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Overview
• Quantum Hydrodynamics

– Background and motivation
– The de Broglie-Bohm equations of motion
– The Quantum Trajectory Method

• Computational Issues
– Accurate and stable derivatives
– Unitarity
– Node formation and singularities

• Applications
– 1 and 2 dimensional tunneling (Eckart barrier)
– 1 dimensional rounded square barrier (resonance)
– N dimensional Eckart barrier (N=1, …, 100)
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Background and Motivation
Goal: Quantum mechanical treatment of the nuclear motion 

in chemical reactions with a “large” number (> 4) of atoms

Applications: Proton transfer reactions in enzyme catalysis, 
vibrational energy transfer in liquid water, membranes, 
ionic solutions, combustion, atmospheric, and polymer 
chemistry 

• Standard quantum mechanical methods scale 
exponentially with the number of atoms

• Quantum hydrodynamic equations contain both 
a classical and quantum force
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Background and Motivation
• Significant computational advantages:

– Moving reference frame eliminates large space fixed 
grids

– Local fitting eliminates large basis set expansions
– Different approximation schemes may be possible

• Non-trivial computational issues:
– Accurate and stable derivatives
– Non-uniform grids
– Singularities can occur in quantum potential
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The de Broglie-Bohm Equations of Motion

Express time-dependent wave function in polar form 
[Madelung (1926), de Broglie (1927), Bohm (1952)]

Substitute into time-dependent Schrödinger equation

Separate into real and imaginary parts
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The de Broglie-Bohm Equations of Motion

Continuity equation

Quantum Hamilton-Jacobi Equation

where
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The de Broglie-Bohm Equations of Motion

Quantum potential

Note: Q can become singular when R → 0

Equation of motion (Lagrangian frame)

where flow velocity
classical force

quantum force
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Quantum Hydrodynamics

Eulerian

Lagrangian

Arbitrary Lagrangian
Eulerian (ALE)

user specified

Note: quantum trajectories are well defined!
flow lines of the probability fluid:
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The Quantum Trajectory Method
Until 1999, the quantum hydrodynamic approach was used only as an
interpretative tool

Lopreore and Wyatt were the first to obtain a direct solution of the 
quantum hydrodynamic equations of motion for a one-dimensional
tunneling problem [Phys. Rev. Lett. 82, 5190 (1999)]

This method is called “The Quantum Trajectory Method” which is based
on the Lagrangian frame of reference (i.e., the grid points were chosen 
to be the quantum trajectories,              )

The key ingredient to the success of their approach is the 
Moving Least Squares (MLS) method for computing derivatives
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The Moving Least Squares Method
The key ingredient to the success of their approach is the 
Moving Least Squares (MLS) method for computing derivatives

1D

2D

The        are determined from a “local” least squares fit of   to a  
polynomial expansion about    

2D
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• Lagrangian grid eventually becomes highly non-uniform

• Singularities in Q and        can occur when R → 0 (nodes)

The Quantum Trajectory Method
Non-trivial computational problems:

Quantum Trajectories
1D tunneling

Barrier
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Computational Issues: 
Accurate and Stable Derivatives

Use Arbitrary Lagrangian Eulerian (ALE) frame to maintain
“uniform” grid:

1. Use Lagrangian frame to predict “edges” of wave packet at 
time t + ∆t

2. Construct uniform grid between “edges” at time t + ∆t
3. Compute grid velocities (      ) based on uniform grids at 

times t and t + ∆t 

4.  Propagate again using ALE frame from time t to t + ∆t

Ensures uniform grid at each time step but grid spacing 
typically increases

Hughes and Wyatt, Chem. Phys. Lett. 366, 336 (2002)
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Computational Issues: 
Accurate and Stable Derivatives

Regridding algorithm needed to maintain grid spacing:

• Add more points if the grid spacing becomes too large

• Delete points at edges if the density becomes too small

ALE + Regridding ensures a nearly constant grid spacing
• Dramatically improves accuracy and stability of derivatives

• Allows for implementation of implicit averaging (unitarity)

• Allows for implementation of artificial viscosity (node problem)
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Computational Issues:
Edge Instabilities

Edge instabilities

Red (stable) curve = MLS with varying radius of support
Blue (unstable) curve = MLS with constant radius of support

Unstable!

Free Gaussian 
wave packet

Time = 0.040 (au) Time = 0.040 (au) Time = 0.040 (au)

Time = 0.045 (au) Time = 0.045 (au) Time = 0.045 (au)
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Edge Instabilities: Solution

Edge instabilities can be eliminated by using a variable
radius of support which increases near edges:

Kendrick, J. Chem. Phys. 119, 5805 (2003)

“edges”

“center”radius of support

grid spacing
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Computational Issues:
Unitarity

Implicit averaging … using information from the future:

1.  Average all potentials, forces, and gradients at time t with
those at time t + ∆t

2.  Repropagate from time t to t + ∆t using averaged fields 

Averaging cancels out a large portion of the numerical 
errors which accumulate at each time step

Dramatically improves accuracy and unitarity
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Computational Issues:
Unitarity (1D example)

without averaging with averaging

Kendrick, J. Chem. Phys. 119, 5805 (2003)
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Example: 1D scattering off an Eckart barrier
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Computational Issues: 
Artificial Viscosity (1D example)

“kinks”

when
Viscosity potential:

Viscosity force:

Von Neumann and Richtmyer (1950)

“nodes” begin to form 
due to  interference

gives rise to “kinks” or 
“shock fronts” in velocity
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1D wave packet time series (KEflow = 0.8 eV)

Good unitarity

Crank-Nicholson 
(exact)

Bohmian

Kendrick, J. Chem. Phys. 119, 5805 (2003)
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Example: 2D scattering off an Eckart barrier

Pauler and Kendrick, J. Chem. Phys. 120, 603 (2004)
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2D wave packet time series (KEflow = 0.8 eV)

Wyatt 
this work25fs

100fs
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Example: 1D model chemical reaction with 
resonance

Derrickson, Bittner, and Kendrick, J. Chem. Phys. 123, 054107 (2005)

reactant

product
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Wave packet correlation function approach

Overlap of propagated (reactant) wave packet with 
product wave packet

Fourier transform gives scattering matrix

State-to-state reaction probabilities and time delays
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1D wave packet time series
Blue =  Bohmian

Red =  Crank-Nicholson 
“exact”

Dynamic “localized” artificial viscosity:

vary with time and location
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Scattering Results
Solid = Crank-Nicholson “exact”       Dashed = Bohmian
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N-Dimensional Model Problem
Natural collision coordinates:

Potential energy surface:  

N – 1 Vibrational =
Reaction Path =

Eckart Harmonic
Metric tensor:

reaction path curvature

Kendrick, J. Chem. Phys. 121, 2471 (2004)
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N-Dimensional Model Problem

Vibrational Decoupling Scheme (VDS)

Classical and Quantum forces exactly cancel for bound states

Consistent with a stationary bound state

(1)

(2)

Obtain decoupled set of Nq(N-1) one-dimensional equations
Equations (1) and (2) are assumed to hold for all and(a)

Reintroduce coupling terms as needed to obtain desired accuracy(b)
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N-dimensional Model Problem

Investigating two approaches:  Iterative and Direct

coupling terms

Issues:  scaling, stability and convergence
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Vibrational Decoupling Scheme
results for model problem

Solid = Exact
Dashed = VDS

N=3

0.8 eV
0.3 eV 0.8 eV

0.3 eV
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• Moving Least Squares + ALE + regridding + implicit averaging =      
stable, accurate, unitary wave packet propagation method

• Artificial viscosity suppresses node formation = stable propagation 
for long times

• Scattering applications: 
– 1D and 2D Eckart barrier
– 1D “square” barrier with resonance

• Vibrational Decoupling Scheme (VDS)
– N dimensional model problem (linear scaling N=100)

Future Work
• Generalize vibrational decoupling scheme to include 

coupling and anharmonicities
• Apply to real molecules

Summary
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Extra Slides
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Computational Issues:
Edge Instabilities

Edge instabilities
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