Quantum Wavepacket Dynamics with Trajectories: Computational Issues

Brian K. Kendrick

Theoretical Division Los Alamos National Laboratory Los Alamos, NM 87544

- Quantum Hydrodynamics
 - Background and motivation
 - The de Broglie-Bohm equations of motion
 - The Quantum Trajectory Method
- Computational Issues
 - Accurate and stable derivatives
 - Unitarity
 - Node formation and singularities
- Applications
 - 1 and 2 dimensional tunneling (Eckart barrier)
 - 1 dimensional rounded square barrier (resonance)
 - N dimensional Eckart barrier (N=1, ..., 100)

Background and Motivation

Goal: Quantum mechanical treatment of the nuclear motion in chemical reactions with a "large" number (> 4) of atoms

- **Applications**: Proton transfer reactions in enzyme catalysis, vibrational energy transfer in liquid water, membranes, ionic solutions, combustion, atmospheric, and polymer chemistry
 - Standard quantum mechanical methods scale exponentially with the number of atoms
 - Quantum hydrodynamic equations contain both a classical and quantum force

Background and Motivation

- Significant computational advantages:
 - Moving reference frame eliminates large space fixed grids
 - Local fitting eliminates large basis set expansions
 - Different approximation schemes may be possible
- Non-trivial computational issues:
 - Accurate and stable derivatives
 - Non-uniform grids
 - Singularities can occur in quantum potential

The de Broglie-Bohm Equations of Motion

Express time-dependent wave function in polar form [Madelung (1926), de Broglie (1927), Bohm (1952)]

$$\psi = R(\mathbf{x}, t) e^{i S(\mathbf{x}, t)/\hbar}$$

Substitute into time-dependent Schrödinger equation

$$i\hbar \frac{\partial \psi(\mathbf{x},t)}{\partial t} = \left[-\frac{\hbar^2}{2\mu}\nabla^2 + V(\mathbf{x})\right]\psi(\mathbf{x},t)$$

Separate into real and imaginary parts

The de Broglie-Bohm Equations of Motion

Continuity equation

$$\frac{\partial \rho(\mathbf{x}, t)}{\partial t} + \nabla \cdot \left(\frac{\rho}{m} \nabla S\right) = 0$$

where
$$\rho = R(\mathbf{x},t)^2$$

Quantum Hamilton-Jacobi Equation

$$\frac{1}{2m}|\nabla S|^2 + V(\mathbf{x}) + Q(\mathbf{x},t;\rho) = -\frac{\partial S(\mathbf{x},t)}{\partial t}$$

The de Broglie-Bohm Equations of Motion

Equation of motion (Lagrangian frame)

$$m \frac{d\mathbf{v}}{dt} = -\nabla(V + Q) = \mathbf{f}_c + \mathbf{f}_q \quad \text{[quantum force]}$$

where flow velocity $\mathbf{v} = \nabla S/m$ [classical force]

Quantum potential

$$Q(\mathbf{x},t;\rho) = -\frac{\hbar^2}{2m} \frac{1}{R} \nabla^2 R$$

Note: Q can become singular when $R \rightarrow 0$

Quantum Hydrodynamics

 $\Psi(\mathbf{x},t) = \exp[C(\mathbf{x},t)] \exp[i S(\mathbf{x},t)/\hbar]$

$$\frac{dC}{dt} = -\frac{1}{2}\nabla\cdot\mathbf{v} + (\dot{\mathbf{x}} - \mathbf{v})\cdot\nabla C$$

$$\frac{dS}{dt} = L_Q + (\dot{\mathbf{x}} - \mathbf{v}) \cdot (m\mathbf{v})$$

 $\dot{\mathbf{x}} = 0$ Eulerian

 $\dot{\mathbf{x}} = \mathbf{v}$ Lagrangian

$$m\frac{d\mathbf{v}}{dt} = -\nabla\left(V+Q\right) + (\dot{\mathbf{x}} - \mathbf{v}) \cdot (m\nabla\mathbf{v})$$

 $L_Q = \frac{1}{2}m|\mathbf{v}|^2 - [V(\mathbf{x}) + Q(\mathbf{x}, t; \rho)]$

 $\dot{\mathbf{x}}$ = user specified Arbitrary Lagrangian Eulerian (ALE)

Note: quantum trajectories are well defined! flow lines of the probability fluid: $\dot{\mathbf{x}} = \mathbf{v}$

Operated by Los Alamos National Security, LLC for NNSA

The Quantum Trajectory Method

Until 1999, the quantum hydrodynamic approach was used only as an interpretative tool

Lopreore and Wyatt were the first to obtain a direct solution of the quantum hydrodynamic equations of motion for a one-dimensional tunneling problem [Phys. Rev. Lett. **82**, 5190 (1999)]

This method is called "The Quantum Trajectory Method" which is based on the Lagrangian frame of reference (i.e., the grid points were chosen to be the quantum trajectories, $\dot{\mathbf{x}} = \mathbf{v}$)

The key ingredient to the success of their approach is the Moving Least Squares (MLS) method for computing derivatives

The Moving Least Squares Method

The key ingredient to the success of their approach is the Moving Least Squares (MLS) method for computing derivatives

$$f(\mathbf{x}) = \sum_{j=1}^{n_b} a_j p_j(\mathbf{x} - \mathbf{x}_i)$$

The a_j are determined from a "local" least squares fit of $f(\mathbf{x})$ to a polynomial expansion about \mathbf{x}_i

1D
$$p_j(x) = \{1, x, x^2/2\}$$

2D $p_j(x, y) = \{1, x, y, x^2/2, xy, y^2/2\}$
 $(\nabla^2 f)_i = a_4 + a_6$ 2D

Operated by Los Alamos National Security, LLC for NNSA

The Quantum Trajectory Method

Non-trivial computational problems:

- Lagrangian grid eventually becomes highly non-uniform
- Singularities in Q and f_q can occur when $R \rightarrow 0$ (nodes)

Operated by Los Alamos National Security, LLC for NNSA

Computational Issues: Accurate and Stable Derivatives

Use Arbitrary Lagrangian Eulerian (ALE) frame to maintain "uniform" grid:

- 1. Use Lagrangian frame to predict "edges" of wave packet at time t + Δt
- 2. Construct uniform grid between "edges" at time t + Δt
- 3. Compute grid velocities (\dot{x}_i) based on uniform grids at

times t and t + Δt

$$\dot{x}_i = \frac{(x_i^{t+\Delta t} - x_i^t)}{\Delta t}$$

4. Propagate again using ALE frame from time t to t + Δt

Ensures uniform grid at each time step but grid spacing typically increases

Hughes and Wyatt, Chem. Phys. Lett. **366**, 336 (2002)

Computational Issues: Accurate and Stable Derivatives

Regridding algorithm needed to maintain grid spacing:

- Add more points if the grid spacing becomes too large
- Delete points at edges if the density becomes too small

ALE + Regridding ensures a nearly constant grid spacing

- Dramatically improves accuracy and stability of derivatives
- Allows for implementation of implicit averaging (unitarity)
- Allows for implementation of artificial viscosity (node problem)

Computational Issues: Edge Instabilities

Red (stable) curve = MLS with **varying** radius of support Blue (unstable) curve = MLS with **constant** radius of support

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-08-04819

Edge Instabilities: Solution

Edge instabilities can be eliminated by using a **variable** radius of support which increases near edges:

Kendrick, J. Chem. Phys. 119, 5805 (2003)

Operated by Los Alamos National Security, LLC for NNSA

Computational Issues: Unitarity

Implicit averaging ... using information from the future:

1. Average all potentials, forces, and gradients at time t with those at time t + Δt

$$Q_{\text{avg}} = [Q(t) + Q(t + \Delta t)]/2, \dots$$

2. Repropagate from time t to t + Δt using averaged fields

Averaging cancels out a large portion of the numerical errors which accumulate at each time step

Dramatically improves accuracy and unitarity

Computational Issues: Unitarity (1D example)

Kendrick, J. Chem. Phys. 119, 5805 (2003)

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-08-04819

Example: 1D scattering off an Eckart barrier

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-08-04819

Computational Issues: Artificial Viscosity (1D example)

Operated by Los Alamos National Security, LLC for NNSA

1D wave packet time series ($KE_{flow} = 0.8 \text{ eV}$)

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-08-04819

Example: 2D scattering off an Eckart barrier

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-08-04819

2D wave packet time series (KE_{flow} = 0.8 eV)

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-08-04819

Example: 1D model chemical reaction with resonance

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-08-04819

Wave packet correlation function approach

Overlap of propagated (reactant) wave packet with product wave packet

$$C_{\beta \alpha}(t) = \int \mathrm{dx} \, \psi_{\alpha}(x,t) \, \psi_{\beta}^{*}(x,0)$$

Fourier transform gives scattering matrix

$$S_{\beta \alpha}(E) = \frac{(2\pi\hbar)^{-1}}{\eta_{\beta}^*(E)\eta_{\alpha}(E)} \int_{-\infty}^{\infty} C_{\beta \alpha}(t) \, e^{iEt/\hbar} \, \mathrm{dt}$$

State-to-state reaction probabilities and time delays $P_{\beta \alpha}(E) = |S_{\beta \alpha}(E)|^2, \quad t_{\beta \alpha} = \hbar \operatorname{Im} \left(\frac{\mathrm{d} \ln S_{\beta \alpha}}{\mathrm{d} E} \right)$

1D wave packet time series

Scattering Results

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-08-04819

N-Dimensional Model Problem

Natural collision coordinates:

Reaction Path =
$$S$$

N – 1 Vibrational = q^i

Potential energy surface:

$$V(s, \mathbf{q}) = V(s) + \frac{1}{2} \sum_{i=1}^{N-1} k_i(s) (q^i)^2$$

Eckart Harmonic

Metric tensor:

$$g_{ss} = [1 + \kappa(s) q^{1}]^{2}$$

$$g_{ii} = 1$$
reaction path curvature

Kendrick, J. Chem. Phys. 121, 2471 (2004)

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-08-04819

N-Dimensional Model Problem

Classical and Quantum forces exactly cancel for bound states

$$f_c^{q^i} + f_q^{q^i} = 0 (1)$$

Consistent with a stationary bound state

$$v^{q^{i}} = 0$$
 $\frac{\partial v^{q^{i}}}{\partial q^{i}} = 0$ $\frac{\partial v^{q^{i}}}{\partial s} = 0$ (2)

Vibrational Decoupling Scheme (VDS)

(a) Equations (1) and (2) are assumed to hold for all S and q^i Obtain decoupled set of N_q(N-1) one-dimensional equations

(b) Reintroduce coupling terms as needed to obtain desired accuracy

N-dimensional Model Problem

$$\begin{split} \dot{C} &= -\frac{1}{2} \partial_s v^s + (\dot{r}^s - v^s) \partial_s C - \left[\frac{1}{2} \left[g^{-\frac{1}{2}} \kappa(s) v^{q^1} + \sum_i \partial_{q^i} v^{q^i} \right] \right] \\ \dot{S} &= \frac{1}{2} \mu g_{ss} v^s v^s - [V + Q] + g_{ss} \left(\dot{r}^s - v^s \right) \mu v^s + \left[\frac{1}{2} \mu \sum_i v^{q^i} v^{q^i} \right] \\ \mu \dot{v}^s &= f_c^s + f_q^s + \mu \left(\dot{r}^s - v^s \right) \partial_s v^s \qquad \text{coupling terms} \\ \mu \dot{v}^{q^i} &= 0 + \mu \left(\dot{r}^s - v^s \right) \partial_s v^{q^i} + \Delta f^{q^i} \left(\partial_s k(s), \partial_s^2 k(s), \kappa(s) \right) \end{split}$$

Investigating two approaches: Iterative and Direct

Issues: scaling, stability and convergence

Operated by Los Alamos National Security, LLC for NNSA

Vibrational Decoupling Scheme results for model problem

Summary

- Moving Least Squares + ALE + regridding + implicit averaging = stable, accurate, unitary wave packet propagation method
- Artificial viscosity suppresses node formation = stable propagation for long times
- Scattering applications:
 - 1D and 2D Eckart barrier
 - 1D "square" barrier with resonance
- Vibrational Decoupling Scheme (VDS)
 - N dimensional model problem (linear scaling N=100)

Future Work

- Generalize vibrational decoupling scheme to include coupling and anharmonicities
- Apply to real molecules

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-08-04819

Computational Issues: Edge Instabilities

