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Overview

e Quantum Hydrodynamics
— Background and motivation
— The de Broglie-Bohm equations of motion
— The Quantum Trajectory Method

« Computational Issues
— Accurate and stable derivatives
— Unitarity
— Node formation and singularities
* Applications
— 1 and 2 dimensional tunneling (Eckart barrier)

— 1 dimensional rounded square barrier (resonance)

— N dimensional Eckart barrier (N=1, ..., 100)
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Background and Motivation

Goal: Quantum mechanical treatment of the nuclear motion
iIn chemical reactions with a “large” number (> 4) of atoms

Applications: Proton transfer reactions in enzyme catalysis,
vibrational energy transfer in liquid water, membranes,
lonic solutions, combustion, atmospheric, and polymer
chemistry

- Standard quantum mechanical methods scale
exponentially with the number of atoms

* Quantum hydrodynamic equations contain both

N a classical and quantum force
> Los Alamos
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Background and Motivation

 Significant computational advantages:
— Moving reference frame eliminates large space fixed
grids
— Local fitting eliminates large basis set expansions
— Different approximation schemes may be possible

* Non-trivial computational issues:

— Accurate and stable derivatives

— Non-uniform grids

— Singularities can occur in quantum potential
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The de Broglie-Bohm Equations of Motion

Express time-dependent wave function in polar form
[Madelung (1926), de Broglie (1927), Bohm (1952)]

) = R(X, t) 675257(:’{,75)/71

Substitute into time-dependent Schrodinger equation

L 0Y(x,1) 72
ih— [—EVQ—I—V(X)} W(x, t)

Separate into real and imaginary parts
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The de Broglie-Bohm Equations of Motion

Continuity equation

Op(x,1) p B
Tkt \V (mVS) —0

where p = R(x,t)

Quantum Hamilton-Jacobi Equation

1 05(x,1)
—|VS|*+V tip) = ——
LTS24+ V(0 + Q. ) = - 220

P i
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The de Broglie-Bohm Equations of Motion

Equation of motion (Lagrangian frame)

d
m wo_ VIV +Q) =1+ fq/ quantum force

dt \

where flow velocity v =V.S/m

classical force

Quantum potential

h? 1
2
Qx,t;p) = —— =V°R
(%, p) om R
Note: Q can become singular when R — 0
P
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Quantum Hydrodynamics

U(x,1) = exp|C(x,t)] expli S(x,t)/h]

x =0
dC 1 _ Eulerian
E = —§VV—|—(X—V)VO
ds . X =V
o —Llot (x =) (mv) Lagrangian
m Cji_:f, = - VIV +Q)+ (x—v)-(mVv) X= user specified
Arbitrary Lagrangian
1 ) Eulerian (ALE)
Lo = gmlv]” = [V(x) + Q(x. t: p)]
A Note: quantum trajectories are well defined!
5 E&ﬁ'ﬁﬂ?&? flow lines of the probability fluid: x = v )
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The Quantum Trajectory Method

Until 1999, the quantum hydrodynamic approach was used only as an
interpretative tool

Lopreore and Wyatt were the first to obtain a direct solution of the
quantum hydrodynamic equations of motion for a one-dimensional
tunneling problem [Phys. Rev. Lett. 82, 5190 (1999)]

This method is called “The Quantum Trajectory Method” which is based
on the Lagrangian frame of reference (i.e., the grid points were chosen
to be the quantum trajectories, X = v )

The key ingredient to the success of their approach is the
Moving Least Squares (MLS) method for computing derivatives
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The Moving Least Squares Method

The key ingredient to the success of their approach is the
Moving Least Squares (MLS) method for computing derivatives

Ny

F0) = ajpj(x —x;)

j=1

The a; are determined from a “local” least squares fit of f(x)to a
polynomial expansion about X;

1D pj(z) = {1,:13,:62/2}
2D pj(z,y) = {1,z,y,2% /2,2y, y*/2}

(V2f)i =as+ag 2D
P
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The Quantum Trajectory Method

Non-trivial computational problems:
Lagrangian grid eventually becomes highly non-uniform

Singularities in Q and fq can occur when R — 0 (nodes)

40

Quantum Trajectories
1D tunneling

30

X (au)

e — | ]

é“j 0 |
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Computational Issues:
Accurate and Stable Derivatives

Use Arbitrary Lagrangian Eulerian (ALE) frame to maintain
“uniform” grid:

1. Use Lagrangian frame to predict “edges” of wave packet at
time t + At

2. Construct uniform grid between “edges” at time t + At

3. Compute grid velocities ( x; ) based on uniform grids at

timestandt + At ( N ;
: Ly — ;)
Ly =

At

4. Propagate again using ALE frame from time tto t + At

Ensures uniform grid at each time step but grid spacing
typically increases

A Hughes and Wyatt, Chem. Phys. Lett. 366, 336 (2002)
* LosAlamos
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Computational Issues:
Accurate and Stable Derivatives

Regridding algorithm needed to maintain grid spacing:

« Add more points if the grid spacing becomes too large

» Delete points at edges if the density becomes too small

ALE + Regridding ensures a nearly constant grid spacing
« Dramatically improves accuracy and stability of derivatives
» Allows for implementation of implicit averaging (unitarity)

 Allows for implementation of artificial viscosity (node problem)
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Computational Issues:
Edge Instabilities

Time = 0.040 (au)

Time = 0.040 (au)

Time = 0.040 (au)

1.75 10 r T T 1000
| Free Gaussian 7\
wave packet /
" f/ / x :T s o o& _ ‘-—;_‘-
/ T
/ Edge instabilities
o - T - T : \ 100 ~1000 .
- B s (Bohr) - B - h s (bohr) - - ) s (bohr) -
Time = 0.045 (au) Time = 0.045 (au) Time = 0.045 (au)
1.75 10 . —— - 1000 : -
o]
L \\‘\
} \ . ' i
/ o0 ____________....-‘—v“"""‘""" WWWWW ’
| Unstable!
0 - T r T y =100 T T T = 1000
- B s (Bohr) - - - B s (bohr) - - h s (bohr) B
/;\7 Red (stable) curve = MLS with varying radius of support
- Los Alamos Blue (unstable) curve = MLS with constant radius of support
NATIONAL LABORATORY 14
Operatedsg;ic?s Alamos National Security, LLC for NNSA LA-UR-08-04819 if \ll'@i




Edge Instabilities: Solution

Edge instabilities can be eliminated by using a variable
radius of support which increases near edges:

grid spacing

P = (71 = 72)exp(C5) /exP(Crasx) + 2] Azt

/ e

radius of support

exp(C;) = exp(Cpax) 7. — 1 Ax “center’

exp(Ci) =0 7. =724 “edges”
15 A 30

Q@Alamos Kendrick, J. Chem. Phys. 119, 5805 (2003)
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Computational Issues:
Unitarity

Implicit averaging ... using information from the future:

1. Average all potentials, forces, and gradients at time t with
those at time t + At

Qavg — [Q(t) + Q(t + At)]/Q, co

2. Repropagate from time tto t + At using averaged fields

Averaging cancels out a large portion of the numerical
errors which accumulate at each time step

Dramatically improves accuracy and unitarity
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Computational Issues:
Unitarity (1D example)

without averaging with averaging
1.03 1.03
1.02 1.02]
E /,/", E /Al
51.011 ng- 3d 4 5101
z T i ] Z 1 29@ .- J
4th
' ' 3rd
0.99 -+ 0.99+—————— i
0 10 20 . 30. 40 50 60 0 10 20 .30 . 40 S0 60
Time (fs) Time (fs)
A Kendrick, J. Chem. Phys. 119, 5805 (2003)
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Example: 1D scattering off an Eckart barrier

=0)

P
|

V(eV) or R(x,t

<

N B B
X (bohr)

V(z) = Vysech?[a (z — x)]

| a=04, x, ="Tag, Vo =8000cm !
» Los Alamos
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Computational Issues:
Artificial VISCOSIty (1D example)

time= 48.19 (fs)

ume- 48.19 (fs)

“Kinks” “nodes” begin to form
INKS due to interference
&% 0.3 > /
’ gives rise to “kinks” or
5 o I “shock fronts” in velocity
x (bohr) x (bohr)
/‘i}* I | Viscosity potential:
(eAT
O_:m_ E‘ ;(JIJI- When dx < O
2
10 [’J. L 10 ‘/S — Cl g; g_v
X (bohr) x (bohr)
J
zg]F ﬁ“**j;\f"k Viscosity force:
i fs =—VV;
,/-\ o 1 10 =0.05 2 P
- Los / ¥ (bohe) ~ xGowyonN d Richtmyer (19
NATIONAL LABORATORY On eumann an IC myer ( %))
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1D wave packet time series (KE;,,, = 0.8 eV)

Itime‘= 43.45 (fs) .

Itimel= Q.OO (fs) '

LA 0.77 T .
! 0.6 1
1 g 1 05 . .
Good unitarity
) ) |
0.3 ; b
it 024 | =
5 | 2 .
I ’ ! S
O+ T T T T T T T 0+ T T T T T T T S
-20 -10 0 10 20 30 40 50 58 -20 -10 0 10 20 30 40 50 58 ="
x (bohr) x (bohr) P
o7 time= 69.32 (fs) or time= 95.40 (fs) /
0.6 0.6 ,-’I
0.5 05 0 / ' : .
0.4] | ] 0 100 200
o e : Time (fs)
0.34 E 0.3
0.2 0.2 .
- - i\/ time= 104 (fs)
' ‘ } 06 ‘ '
R Y S S S S S o S S R S A S e : I/
x (bohr) x (bohr) 0.5 :,.-‘I,/ E
o time= 121.65 (fs) _ . time=148.05 (fs) ] i
06 % 06 0.4 ," \ Bohmian
0.5 §= 0.5 a z 0.3 /, \‘\ . i
o <% ) . Crank-Nicholson
o | oo || 02 {2« (exact)
02 i 02 1 1 WA
0.1 K\\\ 0.1 M\ 0.14 7 VR WAY
ReT R a B R a aa BEe a ea  CR R o= ,
/ x (bohr) x (bohr) -10 0

L -5
-LosAlamos  Kendrick, J. Chem. Phys. 119, 5805 (2003) * (bohr)
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Example: 2D scattering off an Eckart barrier

0
s (bohr)
Vig,s) =V seChQ(a s) + % k(s) ¢
;'L/T;ZAlamos Pauler and Kendrick, J. Chem. Phys. 120, 603 (2004)
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2D wave packet time series (KE;,, = 0.8 eV)

4; 5.03 fs
, SR

1.
T

1

0
S (bohy)” ¥ %
0111') 507 -2

2

7

1.0+

0.5

4: 20.13 fs o
1 \

Probability

2.8eV

1.2eV

0.8 eV

0.4 eV

ﬁ 0.1 eV

00 50 100
Time (fs)
4@
1,05 H 1.0: 1
| . o Wyatt _
;*;i 25fs '\ this work
S o] 100fs
e
|
-»
) ’ T 3
Los Alamos Energy (eV)
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Example: 1D model chemical reaction with

resonance
[\¢Oé :E t 75
| reactant
I V5(x,0) s0{ 5
I p product =
-5.0
x(bohr)

Vix) = %[tanh(a (x —x1)) +1] — %[tanh(b (x — x9)) + 1]
a=b=0.7,V; =50au, Vo =20au, xr; =0, o = lau

A
o stA.amos Derrickson, Bittner, and Kendrick, J. Chem. Phys. 123, 054107 (2009)
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Wave packet correlation function approach

Overlap of propagated (reactant) wave packet with
product wave packet

Cgalt) = /dX@ba(x,t) Ws(z, 0)

Fourier transform gives scattering matrix

T —1 o0 .
el ) = HE((QE)};)@(E) | Caatre™ et

State-to-state reaction probabilities and time delays

dIn Sg,
Pﬁa(E) =] Sﬁoz<E) ‘27 tﬁ&:hlm( dEﬁ )

AAAAAAAAAAAAAAAAAA

24

ES5T.1943
Operated by Los Alamos National Security, LLC for NNSA LA-U R-08'0481 9 N N . l"'ﬁ‘-i#"
AN~



1D wave packet time series

t= 0.-51 (au)

t= 0.$ (au)

X (b(i)hr)
_t =0.75 (au)l

X (l)[;)hr)
t=1.0 (au)

i .I-
Wt i} —
.'\‘I il / \
o [ .
oA Iv, \““‘ah_
0 2

" X (bohr)
t=15 (au)

10

4] 10
x (bohr)

. t=2.0 (au)

i
n
il
!!i
[
/ :,-#_J:
[ i

1/

f/\\
N

=10 0

E5T.1943

10 20 30

x (bohr)

10 20 30

x (bohr)

Blue = Bohmian

Red = Crank-Nicholson
“‘exact’

Dynamic “localized” artificial viscosity:
2

0 0
Vo=c1 || +ca |

N/

vary with time and location

Cp X ‘fq‘
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Scattering Results

Solid = Crank-Nicholson

0.3 T T T T

t (au)

“exact

0.6

— 0.5

0.41

E5T.1943

”

Dashed = Bohmian

0.51

P(E)

40 50 60 _70 80 90 100 110 120
Energy (au)
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—_ (=]
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|
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40 50 60 70 80 90

160 I liO ' 120
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N-Dimensional Model Problem

Natural collision coordinates: Reaction Path= S _
N — 1 Vibrational = ¢*

Potential energy surface:

N—-1
1
Visa) =V +3 > Ki(s) (¢)7
=1
Eckart Harmonic

Metric tensor:

gss = |1+ K(s) q1]2

gii =1 reaction path curvature
-LosAlamos  Kendrick, J. Chem. Phys. 121, 2471 (2004)
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N-Dimensional Model Problem

Classical and Quantum forces exactly cancel for bound states

&+ 1 =0 "
Consistent with a stationary bound state
i v i
v =0 - = — =0 (2)
0q" 0s

Vibrational Decoupling Scheme (VDS)

(a) Equations (1) and (2) are assumed to hold forall S and ¢
Obtain decoupled set of N ,(N-1) one-dimensional equations

(b) Reintroduce coupling terms as needed to obtain desired accuracy
s

= 9
» Los Alamos
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N-dimensional Model Problem

C = =4 00" + (7* = v)0,C || g7 K(s) 07 + Y Dy

S = L1 gsst V7 — [V + Q] + gss (7° — v°) pv® +|5 p qui /qu;

ot = fi+ fi+u (@ —0v°)osv°

coupling terms

pi? =0 +Hp (7 — v*)00? + AFT(0:k(s), 02k(s), k(s))

Investigating two approaches: lterative and Direct

A Issues: scaling, stability and convergence
» Los Alamos
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Vibrational Decoupling Scheme
results for model problem

1207
1 10:
1 00:
90:
80:
?0:
60:
50:

Wall-Clock Time (s)

y

Probabilit
o

40
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Summary

* Moving Least Squares + ALE + regridding + implicit averaging =
stable, accurate, unitary wave packet propagation method

 Atrtificial viscosity suppresses node formation = stable propagation
for long times
« Scattering applications:
— 1D and 2D Eckart barrier
— 1D “square” barrier with resonance
« Vibrational Decoupling Scheme (VDS)
— N dimensional model problem (linear scaling N=100)

Future Work

- Generalize vibrational decoupling scheme to include
coupling and anharmonicities

P » Apply to real molecules

» Los Alamos
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Extra Slides
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Computational Issues:
Edge Instabilities

time= 0.0300 (au)

time= 0.0300 (au)

time= 0.0300 (au)

1.75 10 - 1000
o /7 7\
\ J o
0 ~100 ~1000
-6 ~ -3 -6 ~ -3 -6 ~ -3
s (Bohr) s (bohr) s (bohr)
time= 0.0350 (au) time= 0.0350 (au) time= 0.0350 (au)
1.75 10 - 1000
0] //—\\
/ \
].
M / ]
Edge instabilities
0 - ~100 - ~1000 - - - -
-6 ~ -3 -6 ~ -3 -6 -5 -4 -3
s (Bohr) s (bohr) s (bohr)
» Los Alamos
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