The dynamics of angular degrees of freedom: new basis set and grid representations of Hamiltonian operators

Florian Rupp

TU Muenchen
rupp@ma.tum.de

Clemens Woywod
University of Tromsø
woywod@ch.tum.de

Outline

\checkmark Part I: Recipe \& ingredients for a vibrational calculation
\checkmark Part II: A new basis set for angular motion \& comparison with Legendre functions
\checkmark Part III: Overview of localized \& delocalized representations, construction of localized mixed basis functions, applications
\checkmark Part IV: Conclusions

Part I

Recipe \& ingredients for a vibrational calculation

Vibrational spectrum of $\mathrm{H}_{2} \mathrm{O}$

- How to compute very accurately the vibrational levels of $\mathrm{H}_{2} \mathrm{O}$ in the electronic ground state?
\checkmark Compute potential energy surface on dense grid in $\left(r_{1}, r_{2}, \alpha\right)$ - space
\checkmark Make decision: definition of potential energy operator $V\left(r_{1}, r_{2}, \alpha\right)$ directly on grid or via analytical model function
\checkmark Select basis functions for description of vibrational wave functions. If $V\left(r_{1}, r_{2}, \alpha\right)$ is defined on discrete set of points basis functions are still needed for representation of T operator
- Popular basis functions for radial degrees of freedom:

$$
\begin{aligned}
& \mu_{n}(x)=\sqrt{\frac{2}{b-a}} \sin \left(\frac{n \pi(x-a)}{(b-a)}\right), n=1,2, \ldots, N \\
& v_{n}(x)=\sigma \cos \left(\frac{n \pi(x-a)}{(b-a)}\right), n=0,1,2, \ldots, N-1\left\{\begin{array}{l}
\sigma=\sqrt{\frac{1}{b-a}}, n=0 \\
\sigma=\sqrt{\frac{2}{b-a}}, n \neq 0
\end{array}\right.
\end{aligned}
$$

See e.g. Colbert \& Miller, JCP 96, 1982 (1992)

Vibrational basis sets

- Why are the $\mu_{\mathrm{n}}(\mathrm{x})$ and $v_{\mathrm{n}}(\mathrm{x})$ functions popular?
\checkmark They yield analytic expressions for $\left\langle\mu_{m}\right| T \mid \mu_{n}>$ and $\left\langle v_{m}\right| T \mid v_{n}>$ for finite and infinite definition intervals [a,b]
\checkmark They are associated with an equidistant quadrature grid (relation to Chebychev)
\checkmark The quadrature rule is of Gaussian accuracy (discrete orthogonality)

$$
\int_{a}^{b} f(x) d x=w \sum_{k=1}^{N} f\left(x_{k}\right)\left\{\begin{array}{l}
w=\frac{b-a}{N+1}, \text { for } \mu_{n} \\
w=\frac{b-a}{N}, \text { for } v_{n}
\end{array}\right.
$$

- Which basis sets are appropriate for bending motion?
\checkmark The bending kinetic energy operator is:

$$
\hat{T}_{\text {bend }}=-c_{\text {bend }}\left(\frac{\partial^{2}}{\partial x^{2}}+\cot (x) \frac{\partial}{\partial x}\right) \quad c_{\text {bend }}=\frac{1}{2 \Theta}
$$

Legendre basis for bending motion

\checkmark In this form, $T_{\text {bend }}$ is hermitian on $[0, \pi]$ with respect to volume element $\sin (x) d x$
$\checkmark \mu_{n}(x)$ and $v_{n}(x)$ functions perform badly as basis functions for $T_{\text {bend }}$
\checkmark The standard basis functions for $T_{\text {bend }}$ are derived from Legendre polynomials $P_{\text {I }}(x)$:

$$
\begin{array}{ll}
\sigma_{0} P_{0}(\cos (x))=\sqrt{\frac{1}{2}} & \sigma_{2} P_{2}(\cos (x))=\sqrt{\frac{5}{2^{5}}}(3 \cos (x)+5 \cos (3 x)) \\
\sigma_{1} P_{1}(\cos (x))=\sqrt{\frac{3}{2}} \cos (x) & \sigma_{3} P_{3}(\cos (x))=\sqrt{\frac{9}{2^{13}}}(9+20 \cos (2 x)+35 \cos (4 x))
\end{array}
$$

$\checkmark P_{1}(\cos (x))$ are the eigenfunctions of $T_{\text {bend }} \rightarrow$ diagonal analytic representation
$\checkmark \quad P_{1}(\cos (x))$ are associated with quadrature rule of Gaussian accuracy
\checkmark Grid point density increases moderately towards interval limits

- $\quad P_{\text {}}(\cos (x))$ are suitable bending basis functions for harmonic type potential functions \rightarrow performance good because the density of excited state wave functions accumulates at interval borders

Normalized Legendre functions $P_{l}(\cos (x))$

Part II

A new basis set for angular motion \& comparison with Legendre functions

The $\eta_{\mathrm{n}}(\mathrm{x})$ angular basis functions

- Can we formulate basis functions for bending motion that are analog to the $\mu_{n}(x)$ and $v_{n}(x)$ functions?
\checkmark How about:

$$
\eta_{n}(x)=\sqrt{\frac{2}{\pi}} \frac{\sin (n x)}{\sqrt{\sin (x)}}, n=1,2, \ldots, N
$$

- Properties of $\eta_{\mathrm{n}}(x)$ functions:
\checkmark they are orthonormal on $[0, \pi]$ wrt to volume element $\sin (x) \mathrm{dx}$
\checkmark the matrix elements $<\eta_{m}\left|T_{\text {bend }}\right| \eta_{n}>$ have simple analytic solutions
\checkmark they are related to an equidistant quadrature grid
\checkmark the quadrature rule

$$
\int_{0}^{\pi} f(x) \sin (x) d x=\sum_{k=1}^{N} w_{k} f\left(x_{k}\right) \quad w_{k}=\sqrt{\frac{\pi}{N+1}} \sin \left(\frac{\pi k}{N+1}\right)
$$

is of Gaussian accuracy
-1
$\eta_{n}(x)$ functions

- 2
---- 3
---- 4

Definition of model Hamiltonian

- We compare the performance of $\eta_{n}(x)$ and $P_{1}(\cos (x))$ basis functions
- Model system: pure bending motion of $\mathrm{H}_{2} \mathrm{O}$
$\hat{H}=\hat{T}_{\text {bend }}+c_{0}+c_{1}(\cos (x))+c_{2}(\cos (x))^{2}+c_{3}(\cos (x))^{3}+c_{4}(\cos (x))^{4}$
relatively harmonic potential \rightarrow well suited for Legendre basis
- Variational Basis Represention (VBR) for H
$\left\langle\varphi_{m}(x)\right| \hat{O}\left|\varphi_{n}(x)\right\rangle=\int_{a}^{b} \varphi_{m}(x)\left[\hat{O} \varphi_{n}(x)\right] w(x) d x$
\checkmark For a true VBR, all matrix elements must be evaluated exactly

Legendre VBR for $\mathrm{H}_{2} \mathrm{O}$ bending

$\eta_{n}(x)$ VBR for $\mathrm{H}_{2} \mathrm{O}$ bending

How to improve performance of $\eta_{\mathrm{n}}(\mathrm{x})$?

- Obviously, a basis formed exclusively by $\eta_{\mathrm{n}}(\mathrm{x})$ functions is incomplete
- Can we use the complementary functions?

$$
\sigma_{n} \frac{\cos (n x)}{\sqrt{\sin (x)}}, n=0,1,2 \ldots, N-1
$$

- Can we supplement the $\eta_{n}(x)$ functions? For example:

$$
\begin{gathered}
s_{r}(x)=\exp (-r \sin (x)) \quad s_{t}(x)=\exp (-t \sin (x)) \\
\left\{\eta_{m}(x)\left(1-s_{r}(x)\right), P_{n}(\cos (x)) s_{t}(x)\right\}
\end{gathered}
$$

\checkmark Switching functions $\left(1-\mathrm{s}_{\mathrm{r}}(\mathrm{x})\right), \mathrm{s}_{\mathrm{t}}(\mathrm{x})$ keep basis orthogonal
\checkmark Evaluation of matrix elements tedious

Supplementation of $\eta_{\mathrm{n}}(\mathrm{x})$ functions

- Is direct basis extension an option? For example:
$\left\{\begin{array}{l}\eta_{1}(x), \eta_{2}(x), \ldots, \eta_{N}(x), \\ \sigma_{0} P_{0}(\cos (x)), \sigma_{1} P_{1}(\cos (x)), \ldots, \sigma_{M} P_{M}(\cos (x))\end{array}\right\}$
\checkmark We construct representation of H in this mixed basis \rightarrow symmetric matrix \boldsymbol{A}
\checkmark Loewdin (symmetric) orthogonalization of mixed basis:
- Diagonalization of overlap matrix yields eigenvector matrix \boldsymbol{U} and the matrix $X=\operatorname{diag}\left(1 / \sqrt{ } \varepsilon_{1}, 1 / \sqrt{ } \varepsilon_{2}, \ldots, 1 / \sqrt{ } \varepsilon_{N}\right)$
- Orthogonalization of mixed basis according to:

$$
\left(U X U^{T}\right) A\left(U X U^{T}\right)=H
$$

$\checkmark \boldsymbol{H}$ is the desired representation of H in orthonormal mixed basis

Mixed basis (+ $\left.\mathrm{P}_{0}, \mathrm{P}_{1}\right)$ VBR $\mathrm{H}_{2} \mathrm{O}$ bending

Part III

Overview of localized \& delocalized representations, construction of localized mixed basis functions, applications

Overview: representations

- We differentiate between infinitely localized, nearly localized and delocalized basis functions
- Discrete representations are only possible for local operators
- Discrete Variable Representation (DVR) of local operator O is a matrix diagonal over the grid points x_{k}.
- If the grid is related to orthogonal basis functions $\varphi_{m}(x)$ through a quadrature rule of the form:

$$
\int_{a}^{b} f(x) w(x) d x=\sum_{k=1}^{N} w_{k} f\left(x_{k}\right)
$$

then we can define a Finite Basis Representation (FBR):

$$
\int_{a}^{b} \varphi_{m}(x)\left[\hat{O} \varphi_{n}(x)\right] w(x) d x \approx \sum_{k=1}^{N} \varphi_{m}\left(x_{k}\right)\left[\hat{O} \varphi_{n}\left(x_{k}\right)\right] w_{k}
$$

VBR, FBR, DVR, NDVR

- FBR matrix is an approximation to the VBR matrix
- FBR and DVR are equivalent:
- In analogy we can define:

$$
\begin{aligned}
& { }^{F B R} O=\Lambda^{D V R} O \Lambda^{t} \\
& { }^{V B R} O=\Lambda^{N D V R} O \Lambda^{t}
\end{aligned}
$$

- NDVR matrix is an approximation to the DVR matrix:
\checkmark NDVR basis functions are approximately localized at grid points X_{k}.
- The term "DVR calculation" is not exact: $\quad{ }^{D V R} H={ }^{N D V R} T+{ }^{D V R} V$
\checkmark DVR results are not variational!
- How to perform "DVR calculation" for mixed basis functions $Q_{n}(x)$?
\checkmark Definition of grid points through zeroes of $Q_{N+M+1}(x)\left(\right.$ from $\eta_{N+1}(x)$ and $\left.P_{M}(\cos (x))\right)$ \rightarrow explicit derivation of orthogonal mixed basis
\checkmark Establishment of quadrature rule for mixed basis \rightarrow derivation of Λ matrix

$Q_{m}(x)$ NDVR localized at $x_{k}, k=1,2,3,6$ from $\eta_{n}(x)(n=1-30), P_{l}(\cos (x))(I=1-2)$

$V_{1}=300+3000 \cos (x)+8000(\cos (x))^{2}-3000(\cos (x))^{3}-2000(\cos (x))^{4}$

$$
c_{\text {bend }}=10.0
$$

Legendre VBR for V_{1}

$Q_{m}(x)$ VBR for V_{1} from $\eta_{n}(x)(n=1-N-2), P_{1}(\cos (x))(l=1-2)$

Legendre VBR for V_{1}

$$
Q_{m}(x) \text { VBR for } V_{1} \text { from } \eta_{n}(x)(n=1-N-2), P_{1}(\cos (x))(l=1-2)
$$

Legendre DVR for V_{1}

$Q_{m}(x)$ DVR for V_{1} from $\eta_{n}(x)(n=1-N-2), P_{1}(\cos (x))(l=1-2)$

Legendre DVR for V_{1}

$Q_{m}(x)$ DVR for V_{1} from $\eta_{n}(x)(n=1-N-2), P_{1}(\cos (x))(l=1-2)$

Legendre VBR for V_{2}

$Q_{m}(x)$ VBR for V_{2} from $\eta_{n}(x)(n=1-N-2), P_{1}(\cos (x))(I=1-2)$

Legendre VBR for V_{2}

$Q_{m}(x)$ VBR for V_{2} from $\eta_{n}(x)(n=1-N-2), P_{1}(\cos (x))(I=1-2)$

Legendre DVR for V_{2}

$Q_{m}(x)$ DVR for V_{2} from $\eta_{n}(x)(n=1-N-2), P_{l}(\cos (x))(I=1-2)$

Legendre DVR for V_{2}

$Q_{m}(x)$ DVR for V_{2} from $\eta_{n}(x)(n=1-N-2), P_{1}(\cos (x))(I=1-2)$

Part IV

Conclusions

- Legendre functions form for many applications a good basis set for bending degrees of freedom
- However, they offer a limited flexibility in particular for the description of states with larger density close to the center of the interval
- The combination of $\eta_{n}(x)$ and $P_{1}(\cos (x))$ functions appears to be an interesting alternative to the pure Legendre basis
- For mixed basis VBR calculations:
\checkmark all matrix elements can be evaluated analytically
\checkmark computationally efficient because of Loewdin orthogonalization
\checkmark more homogeneous accuracy distribution for different eigenstates
- For mixed basis DVR calculations:
\checkmark explicit orthogonalization complicated \rightarrow but needs to be performed only once since kinetic energy operator is always the same
\checkmark quadrature rule for mixed basis set has been derived
\checkmark accuracy similar to Legendre DVR can be reached, but further improvement necessary

Acknowledgments

- Cooperation:
\checkmark U Kassel: Dietmar Kolb
- Financial Support:
\checkmark CTCC at the University of Troms \varnothing
- And to you:
\checkmark TUSEN TAKK!

