Duality \& Equivalence and the Quest for Unification

Alon E. Faraggi

- AEF, \& Marco Matone, PLB 450 (1999) 34; ... ; IJMPA 15 (2000) 1869.
- G. Bertoldi, AEF \& M. Matone, CQG 17 (2000) 3925.
- AEF \& Marco Matone, PRL 78 (1997) 163
related: E.R. Floyd 1982-2008
Quantum Trajectories Workshop, Los-Alamos, 27-30 July 2008

Formulating quantum mechanics from an equivalence principle

- Motivation - quantum gravity
- Legendre duality \& $2^{\text {nd }}$ order diff. eq.
- EP $\quad \Rightarrow \quad$ CSHJE
\Rightarrow QSHJE $\hbar \neq 0$
\rightarrow Schrödinger eq.
- EP $\quad \rightarrow \quad$ Tunnel effect

Energy quantization

- Cocycle condition \& Möbius symmetry of QM
- Extensions to HD in E\&M metrics
- Further highlights
- Conclusions

Motivation General Relativity: Covariance \& Equivalence Principle \rightarrow fundamental geometrical principle

Quantum Mechanics: No Such Principle
Axiomatic formulation ... $\mathrm{P} \sim|\Psi|^{2}$

However Quantum + Gravity Theory not known

Main effort: quantize GR; quantize space-time: e.g. superstring theory
The main successes of string theory:

1) Viable perturbative approach to quantum gravity
2) Unification of gravity, gauge \& matter structures i.e. construction of phenomenologically realistic models \rightarrow relevant for experimental observation

State of the art: MSSM from string theory (Cleaver,AEF, Nanopoulos, PLB 455 (1999) 135)

1995: String duality

Better understanding of string theory

However no rigorous formulation of quantum gravity
Our approach formulate quantum mechanics from
a principle of covariance and equivalence
In retrospect: the fundamental lesson from string dualities
Disconnected classically $->$ connected quantum mechanically
promote to a level of a fundamental principle

Start From:
1D CSHJE: $\quad \frac{1}{2 m}\left(\frac{\partial \mathrm{~S}_{0}}{\partial q}\right)^{2}+V(q)-E=0$ define $W(q)=V(q)-E$

Equivalence Postulate:
For all $W(q)$ exist $\quad q \rightarrow \quad \tilde{q}=\tilde{q}(q)$

$$
\text { such that } \quad W(q) \quad \rightarrow \quad \tilde{W}(\tilde{q})=0
$$

$\Longrightarrow \quad$ Modification of the CSHJE

$$
\rightarrow \quad \frac{1}{2 m}\left(\frac{\partial \mathrm{~S}_{0}}{\partial q}\right)^{2}+V(q)-E+Q(q)=0
$$

will show $Q(q) \quad \rightarrow \quad$ quantum potential
\rightarrow Schrödinger equation

Generalization of HJ theory

$$
\begin{aligned}
& H(q, p) \longrightarrow \tilde{H}(\tilde{q}, \tilde{p})=0 \\
& \dot{q}=\frac{\partial H}{\partial p}, \dot{p}=-\frac{\partial H}{\partial q} \longrightarrow \quad \dot{\tilde{q}}=\frac{\partial \tilde{H}}{\partial \tilde{p}}, \dot{\tilde{p}}=-\frac{\partial \tilde{H}}{\partial \tilde{q}} \\
& H(q, p) \longrightarrow \tilde{H}(\tilde{q}, \tilde{p})=H(q, p)+\frac{\partial S}{\partial t}=0 \quad \Rightarrow \mathrm{CSHJE}
\end{aligned}
$$

The solution is the Classical Hamilton-Jacobi Equation
Formulate a similar question
Consider the transformations on

$$
\left(q, S_{0}(q), p=\frac{\partial S_{0}}{\partial q}\right) \quad \longrightarrow \quad\left(\tilde{q}, \tilde{S}_{0}(\tilde{q}), \tilde{p}=\frac{\partial \tilde{S}_{0}}{\partial \tilde{q}}\right)
$$

Such that

$$
\begin{array}{r}
W(q) \quad \underset{W}{ } \quad \underset{q}{ } \quad \tilde{q})=0 \\
\\
\text { exist for all } W(q)
\end{array}
$$

$$
\Longrightarrow \text { QHJE }
$$

\longrightarrow Schrödinger equation

Legendre duality \& $2^{\text {nd }}$ order diff. eqs.
intimate connection between $p-q$ duality \& the equivalence postulate
Hamilton's Eqs.

$$
\dot{q}=\frac{\partial H}{\partial p} \quad, \quad \dot{p}=-\frac{\partial H}{\partial q}
$$

$$
\text { invariant under } \quad p \longrightarrow-q
$$

breaks down once $V(q)$ is specified e.g. $\frac{1}{2 m} p^{2}+V(q)-E=0$
Aim Formulation with manifest $p-q$ duality

$$
\begin{array}{r}
\text { recall } \quad p=\frac{\partial S}{\partial q} \quad \text { define } \quad q=\frac{\partial T}{\partial p} \\
S=p \frac{\partial T}{\partial p}-T, \quad T=q \frac{\partial S}{\partial q}-S
\end{array}
$$

Stationary Case: $\quad S(q, t)=S_{0}(q)-E t \quad, \quad T(p, t)=T_{0}(p)+E t$
Compute $d S$ and $d T \quad \Rightarrow \quad \frac{\partial S}{\partial t}=-\frac{\partial T}{\partial t}$.
$S_{0}=p \frac{\partial T_{0}}{\partial p}-T_{0}$
$T_{0}=q \frac{\partial S_{0}}{\partial q}-S_{0}$

Invariant under Möbius transformations:

$$
\begin{gathered}
q \longrightarrow q^{v}=\frac{A q+B}{C q+D}, \\
p \longrightarrow \quad p_{v} \quad=\rho^{-1}(C q+D)^{2} p, \quad \rho=A D-B C \\
T_{0} \longrightarrow T_{0}^{v}\left(p^{v}\right)=T_{0}(p)+\rho^{-1}\left(A C q^{2}+2 B C q+B D\right) p .
\end{gathered}
$$

Transformations: $\quad q \rightarrow q^{v}=v(q)$ defined by $\quad S_{0}^{v}\left(q^{v}\right)=S_{0}(q)$
(S_{0} scalar function under v)
Associate a $2^{\text {nd }}$ order diff. eq. with the Legendre transformation:
where

$$
\begin{array}{r}
\left(\frac{\partial^{2}}{\partial S_{0}^{2}}+U\left(S_{0}\right)\right)\binom{q \sqrt{p}}{\sqrt{p}}=0 \\
U\left(S_{0}\right)=\frac{1}{2}\left\{q, S_{0}\right\} \quad \frac{q^{\prime \prime \prime}}{q^{\prime}}-\frac{3}{2}\left(\frac{q^{\prime \prime}}{q^{\prime}}\right)^{2}
\end{array}
$$

We can derive this eq. in several ways
rewritten as

$$
\begin{aligned}
p= & \frac{\partial S_{0}}{\partial q}
\end{aligned} \Rightarrow \quad p \frac{\partial q}{\partial S_{0}}=1
$$

or

$$
\begin{aligned}
\frac{\partial^{2}}{\partial S_{0}^{2}}: & S_{0}(q)=\frac{1}{2} \sqrt{p} \frac{\partial T_{0}}{\partial \sqrt{p}}-T_{0} \\
& \Longrightarrow \quad\left(\frac{\partial^{2}}{\partial S_{0}^{2}}+U\left(S_{0}\right)\right)\binom{q \sqrt{p}}{\sqrt{p}}=0
\end{aligned}
$$

manifest $\quad p \leftrightarrow q-S_{0} \leftrightarrow T_{0} \quad$ duality with

$$
\begin{array}{rlrl}
p & =\frac{\partial S_{0}}{\partial q} & q & =\frac{\partial T_{0}}{\partial p} \\
S_{0} & =p \frac{\partial T_{0}}{\partial p}-T_{0} & T_{0} & =q \frac{\partial S_{0}}{\partial q}-S_{0} \\
\left(\frac{\partial^{2}}{\partial S_{0}^{2}}+U\left(S_{0}\right)\right)\binom{q \sqrt{p}}{\sqrt{p}}=0 & \left(\frac{\partial^{2}}{\partial T_{0}^{2}}+\mathcal{V}\left(T_{0}\right)\right)\binom{p \sqrt{q}}{\sqrt{q}}=0
\end{array}
$$

Involutive Legendre transformation \leftrightarrow duality

Self-dual states

States with

$$
\begin{aligned}
& \quad p q=\gamma=\text { const } \\
& \quad \text { are simultaneous solutions of the two pictures with } \\
& \quad S_{0}=-T_{0}+\text { const } \\
& \quad T_{0}(p)=\gamma \ln \gamma_{p} p \\
& S_{0}(q)=\gamma \ln \gamma_{q} q \quad \\
& \quad S_{0}+T_{0}=p q=\gamma
\end{aligned}
$$

where

$$
\gamma_{q} \gamma_{p} \gamma=\mathrm{e}
$$

self-dual states
will show that

$$
W^{s d}=W^{0}=0 \quad \gamma^{s d}=\frac{ \pm \hbar}{2 i}
$$

$\underline{\text { Schwarzian derivative }}\{h(x), x(y)\}=\left(\frac{\partial y}{\partial x}\right)^{2}\{h(x), y\}-\left(\frac{\partial y}{\partial x}\right)^{2}\{x, y\}$.

$$
\text { if } \quad x=\frac{A y+B}{C y+D} \quad \text { then } \quad\{x, y\}=0
$$

$$
U\left(S_{0}\right)=\frac{1}{2}\left\{q, S_{0}\right\}=\frac{1}{2}\left\{\frac{A q+B}{C q+D}, S_{0}\right\}
$$

Invariant under Möbius transformations
For general $\quad q^{v}=v(q) \quad \Rightarrow \quad U\left(S_{0}^{v}\left(q^{v}\right)\right) \neq U\left(S_{0}(q)\right)$

$$
\text { But } \quad S_{0}^{v}\left(q^{v}\right)=S_{0}(q) \quad\left(\Rightarrow p \text { transforms as } \frac{\partial}{\partial q} \text { under } v(q)\right)
$$

By construction $\quad\left(\frac{\partial^{2}}{\partial S_{0}^{v^{2}}}+U\left(S_{0}^{v}\right)\right) \phi^{v}\left(S_{0}^{v}\right)=0 \quad$ is covariant
\Rightarrow connect different potentials by coordinate transformations
\Rightarrow Equivalence Postulate: $\quad W(q)=V(q)-E \quad$ connected

$$
\text { In particular } \quad W \rightarrow W^{0} \equiv 0
$$

The equivalence postulate is not consistent with classical mechanics

Consider the CSHJE

$$
\frac{1}{2 m}\left(\frac{\partial S^{v}\left(q^{v}\right)}{\partial q^{v}}\right)^{2}+W^{v}\left(q^{v}\right)=0
$$

from $S_{0}^{v}\left(q^{v}\right)=S_{0}(q)$ we have $\frac{1}{2 m}\left(\frac{\partial q^{v}}{\partial q}\right)^{-2}\left(\frac{\partial S(q)}{\partial q}\right)^{2}+W^{v}\left(q^{v}\right)=0$
$\underline{\text { Covariance implies }}$

$$
W(q) \rightarrow W^{v}\left(q^{v}\right)=\left(\frac{\partial q^{v}}{\partial q}\right)^{-2} W(q)
$$

$\Longrightarrow \quad W(q)$ should transform as a quadratic differential
Starting from the state $W^{0}\left(q^{0}\right)=0$ we have

$$
W^{0}\left(q^{0}\right) \rightarrow W^{v}\left(q^{v}\right)=\left(\frac{\partial q^{v}}{\partial q}\right)^{-2} W^{0}\left(q^{0}\right)=0
$$

W^{0} is a fixed point in the space of all possible W, and the equivalence postulate cannot be implemented
\Longrightarrow Modify the CHJE Requirements

1) Covariance
2) all $W \in \mathcal{H}$ are connected by $q^{a} \rightarrow q^{b}$
3) $\mathrm{lim} \rightarrow \mathrm{CHJE}$

Modification

$$
\frac{1}{2 m}\left(\frac{\partial S_{0}}{\partial q}\right)^{2}+W(q)+Q(q)=0
$$

$$
W^{v}\left(q^{v}\right)+Q^{v}\left(q^{v}\right)=\left(\frac{\partial q^{v}}{\partial q}\right)^{-2}(W(q)+Q(q))
$$

$W+Q \in \mathcal{Q} \rightarrow$ space of functions transforming as quadratic differentials

$$
\text { and } \quad W \notin \mathcal{Q} \quad \& \quad Q \notin \mathcal{Q}
$$

The most general transformations $W^{a}\left(q^{a}\right)=\left(\frac{\partial q^{v}}{\partial q}\right)^{-2} W(q)+\left(q^{a} ; q^{v}\right)$,

$$
Q^{a}\left(q^{a}\right)=\left(\frac{\partial q^{v}}{\partial q}\right)^{-2} Q(q)-\left(q^{a} ; q^{v}\right)
$$

with $\quad q^{a} \rightarrow q^{v}=v\left(q^{a}\right) \longleftrightarrow S_{0}^{v}\left(q^{v}\right)=S_{0}^{a}\left(q^{a}\right)$

For $a=0$ we have $W^{0}\left(q^{0}\right)=0$

$$
\text { and } \quad W^{v}\left(q^{v}\right)=\left(q^{0} ; q^{v}\right)
$$

All W-states are identified with the inhomogeneous term! consider

$$
W^{a}\left(q^{a}\right) \stackrel{W^{b}\left(q^{b}\right)}{ } \quad W^{c}\left(q^{c}\right)
$$

We obtain the cocycle condition

$$
\left(q^{a} ; q^{c}\right)=\left(\frac{\partial q^{b}}{\partial q^{c}}\right)^{2}\left[\left(q^{a} ; q^{b}\right)-\left(q^{c} ; q^{b}\right)\right]
$$

\Rightarrow Theorem $\left(q^{a} ; q^{c}\right)$ invariant under Möbius transformations $\gamma\left(q^{a}\right)$
Theorem

$$
\left(q^{a} ; q^{c}\right) \quad \sim \quad\left\{q^{a} ; q^{c}\right\}
$$

The cocycle condition generalizes to higher dimensions with respect to the Euclidean and Minkowski metrics and is invariant under D-dimensional Möbius or conformal transformations

A natural way to represent a quadratic differential

$$
\frac{1}{2 m}\left(\frac{\partial S_{0}}{\partial q}\right)^{2}+\frac{\beta^{2}}{4 m}(\{f, q\}-\{g, q\})=0
$$

Difference of Schwarzian derivatives is a quadratic differential
Identity

$$
\left(\frac{\partial S_{0}}{\partial q}\right)^{2}=\frac{\beta^{2}}{2}\left(\left\{\mathrm{e}^{\frac{i 2 S_{0}}{\beta}}, q\right\}-\left\{S_{0}, q\right\}\right)
$$

$$
\text { With } \quad f=\mathrm{e}^{\frac{i 2 S_{0}}{\beta}} \quad q=S_{0} \quad \text { up to Möbius transformations }
$$

Make the following identifications

$$
\begin{aligned}
W(q) & =-\frac{\beta^{2}}{4 m}\left\{\mathrm{e}^{\frac{i 2 S_{0}}{\beta}}, q\right\}=V(q)-E \\
Q(q) & =\frac{\beta^{2}}{4 m}\left\{S_{0}, q\right\}
\end{aligned}
$$

which follows from the limit $\quad \lim _{\beta \rightarrow 0} \frac{\beta^{2}}{4 m}(\{f, q\}-\{g, q\})=V(q)-E$

The Modified Hamilton-Jacobi Equation becomes

$$
\frac{1}{2 m}\left(\frac{\partial S_{0}}{\partial q}\right)^{2}+V(q)-E+\frac{\beta^{2}}{4 m}\left\{S_{0}, q\right\}=0
$$

in the limit $\beta \rightarrow 0$ we get back the CSHJE and $S_{0}^{c l}=\lim _{\beta \rightarrow 0} S_{0}$ The QSHJE gives back the Schrödinger Eq.

$$
\text { We identified } \quad V(q)-E=-\frac{\beta^{2}}{4 m}\left\{\mathrm{e}^{\frac{i 2 S_{0}}{\beta}}, q\right\}
$$

$V(q)-E \quad$ is a potential of the $2^{n d}$-order diff. Eq.

$$
\left(-\frac{\beta^{2}}{2 m} \frac{\partial^{2}}{\partial q^{2}}+V(q)-E\right) \Psi(q)=0
$$

The general solution

$$
\Psi(q)=\frac{1}{\sqrt{S_{0}^{\prime}}}\left(A \mathrm{e}^{+\frac{i}{\hbar} S_{0}}+B \mathrm{e}^{-\frac{i}{\hbar} S_{0}}\right)
$$

$$
\begin{aligned}
& \text { and } \mathrm{e}^{+\frac{i 2 S_{0}}{\hbar}}=\mathrm{e}^{i \alpha} \frac{w+i \bar{\ell}}{w-i \ell} \\
& \quad \ell=\ell_{1}+i \ell_{2} \quad \ell_{1} \neq 0 \quad \alpha \in \frac{\psi_{1}}{\psi_{2}} \\
& \quad \ell \quad \psi_{1}, \psi_{2} \in R
\end{aligned}
$$

The equivalence transformation

$$
W(q)=V(q)-E \quad \longrightarrow \quad \tilde{W}(\tilde{q})=0
$$

always exists

We have to find $\quad q \rightarrow \tilde{q} \quad$ take $\quad \tilde{q}=\frac{\psi_{1}}{\psi_{2}}$
then $\left(-\frac{\beta^{2}}{2 m} \frac{\partial^{2}}{\partial q^{2}}+V(q)-E\right) \Psi(q)=0 \rightarrow \frac{\partial^{2}}{\partial \tilde{q}^{2}} \tilde{\psi}(\tilde{q})=0$
where

$$
\tilde{\psi}(\tilde{q})=\left(\frac{d q}{d \tilde{q}}\right)^{-\frac{1}{2}} \psi(q)
$$

There is a subtle point if $\quad S_{0}=A q+B \quad \longleftrightarrow \quad$ Free Particle

In this case $S_{0}-T_{0}$ duality breaks down

This point correspond to $V(q)-E=0$

$$
S_{0}=\text { const } \Rightarrow \text { A fixed point in } \mathbb{Q}
$$

Classically : $\frac{1}{2 m}\left(\frac{\partial S_{0}}{\partial q}\right)^{2} \quad=0 \quad \Longrightarrow \quad S_{0}=$ const
Q.M. : $\frac{1}{2 m}\left(\frac{\partial S_{0}}{\partial q}\right)^{2}+\frac{\hbar^{2}}{4 m}\left\{S_{0}, q\right\}=0$
which has the solutions

$$
S_{0}= \pm \frac{i}{2} \beta \ln q
$$

that also follows from

$$
V(q)-E \sim\left\{\mathrm{e}^{\frac{i 2 S_{0}}{\beta}}, q\right\}=0
$$

so for $V(q)-E=0$
we set

$$
\begin{aligned}
& S_{0}=\text { const } \notin \mathcal{H} \\
& S_{0}= \pm \frac{\beta}{2} \ln q \in \mathcal{H}
\end{aligned}
$$

For the case $W(q)=-E \neq 0 \quad$ instead of $\quad S_{0}=\sqrt{2 m E} q$
we have the solutions

$$
S_{0}=-\frac{i}{2} \ln \left(\frac{A \mathrm{e}^{\frac{2 i}{\hbar} \sqrt{2 m e} q}+B}{C \mathrm{e}^{\frac{2 i}{\hbar} \sqrt{2 m e} q}+D}\right)
$$

we have that $S_{0} \neq A q+B$ always !!!

Allows:

Equivalence postulate for all states

Full $S_{0}-T_{0}$ duality
with the self-dual point $\gamma= \pm \frac{i}{2} \hbar$

The trivializing coordinate is solution of

$$
\begin{gathered}
\tilde{q}=\frac{\psi_{1}}{\psi_{2}}=\mathrm{e}^{\frac{2 i S_{0}}{\beta}} \\
-\frac{\beta^{2}}{4 m}\left\{\mathrm{e}^{\frac{2 i S_{0}}{\beta}}, q\right\}=V(q)-E
\end{gathered}
$$

or

$$
\{\tilde{q}, q\}+\frac{4 m}{\hbar^{2}}(V(q)-E)=0
$$

Tunneling:
The fundamental equation in our approach

$$
\frac{1}{2 m}\left(\frac{\partial S_{0}}{\partial q}\right)^{2}+V(q)-E+\frac{\beta^{2}}{4 m}\left\{S_{0}, q\right\}=0
$$

Quantum Hamilton-Jacobi equation
which is equivalent to

$$
W(q)=V(q)-E=-\frac{\hbar^{2}}{4 m}\left\{\mathrm{e}^{\frac{2 i S_{0}}{\beta}}, q\right\}
$$

whose solution is

$$
\mathrm{e}^{\frac{2 i S_{0}}{\beta}}=\frac{\psi_{1}}{\psi_{2}}
$$

where ψ_{1} and ψ_{2} are the linearly independent solutions
of the corresponding Schrödinger equation
\Rightarrow Schrödinger equation \rightarrow Linearization of the QHJE

More Generally:

Due to Mobiüs invariance of
 $$
\left\{\mathrm{e}^{\frac{2 i S_{0}}{\beta}}, q\right\}
$$

We have $\quad e^{\frac{2 i S_{0}}{\beta}}=\frac{A w+B}{C w+D} \quad$ with $w=\frac{\psi_{1}}{\psi_{2}}$ and $A D-B C \neq 0$
We can set

$$
\begin{gathered}
\mathrm{e}^{\frac{2 i S_{0}}{\beta}}=\mathrm{e}^{i \alpha \frac{w+i \bar{\ell}}{w-i \ell}} \\
\alpha \in R \quad \ell=\ell_{1}+i \ell_{2} \quad \ell_{1} \neq 0 \text { and we get } \\
p=\frac{\partial S_{0}}{\partial q}=\frac{\hbar(\ell+\bar{\ell})}{2\left|\psi_{2}-i \ell \psi_{1}\right|^{2}} \sim \frac{1}{|\phi|^{2}}
\end{gathered}
$$

Classically

$$
\begin{aligned}
& p= \pm \sqrt{2 m(E-V)} \\
\Rightarrow \quad & p \notin R \text { for } q \in \Omega
\end{aligned}
$$

where
Q.M.

$$
\begin{aligned}
\Omega= & \{q \in R \mid V(q)-E>0\} \\
& p= \pm \sqrt{2 m(E-V-Q)}
\end{aligned}
$$

we found that

$$
\begin{aligned}
& \quad p=\frac{\epsilon}{|\phi|^{2}} \quad \epsilon= \pm 1 \\
& \Rightarrow p \in R \quad \forall q \in R \\
& \Rightarrow \text { no forbidden regions }
\end{aligned}
$$

except for the infinitely deep potential well

Energy quantization:

$$
\begin{aligned}
\text { Probability: } & \Longrightarrow\left(\Psi, \Psi^{\prime}\right) \text { continuous ; } \Psi \in L^{2}(R) \\
& \Longrightarrow \text { quantization, bound states }
\end{aligned}
$$

What are the conditions on the trivializing transformations?

$$
q^{0}=w=\frac{\psi_{1}}{\psi_{2}}=\frac{\psi^{D}}{\psi}
$$

we have

$$
\{w, q\}=-\frac{4 m}{\hbar^{2}}(V(q)-E)
$$

$\Rightarrow \quad w \neq$ const $; w \in C^{2}(R)$ and $w^{\prime \prime}$ differentiable on R

In addition from the properties of $\{,\} \rightarrow\left\{w, q^{-1}\right\}=q^{4}\{w, q\}$
$\Rightarrow \quad w \neq$ const $; w \in C^{2}(\hat{R})$ and $w^{\prime \prime}$ differentiable on \hat{R} where $\quad \hat{R}=R \cup\{\infty\}$

$$
\Rightarrow w(-\infty)=\left\{\begin{aligned}
w(+\infty), & \text { for } w(-\infty) \neq \pm \infty \\
-w(+\infty), & \text { for } w(-\infty)= \pm \infty
\end{aligned}\right.
$$

Equivalence postulate \Longrightarrow continuity of $\left(\psi^{D}, \psi\right)$ and $\left(\psi^{D^{\prime}}, \psi^{\prime}\right)$
Theorem:
if $\quad V(q)-E=\left\{\begin{array}{lll}P_{-}^{2}>0 & \text { for } q<q_{-} \\ P_{+}^{2}>0 & \text { for } q>q_{+}\end{array}\right.$
then the ratio $w=\psi^{D} / \psi$ is continuous on \hat{R} iff
the corresponding Schrödinger equation admits an $L^{2}(R)$ solution

1) $\psi \in L^{2}(R) \Rightarrow \psi^{D} \notin L^{2}(R)$

$$
\begin{aligned}
& w=\frac{A \psi_{D}+B \psi}{C \psi_{D}+D \psi} \Rightarrow \lim _{q \rightarrow \pm \infty}=\frac{A}{C} \\
& \Rightarrow w(-\infty)=w(+\infty)
\end{aligned}
$$

2) ...

Potential Well:

$$
\begin{aligned}
& V(q)= \begin{cases}0 & |q| \leq L \\
V_{0} & |q|>L\end{cases} \\
& k=\frac{\sqrt{2 m E}}{\hbar} \\
& |q| \leq L \quad \Psi_{1}^{1}=\cos k q \\
& \Psi_{2}^{1}=\sin k \\
& q>L \\
& K=\frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar} \\
& \Psi_{1}^{2}=\mathrm{e}^{-K q} \\
& \Psi_{2}^{2}=\mathrm{e}^{K q}
\end{aligned}
$$

The solution at $q<L$ is fixed by parity four possibilities $(1,1)(2,1) /(1,2)(2,2)$
take $(1,1): \Psi, \Psi^{\prime}$ continuous $\quad \Rightarrow \quad k \tan k L=K$
Use $\quad \Psi^{D}=c \Psi \int_{q_{0}}^{q} d x \Psi^{-2}(x)+d \Psi$
$\Rightarrow w=\frac{1}{[k \sin (2 k L)]} \begin{cases}\cos (2 k L)-\mathrm{e}^{-2 K(q+L)} & q<-L \\ \sin (2 k L) \tan (k q) & |q| \leq L \\ \mathrm{e}^{2 K(q-L)}-\cos (2 k L) & q>L\end{cases}$

$$
\lim _{q \rightarrow \pm} \frac{\psi^{D}}{\psi}= \pm \infty
$$

$$
\Longrightarrow \quad E_{n}(k \tan k L=K) \text { are admissible solutions }
$$

take $(1,2): \Psi, \Psi^{\prime}$ continuous $\Rightarrow \quad k \tan (k l)=-K$

$$
\Rightarrow w=\frac{1}{[k \sin (2 k L)]} \begin{cases}\cos (2 k L)-\mathrm{e}^{-2 K(q+L)} & q<-L \\ \sin (2 k L) \tan (k q) & |q| \leq L \\ \mathrm{e}^{2 K(q-L)}-\cos (2 k L) & q>L\end{cases}
$$

$$
\lim _{q \rightarrow \pm} \frac{\psi^{D}}{\psi}=\mp \frac{1}{k} \cot (2 k L) \quad \Longrightarrow \quad w(-\infty) \neq w(+\infty)
$$

$\left(k^{-1}(\cot 2 k L)=0\right.$ is not compatible with $\left.k \tan (k L)=-K\right)$
$\Rightarrow \quad E_{n}(k \tan k L=-K)$ are not admissible solutions

We can understand the

$$
\Psi \in L^{2}(R)
$$

existence of bound states
with quantized energy eigenvalues
as a consequence of the
postulated equivalence principle.

Generalizations:

Cocycle condition \rightarrow D-dimensional E\&M metrics
invariant under D-dimensional
Mobiüs (conformal) trans.
Quadratic differential:

$$
\alpha^{2}\left(\nabla S_{0}\right) \cdot\left(\nabla S_{0}\right)=\frac{\Delta\left(R e^{\alpha S_{0}}\right)}{R e^{\alpha S_{0}}}-\frac{\Delta R}{R}-\alpha\left(2 \frac{\nabla R \cdot \nabla S_{0}}{R}+\Delta S_{0}\right)
$$

or

$$
\alpha^{2}(\partial S) \cdot(\partial S)=\frac{\partial^{2}\left(R e^{\alpha S}\right)}{R e^{\alpha S}}-\frac{\partial^{2} R}{R}-\alpha\left(2 \frac{\partial R \cdot \partial S}{R}+\partial^{2} S\right)
$$

or

$$
\begin{gathered}
\alpha^{2}(\partial S-e A) \cdot(\partial S-e A)=\frac{D^{2}\left(R e^{\alpha S}\right)}{R e^{\alpha S}}-\frac{\partial^{2} R}{R}-\frac{\alpha}{R^{2}} \partial \cdot\left(R^{2}(\partial S-e A)\right), \\
D^{\mu}=\partial^{\mu}-\alpha e A^{\mu}
\end{gathered}
$$

Further highlights

1. Planck length from the equivalence postulate (AEF, Marco Matone, Phys. Lett. B445 (1999) 77)

$$
\begin{aligned}
\frac{\partial^{2} \Psi}{\partial q^{2}}=0 & \Rightarrow \quad \psi_{1}=1 \quad ; \quad \psi_{2}=q \\
& \Rightarrow \quad \text { duality implies a length scale }
\end{aligned}
$$

2. Equivalence classes of the wave-function

$$
\begin{gathered}
\Psi_{E}(\delta)=\frac{1}{\sqrt{S_{0}^{\prime}(\delta)}}\left(A \mathrm{e}^{-\frac{i}{\hbar} S_{0}(\delta)}+B \mathrm{e}^{\frac{i}{\hbar} S_{0}(\delta)}\right) \\
\delta=\{\alpha, \ell\} \rightarrow \delta^{\prime}\left\{\alpha^{\prime}, \delta^{\prime}\right\} \\
\Psi_{E}\left\{\delta^{\prime}\right\}=\Psi_{E}\{\delta\}
\end{gathered}
$$

but $p=\frac{\partial S_{0}}{\partial q}$ changes
however \neq Bohm!!!

1. $p \neq m \dot{q}$
2. Bohm: $\Psi=R e^{\frac{i}{\hbar} S_{0}}$
Ψ for bound states $\Rightarrow S_{0}=0$
\Rightarrow classical limit in Bohm's approach ?! we have $S_{0} \neq A q+B$ Always

conclusions :

The equivalence postulate
p-q duality \& Equivalence Postulate

$$
\Rightarrow \text { QHJE } \Rightarrow \hbar \neq 0
$$

$$
\Rightarrow \quad S_{0} \neq A q+B \quad \text { Always }
$$

Equivalence Postulate \Rightarrow

$$
\begin{aligned}
& \Psi(q)=\frac{1}{\sqrt{S_{0}^{\prime}}}\left(A \mathrm{e}^{+\frac{i}{\hbar} S_{0}}+B \mathrm{e}^{-\frac{i}{\hbar} S_{0}}\right) \\
& \text { Tunnel effect }
\end{aligned}
$$

Energy quantization $\& \Psi \in L^{2}(R)$
Generalizes to Higher Dimensions in E \& M metrics
Outlook
T-duality as phase-space duality in compact space
Generalize to curved space; generalised geometry
Develop EP approach to quantum gravity
plus fundamental issues in QG

