: formation of a string of quasi-nodes 
and stagnation points above the real-axis. These gradually move
away from the barrier region and cross over the real-axis.

4. Dynamics of exact quantum trajectories: Thousands of QTs were
propagated and plotted.  Some groups of trajectories form long-lived, 
highly correlated structures, such as helical wrapping around 
stagnation curves.  Also, trajectories display hyperbolic paths when they
pass near nodes or quasi-nodes.  
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