Quantum Trajectories in Phase Space

Craig C. Martens

Department of Chemistry University of California, Irvine

Workshop on Quantum Trajectories Center for Nonlinear Studies, Los Alamos National Laboratory Los Alamos, NM, July 27-30, 2008

Numerical Methodology Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Classical and Quantum Time Evolution

Quantum Schrödinger equation

$$\dot{q} = \frac{\partial H}{\partial p}$$
$$\dot{p} = -\frac{\partial H}{\partial q}$$

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi$$

æ

Numerical Methodology Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Quantum dynamics

Schrödinger Representation

Ψ

Craig C. Martens Quantum Trajectories in Phase Space

・ロト ・回ト ・ヨト ・ヨト

Numerical Methodology Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Quantum dynamics

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

Numerical Methodology Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Quantum dynamics in the Wigner representation

Wigner Function

・ 母 と ・ ヨ と ・ ヨ と

Numerical Methodology Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Quantum dynamics in the Wigner representation

Apologies to Professor Bohm!

・ロト ・回ト ・ヨト ・ヨト

Numerical Methodology Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Quantum and Classical Liouville Equation

The quantum Liouville equation:

$$i\hbar \frac{\partial \hat{
ho}}{\partial t} = [\hat{\mathcal{H}}, \hat{
ho}]$$

The classical Liouville equation:

$$\frac{\partial \rho}{\partial t} = \{H, \rho\}$$

where the Poisson bracket is

$$\{H,\rho\} = \frac{\partial H}{\partial q} \frac{\partial \rho}{\partial p} - \frac{\partial \rho}{\partial q} \frac{\partial H}{\partial p}$$

These are connected by the Correspondence Principle:

$$[\hat{H},\hat{\rho}] \to i\hbar\{\hat{H},\hat{\rho}\} + \mathcal{O}(\hbar^3)$$

Numerical Methodology Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

The Wigner Function

A phase space representation of a quantum density operator $\hat{\rho}$:

$$ho_W(q,p,t) = rac{1}{2\pi\hbar}\int\limits_{-\infty}^\infty < q-rac{y}{2}|\hat
ho(t)|q+rac{y}{2}>e^{ipy/\hbar}~dy$$

For a pure state with wave function $\psi(q, t)$ this becomes

$$ho_W(q,p,t) = rac{1}{2\pi\hbar}\int\limits_{-\infty}^{\infty}\psi^*(q+rac{y}{2},t)\psi(q-rac{y}{2},t)e^{ipy/\hbar}~dy$$

・ロト ・回ト ・ヨト ・ヨト

Numerical Methodology Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Wigner Function Equation of Motion

The quantum Liouville equation again:

$$i\hbar \frac{\partial \hat{
ho}}{\partial t} = [\hat{\mathcal{H}}, \hat{
ho}]$$

After some algebra, the Wigner transform the Liouville equation can be written as

$$\frac{\partial \rho_W}{\partial t} = -\frac{p}{m} \frac{\partial \rho_W}{\partial q} + \int_{-\infty}^{\infty} J(q, p - \xi) \rho_W(q, \xi, t) d\xi$$

where

$$J(q,\eta) = \frac{i}{2\pi\hbar^2} \int_{-\infty}^{\infty} \left[V(q+\frac{y}{2}) - V(q-\frac{y}{2}) \right] e^{-i\eta y/\hbar} \, dy$$

Numerical Methodology Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Expression for the Kernel $J(q, \eta)$

The kernel can be evaluated to give

$$J(q,\eta) = rac{4}{\hbar^2} \mathrm{Im} \left(\hat{V}(2\eta/\hbar) e^{-2i\eta q/\hbar}
ight)$$

The result for a Gaussian barrier:

Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Wigner Function Equation of Motion

For a V(q) with a power series expansion J(q, p) becomes

$$J(q,p) = -V'(q) \, \delta'(p) + rac{\hbar^2}{24} V'''(q) \, \delta'''(p) + \cdots$$

The Wigner function equation of motion is then

$$\frac{\partial \rho_W}{\partial t} = -\frac{p}{m} \frac{\partial \rho_W}{\partial q} + V'(q) \frac{\partial \rho_W}{\partial p} - \frac{\hbar^2}{24} V'''(q) \frac{\partial^3 \rho_W}{\partial p^3} + \cdots$$

The *n*th term:

$$\frac{(-1)^n \hbar^{2n}}{2^{2n}(2n+1)!} \frac{d^{2n+1}V(q)}{dq^{2n+1}} \frac{\partial^{2n+1}\rho_W(q,p)}{\partial p^{2n+1}}$$

イロン イヨン イヨン イヨン

Numerical Methodology Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Classical Liouville Equation

Classical Continuity in Phase Space

The classical Liouville equation

$$\frac{\partial \rho}{\partial t} = \{H, \rho\}$$

is a continuity equation for incompressible flow in phase space:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0$$

・ロト ・回ト ・ヨト ・ヨト

Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

The classical continuity equation:

$$\frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{j} = \{H, \rho\}$$

where

$$\vec{\nabla} = \begin{pmatrix} \partial/\partial q \\ \partial/\partial p \end{pmatrix} \qquad \vec{j} = \begin{pmatrix} \partial H/\partial p \\ -\partial H/\partial q \end{pmatrix} \rho \qquad \partial \dot{q}/\partial q + \partial \dot{p}/\partial p = 0$$

The current \vec{j} is then the density times the phase space velocity field

$$\vec{v} = \vec{j}/\rho = \left(\begin{array}{c} \dot{q} \\ \dot{p} \end{array}
ight) = \left(\begin{array}{c} \partial H/\partial p \\ -\partial H/\partial q \end{array}
ight)$$

Recovering Hamiltion's equations!

Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Solving the Classical Liouville Equation Using Trajectories

Represent the continuous function $\rho(q, p, t)$ in phase space by a discrete sampling with N trajectories.

$$ho(q,p,t) = rac{1}{N}\sum_{j=1}^N \delta(q-q_j(t))\delta(p-p_j(t))$$

where $q_j(t)$ and $p_j(t)$ is the phase space location of the j^{th} trajectory at time t.

Each member of the ensemble then evolves (independently) under Hamilton's equations.

・ロン ・回 と ・ 回 と ・ 日 と

Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Quantum Liouville Equation in the Wigner Representation

The Wigner function obeys the phase space equation

$$\frac{\partial \rho_W}{\partial t} = -\frac{p}{m} \frac{\partial \rho_W}{\partial q} + V'(q) \frac{\partial \rho_W}{\partial p} - \frac{\hbar^2}{24} V'''(q) \frac{\partial^3 \rho_W}{\partial p^3} + \cdots$$

Cast as a continuity equation (even though ρ_W can be negative!):

$$\frac{\partial \rho_W}{\partial t} + \vec{\nabla} \cdot \vec{j}_W = 0$$

which defines a quantum current \vec{j}_W :

$$\vec{\nabla} \cdot \vec{j}_W = \frac{\partial}{\partial q} \left(\frac{p}{m} \rho_W \right) + \frac{\partial}{\partial p} \left(-V'(q) \rho_W + \frac{\hbar^2}{24} V'''(q) \frac{\partial^2 \rho_W}{\partial p^2} + \cdots \right)$$

• E • •

Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Quantum Trajectories

The quantum current then defines a vector field in phase space:

 $\vec{v} = \vec{j}_W / \rho_W$

These give a generalization of Hamilton's equations:

$$\dot{q} = v_q = rac{
ho}{m}$$

 $\dot{
ho} = v_
ho = -V'(q) + rac{\hbar^2}{24}V'''(q)rac{1}{
ho_W}rac{\partial^2
ho_W}{\partial p^2} + \cdots$

A ρ_W -dependent Bohmesque "quantum force".

・ロン ・回と ・ヨン・

Numerical Methodology Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Energy Conservation

The quantum trajectories do not conserve energy individually.

$$\frac{dH}{dt} = \dot{q}\frac{\partial H}{\partial q} + \dot{p}\frac{\partial H}{\partial p} = \frac{p}{m}\left(\frac{\hbar^2}{24}V'''(q)\frac{1}{\rho}\frac{\partial^2\rho}{\partial p^2} + \cdots\right)$$

Energy is conserved at the ensemble level.

$$\left\langle \frac{dH}{dt} \right\rangle = \int \int \rho \frac{dH}{dt} dq dp = \int \int \frac{p}{m} \left(\frac{\hbar^2}{24} V'''(q) \frac{\partial^2 \rho}{\partial p^2} + \cdots \right) dq dp = 0$$

This non-conservation of individual trajectory energy allows quantum effects to be modeled.

イロト イヨト イヨト イヨト

Numerical Methodology Applications The Husimi Representation Methodology, Revisited

Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Entangled Trajectory Molecular Dynamics

For the j^{th} trajectory:

$$\dot{
ho}_j=-V'(q_j)+rac{\hbar^2}{24}V'''(q_j)rac{1}{
ho_W(q_1,q_2,\ldots,p_N)}rac{\partial^2
ho_W(q_1,q_2,\ldots,p_N)}{\partial p^2}+\cdots$$

The equations of motion depend not only on the Hamiltonian H(q, p) at each point in phase space, but on the *entire state* ρ_W . This, in turn, depends on the *entire ensemble*.

The members of the ensemble are thus *entangled* with each other. The *statistical independence* of ensemble members in classical mechanics is thus *lost* for quantum trajectories!

イロン イヨン イヨン イヨン

Introduction Numerical Methodology

Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

Trajectories in Phase Space

Classical and Quantum Trajectories

→ 同 → → 三 →

Numerical Methodology Applications The Husimi Representation Methodology, Revisited Classical mechanics vs. quantum mechanics Wigner representation Entangled Trajectory Molecular Dynamics

The Wigner function $\rho_W(q, p, t)$ is real, but can become negative. Can its evolution be represented by an ensemble of trajectories evolving under these equations of motion?

・ロン ・回と ・ヨン ・ヨン

Local Gaussian Ansatz

Numerical Methodology: Local Gaussian Ansatz

An approximate *local Gaussian ansatz* for the Wigner function.

$$\rho(q,p) = Ae^{-\beta_q(q-q_k)^2 - \beta_p(p-p_k)^2 + \gamma(q-q_k)(p-p_k) + \alpha_q(q-q_k) + \alpha_p(p-p_k)}$$

around the point k.

Assumption: ρ is on average positive and smooth (formalize later).

The parameters α_q , α_p , β_q , β_p , and γ are determined locally for each member of the ensemble from the moments of the whole ensemble. Then,

$$\frac{1}{\rho}\frac{\partial^2\rho}{\partial p^2} = \alpha_p^2 - 2\beta_p \qquad \qquad \frac{1}{\rho}\frac{\partial^4\rho}{\partial p^4} = \alpha_p^4 - 12\alpha_p^2\beta_p + 12\beta_p^2$$

etc.

イロト イポト イヨト イヨト

Local Gaussian Ansatz

The Trick: Modified Moments

The generator of modified moments is

$$\tilde{I} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\beta_q \xi^2 - \beta_p \eta^2 + \gamma \xi \eta + \alpha_q \xi + \alpha_p \eta} \phi_{h_q, h_p}(\xi, \eta) \, d\xi d\eta,$$

where this includes a local Gaussian window function ϕ :

$$\phi_{h_q,h_p}(\xi,\eta) = \exp\left(-h_q\xi^2 - h_p\eta^2\right)$$

The modified m^{th} , n^{th} moment of ξ , η is then

$$\langle \xi \tilde{m\eta^n} \rangle \equiv \frac{\langle \xi^m \eta^n \phi \rangle}{\langle \phi \rangle} = \frac{\int \int \xi^m \eta^n \phi(\xi, \eta) \rho(\xi, \eta) d\xi d\eta}{\int \int \phi(\xi, \eta) \rho(\xi, \eta) d\xi d\eta}$$

イロン イヨン イヨン イヨン

Local Gaussian Ansatz

Modified Moments

For ρ a local Gaussian, these moments are generated by derivatives of \tilde{I} :

$$\langle \xi \tilde{m\eta} n \rangle = \frac{1}{\tilde{I}} \frac{\partial^{(m+n)}}{\partial \alpha_q^m \partial \alpha_p^n} \tilde{I}$$

Generalized variances and correlation:

$$\tilde{\sigma}_{\xi}^2 = \langle \tilde{\xi}^2 \rangle - \langle \tilde{\xi} \rangle^2 \qquad \qquad \tilde{\sigma}_{\eta}^2 = \langle \tilde{\eta}^2 \rangle - \langle \tilde{\eta} \rangle^2 \qquad \qquad \tilde{\sigma}_{\xi\eta}^2 = \langle \tilde{\xi\eta} \rangle - \langle \tilde{\xi} \rangle \langle \tilde{\eta} \rangle$$

The original Gaussian parameters can then be reconstructed:

$$\alpha_{p} = \frac{\tilde{\sigma_{\xi}}^{2} \langle \tilde{\eta} \rangle - \tilde{\sigma_{\xi \eta}}^{2} \langle \tilde{\xi} \rangle}{\tilde{\sigma_{\xi}}^{2} \tilde{\sigma_{\eta}}^{2} - \tilde{\sigma_{\xi \eta}}^{4}} \qquad \qquad \beta_{p} = \frac{\tilde{\sigma_{\xi}}^{2}}{2(\tilde{\sigma_{\xi}}^{2} \tilde{\sigma_{\eta}}^{2} - \tilde{\sigma_{\xi \eta}}^{4})} - h_{p}$$

・ロン ・回と ・ヨン ・ヨン

Local Gaussian Ansatz

Modified Moments from Ensemble

The required modified moments can be calculated easily from the evolving ensemble:

$$\langle \xi \tilde{m} \eta^n \rangle_k = \frac{\sum_{j=1}^N (q_j - q_k)^m (p_j - p_k)^n \phi(q_j - q_k, p_j - p_k)}{\sum_{j=1}^N \phi(q_j - q_k, p_j - p_k)}$$

- This employs *local* data when determining the local Gaussian fit.
- Distinct parts of the ensemble will be represented by different Gaussian functions, in general.
- The method is stable-no NaNs.
- In practice, the local window function ϕ is taken to be a minimum uncertainty Gaussian. An implicit Husimi representation (see below).

イロン イ部ン イヨン イヨン 三日

Tunneling in Cubic Potential

Tunneling Through a Barrier

Tunneling in a Cubic Potential

- 4 同 ト - 4 三 ト

< ∃⇒

Tunneling in Cubic Potential

ETMD for Cubic Potential

$$V(q) = \frac{1}{2}m\,\omega_o^2 q^2 - \frac{1}{3}bq^3$$

The quantum force on the j^{th} member of the ensemble:

$$\dot{p}_j = -V'(q_j) - \frac{\hbar^2 b}{12} \frac{\partial^2 \rho / \partial p^2(q_j, p_j)}{\rho(q_j, p_j)}$$
$$\dot{p}_j = -V'(q_j) - \frac{\hbar^2 b}{12} (\alpha_{p,j}^2 - 2\beta_{p,j})$$

$$\alpha_{p} = \frac{\tilde{\sigma_{\xi}}^{2} \langle \tilde{\eta} \rangle - \tilde{\sigma_{\xi \eta}}^{2} \langle \tilde{\xi} \rangle}{\tilde{\sigma_{\xi}}^{2} \tilde{\sigma_{\eta}}^{2} - \tilde{\sigma_{\xi \eta}}^{4}} \qquad \qquad \beta_{p} = \frac{\tilde{\sigma_{\xi}}^{2}}{2(\tilde{\sigma_{\xi}}^{2} \tilde{\sigma_{\eta}}^{2} - \tilde{\sigma_{\xi \eta}}^{4})} - h_{p}$$

Tunneling in Cubic Potential

Classical Ensemble in Phase Space

Craig C. Martens

Quantum Trajectories in Phase Space

э

Tunneling in Cubic Potential

Entangled Ensemble in Phase Space

Craig C. Martens

Quantum Trajectories in Phase Space

э

Tunneling in Cubic Potential

Reaction Probability vs. Time: Classical and Entangled

<- ↓ ↓ < ≥ >

Tunneling in Cubic Potential

Tunneling Rate vs. Mean Energy

(4日) (4日)

< ∃⇒

Tunneling in Cubic Potential

Eckhart Barrier

The method also captures the quantum corrections to tunneling through the Eckhart barrier.

イロン イヨン イヨン イヨン

æ

Husimi Distribution: Positive Phase Space Distribution

The Husimi Distribution

The Husimi distribution is a locally-smoothed Wigner function:

$$\rho_{H}(q,p) = \frac{1}{\pi\hbar} \int_{-\infty}^{\infty} \rho_{W}(q',p') e^{-\frac{(q-q')^{2}}{2\sigma_{q}^{2}}} e^{-\frac{(p-p')^{2}}{2\sigma_{p}^{2}}} dq' dp'$$

where the smoothing is over a minimum uncertainty phase space Gaussian,

$$\sigma_q \sigma_p = \frac{\hbar}{2}$$

・ロン ・回と ・ヨン・

Operator Formulation of Husimi Distribution

The smoothing can be represented using smoothing operators \hat{Q} and \hat{P}

$$\hat{Q} = e^{rac{1}{2}\sigma_q^2rac{\partial^2}{\partial q^2}} \qquad \hat{P} = e^{rac{1}{2}\sigma_p^2rac{\partial^2}{\partial p^2}}$$

The Husimi can then be written as a smoothed Wigner function as:

$$\rho_H(q,p) = \hat{Q}\hat{P}\rho_W(q,p)$$

This is related to the interesting identity:

$$e^{-a(x-x')^2} = e^{\frac{1}{4a}\frac{\partial^2}{\partial x^2}} \delta(x-x')$$

イロン イヨン イヨン イヨン

Smoothing and Unsmoothing

We can consider the inverse unsmoothing operators \hat{Q}^{-2} and \hat{P}^{-1} :

$$\hat{Q}^{-1} = e^{-rac{1}{2}\sigma_q^2rac{\partial^2}{\partial q^2}} \qquad \hat{P}^{-1} = e^{-rac{1}{2}\sigma_p^2rac{\partial^2}{\partial p^2}}$$

so that the Wigner function can be written (at least formally) as an "unsmoothed" Husimi:

$$\rho_W(q,p) = \hat{Q}^{-1}\hat{P}^{-1}\rho_H(q,p)$$

(Unsmoothing is risky in practice, of course!)

・ロト ・回ト ・ヨト ・ヨト

Equation of Motion for the Husimi Distribution

We can then derive an equation of motion for the Husimi distribution.

$$rac{\partial
ho_H}{\partial t} = -rac{1}{m} \hat{P} p \hat{P}^{-1} rac{\partial
ho_H}{\partial q} + \int\limits_{-\infty}^{\infty} \hat{Q} J(q,\eta) \hat{Q}^{-1}
ho_H(q,p+\eta,t) \ d\xi$$

Note that there are no approximations; the Husimi representation provides and *exact* description of quantum dynamics.

Powers of the coordinates and momenta become differential operators:

$$\hat{Q}q\hat{Q}^{-1} = q + \sigma_q^2 \frac{\partial}{\partial q} \qquad \qquad \hat{P}p\hat{P}^{-1} = p + \sigma_p^2 \frac{\partial}{\partial p}$$
$$\hat{Q}q^2\hat{Q}^{-1} = q^2 + \sigma_q^2 + 2\sigma_q^2 q \frac{\partial}{\partial q} + \sigma_q^4 \frac{\partial^2}{\partial q^2}$$

Equation of Motion for the Husimi Distribution

Wigner function equation of motion:

$$\frac{\partial \rho_W}{\partial t} = -\frac{p}{m} \frac{\partial \rho_W}{\partial q} + (m\omega_o^2 q - bq^2) \frac{\partial \rho_W}{\partial p} + \frac{\hbar^2 b}{12} \frac{\partial^3 \rho_W}{\partial p^3}$$

Husimi equation of motion:

$$\frac{\partial \rho_H}{\partial t} = -\frac{1}{m} \hat{P} p \hat{P}^{-1} \frac{\partial \rho_H}{\partial q} + (m \omega_o^2 \hat{Q} q \hat{Q}^{-1} - b \hat{Q} q^2 \hat{Q}^{-1}) \frac{\partial \rho_H}{\partial p} + \frac{\hbar^2 b}{12} \frac{\partial^3 \rho_H}{\partial p^3}$$

where

$$\hat{Q}q\hat{Q}^{-1} = q + \sigma_q^2 \frac{\partial}{\partial q} \qquad \qquad \hat{P}p\hat{P}^{-1} = p + \sigma_p^2 \frac{\partial}{\partial p}$$
$$\hat{Q}q^2\hat{Q}^{-1} = q^2 + \sigma_q^2 + 2\sigma_q^2 q\frac{\partial}{\partial q} + \sigma_q^4 \frac{\partial^2}{\partial q^2}$$

Continuity in the Husimi Representation

We again invoke continuity, now rigorous for a positive probability distribution.

$$\frac{\partial \rho_H}{\partial t} + \vec{\nabla} \cdot \vec{j}_H = 0$$

Then after a little algebra,

$$\vec{\nabla} \cdot \vec{j}_{H} = \frac{\partial}{\partial q} \left(\frac{p}{m} \rho_{H} \right) + \frac{\partial}{\partial p} \left(-V'(q)\rho_{H} + \frac{\hbar b}{2m\omega_{o}}\rho_{H} + \frac{\hbar bq}{m\omega_{o}} \frac{\partial \rho_{H}}{\partial q} + \frac{\hbar^{2}b}{4m^{2}\omega_{o}^{2}} \frac{\partial^{2}\rho_{H}}{\partial q^{2}} - \frac{\hbar^{2}b}{12} \frac{\partial^{2}\rho_{H}}{\partial p^{2}} \right)$$

▲□→ ▲目→ ▲目→

Phase Space Vector Field in the Husimi Representation

The phase space vector field then becomes

$$\dot{q} = \frac{p}{m}$$

$$\dot{p} = -V'(q) + \frac{\hbar b}{2m\omega_o} + \frac{\hbar bq}{m\omega_o} \frac{1}{\rho_H} \frac{\partial \rho_H}{\partial q} + \frac{\hbar^2 b}{4m^2\omega_o^2} \frac{1}{\rho_H} \frac{\partial^2 \rho_H}{\partial q^2} - \frac{\hbar^2 b}{12} \frac{1}{\rho_H} \frac{\partial^2 \rho_H}{\partial p^2}$$

The quantum force now contains additional terms not present in the Wigner representation quantum force. This is related to the fact that classical propagation and smoothing *do not commute*.

These equations of motion can be propagated as before.

イロト イポト イヨト イヨト

Free Particle in the Husimi Representation

Because of the smoothing, the free particle motion is nonclassical!

$$\frac{\partial \rho_H}{\partial t} = -\frac{1}{m} \hat{P} p \hat{P}^{-1} \frac{\partial \rho_H}{\partial q}$$

or

$$\frac{\partial \rho_H}{\partial t} = -\frac{1}{m} p \frac{\partial \rho_H}{\partial q} - \frac{\sigma_p^2}{m} \frac{\partial^2 \rho_H}{\partial q \partial p}$$

The extra terms due to noncommutativity of classical time evolution and smoothing.

イロン イヨン イヨン イヨン

2

Free Particle Propagation: Entangled vs. Exact

- 4 回 > - 4 回 >

< ≣⇒

Solving the Integrodifferential Equation Directly

Methodology, Revisited

The Wigner equation of motion:

$$\frac{\partial \rho_W}{\partial t} = -\frac{p}{m} \frac{\partial \rho_W}{\partial q} + \int_{-\infty}^{\infty} J(q, p - \xi) \rho_W(q, \xi, t) d\xi$$

Write the divergence of the flux directly in this form:

$$\vec{\nabla} \cdot \vec{j}_W = \frac{\partial}{\partial q} \left(\frac{p}{m} \rho_W \right) - \int_{-\infty}^{\infty} J(q, \xi - p) \rho_W(q, \xi, t) \, d\xi$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Solving the Integrodifferential Equation Directly

The momentum component:

$$rac{\partial}{\partial p} j_{W,p} = -\int\limits_{-\infty}^{\infty} J(q,\xi-p) \,
ho_W(q,\xi,t) \; d\xi$$

or

$$j_{W,p} = -\int_{-\infty}^{\infty} \Theta(q,\xi-p) \rho_W(q,\xi,t) d\xi$$

where

$$\Theta(q,\xi-p)\equiv\int\limits_{-\infty}^{p}J(q,\xi-z)\;dz$$

・ロン ・回と ・ヨン ・ヨン

æ

Solving the Integrodifferential Equation Directly

This can be written explicitly in terms of the potential V(q):

$$\Theta(q,\xi-p) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \left[V(q+\frac{y}{2}) - V(q-\frac{y}{2}) \right] \frac{e^{-i(\xi-p)y/\hbar}}{y} \, dy$$

Then the quantum trajectory equations of motion become

$$\dot{q} = \frac{p}{m}$$

$$\dot{p} = -rac{1}{
ho_W(q,p)}\int \Theta(q,p-\xi)
ho_W(q,\xi)\,d\xi$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Numerical Approach

To proceed numerically, we write the Wigner function as a superposition of Gaussians:

$$\rho_W(q, p, t) = \frac{1}{N} \sum_{j=1}^N \phi(q - q_j(t), p - p_j(t))$$

where

$$\phi(q,p) = \frac{1}{2\pi\sigma_q\sigma_p} \exp\left(-\frac{q^2}{2\sigma_q^2} - \frac{p^2}{2\sigma_p^2}\right)$$

・ロン ・回と ・ヨン ・ヨン

æ

Numerical Approach

After some algebra, we find

$$\dot{p}(q,p) = -rac{\sum_{j=1}^N \phi_q(q-q_j) \Lambda(q-q_j,p-p_j)}{\sum_{j=1}^N \phi_q(q-q_j) \phi_p(q-q_j)}$$

where

$$\Lambda(q-q_j, p-p_j) = \int \frac{V(q+z/2) - V(q-z/2)}{z} \exp\left[i\frac{(p-p_j)z}{\hbar} - \frac{\sigma_p^2 z^2}{2\hbar^2}\right] dz$$

This can be evaluated numerically for a given potential V(q).

・ロン ・回と ・ヨン・

3

Reaction Probability vs. Time: Classical and Entangled

This method gives better long-time agreement for the cubic system:

Conclusions

• It is possible to define quantum trajectories in a non-Bohmian phase space context.

・ロン ・回と ・ヨン・

æ

Conclusions

- It is possible to define quantum trajectories in a non-Bohmian phase space context.
- The phase space quantum trajectory formalism can give nearly quantitative results for manifestly quantum mechanical processes such as tunneling in model systems.

イロト イヨト イヨト イヨト

Conclusions

- It is possible to define quantum trajectories in a non-Bohmian phase space context.
- The phase space quantum trajectory formalism can give nearly quantitative results for manifestly quantum mechanical processes such as tunneling in model systems.
- The methodology gives an appealing picture of quantum processes. For instance, tunneling is accomplished by *borrowing*, not by *burrowing*.

イロト イヨト イヨト イヨト

Mortgage Crisis in Phase Space?

Э

Acknowledgments

Thanks to:

★ Dr. Arnaldo Donoso (IVIC, Caracas, Venezuela)

Prof. Yujun Zheng (Shandong University) Jacob Goldsmith Patrick Hogan Adam Van Wart

Supported by the National Science Foundation

イロト イヨト イヨト イヨト