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Recipe & ingredients for a
vibrational calculation



Vibrational spectrum of H,O

= How to compute very accurately the vibrational levels of H,O in the
electronic ground state?

v Compute potential energy surface on dense grid in (rq, r,, a) — space

v Make decision: definition of potential energy operator V(r,, r,, a) directly on grid or
via analytical model function

v" Select basis functions for description of vibrational wave functions. If V(r4, r,, @) is

defined on discrete set of points basis functions are still needed for representation of
T operator

= Popular basis functions for radial degrees of freedom:

1 (X) = [——sin 0GR n=12... N
b—a (b—a)
nz(x—a) | o- bfa'nzo
v (X)=0oco “ ,n=012,...,N-1 <
(b-a) o o JE = gt
b - a

See e.g. Colbert & Miller, JCP 96, 1982 (1992) N



Vibrational basis sets

= Why are the p (x) and v,(x) functions popular?

v" They yield analytic expressions for <u|T|u,> and <v|T|v,> for finite and infinite
definition intervals [a,b]

v" They are associated with an equidistant quadrature grid (relation to Chebychev)

v The quadrature rule is of Gaussian accuracy (discrete orthogonality)

e b—a
W =
N +1

, for u,

j'f(x)dx:wi f(x,) -

b-a
w=——, forv,
] N

= Which basis sets are appropriate for bending motion?
v The bending kinetic energy operator is:

2 1

A 9, 9,
T bend = _Cbend y + COt(X) & Cbend ~ %



Legendre basis for bending motion

v"In this form, T4 is hermitian on [0,r] with respect to volume element sin(x) dx
v p,(x) and v,(x) functions perform badly as basis functions for T, 4

v" The standard basis functions for T4 are derived from Legendre polynomials P (x):

o, Py (Cos(x)) = \E o,P,(cos( X)) = \/25;(3 cos( x) + 5 cos( 3x))

o, P (cos(x)) = \/g cos(x) o,P;(cos(x)) = % (9 +20c0s(2x) + 35c0s(4x))

v P,(cos(x)) are the eigenfunctions of T, .,y — diagonal analytic representation
v P,(cos(x)) are associated with quadrature rule of Gaussian accuracy

v Grid point density increases moderately towards interval limits

= P,(cos(x)) are suitable bending basis functions for harmonic type
potential functions — performance good because the density of excited
state wave functions accumulates at interval borders



Normalized Legendre functions Pi(cos(x))
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A new basis set for angular
motion & comparison with
Legendre functions



The n, (x) angular basis functions

= Can we formulate basis functions for bending motion that are
analog to the p(x) and v,(x) functions?

v" How about: .
M) = =S 12N
7T A/SIN(X)

= Properties of n,(x) functions :

v" they are orthonormal on [0,r] wrt to volume element sin(x) dx
v' the matrix elements <n,|Tyeng IN,> have simple analytic solutions
v' they are related to an equidistant quadrature grid

v" the quadrature rule

f . N . k
f(xX)sin(x)dx=> w, f(x W, = e Sin -
!() (X) ék(u T (NH]

is of Gaussian accuracy
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Definition of model Hamiltonian

= We compare the performance of n,(x) and P,(cos(x)) basis functions

= Model system: pure bending motion of H,0O
H =T bens + C, + C,(cos(X) )+ ¢, (cos(x) )’ + ¢, (cos(x) ) + c,(cos(x) )’

relatively harmonic potential — well suited for Legendre basis

= Variational Basis Represention (VBR) for H

(9 ()]0 10, ()= [ 04 ()] 0 0, (x) |w(x)x

v For a true VBR, all matrix elements must be evaluated exactly



Legendre VBR for H,O bending

fractional error

0.05 009 013 017 021 025
R(NH1)



n,(X) VBR for H,O bending

fractional error

. X ] . ] X 1 . ]
0.05 0.09 0.13 0.17 0.21 0.25
TAN+L)



How to improve performance of n,(x) ?

= Obviously, a basis formed exclusively by n,(x) functions is incomplete
= Can we use the complementary functions?

cos(nx)
" Jsin(x)

= Can we supplement the n,(x) functions? For example:
S, (X) =exp(—rsin(x)) s, (x)=exp(-tsin(x))
{7, ()=, (X)), P, (cos(x))s, (x)}

v Switching functions (1-s,(x)), s,(x) keep basis orthogonal

,n=012..,N-1

O

v" Evaluation of matrix elements tedious



Supplementation of n,(x) functions

= |s direct basis extension an option? For example:

[12:00.77, (%), 773 (%),
o,Py(cos(X)), o, P, (cos(x)),..., o Py, (COS(X))

v" We construct representation of H in this mixed basis — symmetric matrix A

v Loewdin (symmetric) orthogonalization of mixed basis:

- Diagonalization of overlap matrix yields eigenvector matrix U and the matrix
X=diag(1/eq, 1Ne,, ..., 1Ney)

- Orthogonalization of mixed basis according to:

(UXUT)AUXUT)=H

v H is the desired representation of H in orthonormal mixed basis



absolute value of fractional ermor

Mixed basis (+ P,,P,) VBR H,O bending

10

10™

10

10

107

] 1 ] 1 1 1 1
0.13 0.17 0.21 0.25
/(N+1)



Part |l

Overview of localized &
delocalized representations,
construction of localized mixed
basis functions,
applications



Overview: representations

We differentiate between infinitely localized, nearly localized and
delocalized basis functions

Discrete representations are only possible for local operators

Discrete Variable Representation (DVR) of local operator O is a
matrix diagonal over the grid points x,.

If the grid is related to orthogonal basis functions ¢,,(x) through a
quadrature rule of the form:

b N
j Fw(x)dx =>"w, f(x,)
a k=1
then we can define a Finite Basis Representation (FBR):

J 00 (0|0 0,00 w8 =3 0, (x| 0 0, (x0) [,



VBR, FBR, DVR, NDVR

FBR matrix is an approximation to the VBR matrix
FBR and DVR are equivalent: PFOo=A""ONA
In analogy we can define: VBRo=A "PYRO A

NDVR matrix is an approximation to the DVR matrix:
v NDVR basis functions are approximately localized at grid points x,.
The term “DVR calculation” is not exact: DVRy _ NDVRp , DVRys
v" DVR results are not variational!
How to perform “DVR calculation” for mixed basis functions Q,(x)?

v" Definition of grid points through zeroes of Qu,p+1(X) (from ny.4(x) and Py,(cos(x)))
— explicit derivation of orthogonal mixed basis

v Establishment of quadrature rule for mixed basis — derivation of A matrix



Q,,(x) VBR for m=1,2,3,4 from n,(x) (n=1-8) , P(cos(x)) (I=1-4)
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Q,(x) NDVR localized at x,, k=1,2,3,6 from n,(x) (n=1-30) , P(cos(x)) (I=1-2)

T T T 1 | | 1
i = =} localized WER functian
= iy ‘*’ 1st WER grid point

WE 1 = = 2nd bcalized WER function []
1 g A # Z2nd WER grid point
i \ v =+ 31d kcalized WKR function
sk 1 & 31 WKR grid paint
- T ++++ @th localized WKR function
Lo R W 6th WKR grid point
i 'y L
b LE
L
_1__I [
-! 1
'y
2F 1_'
ﬂ_

2}

—H

_ﬁ_




V, =300 + 3000 cos(x) + 8000 (cos(x))? — 3000 (cos(x))® — 2000 (cos(x))*
Cpeng = 10.0
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Legendre VBR for V,

fractional error
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Q,(x) VBR for V, from n,(x) (n=1-N-2) , P,(cos(x)) (I=1-2)

10°* :

o
=
QD
o
e
0o
%
= Ni
=
1Dm -ms 7
1-°
=11 ) i : i
L 32 b2 72

basis size



Legendre VBR for V,

fractional error
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Q,(x) VBR for V, from n,(x) (n=1-N-2) , P,(cos(x)) (I=1-2)

fractional error

basis size



Legendre DVR for V,
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Q,(x) DVR for V/, from n,(x) (n=1-N-2) , P,(cos(x)) (I=1-2)

fractional error
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Legendre DVR for V,
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Q,(x) DVR for V/, from n,(x) (n=1-N-2) , P,(cos(x)) (I=1-2)
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energy
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Legendre VBR for V,
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fractional error

Q,(x) VBR for V, from n,(x) (n=1-N-2) , P,(cos(x)) (I=1-2)
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Legendre VBR for V,
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fractional error

Q,(x) VBR for V, from n,(x) (n=1-N-2) , P,(cos(x)) (I=1-2)
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Legendre DVR for V,
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Q,(x) DVR for V, from n,(x) (n=1-N-2) , P,(cos(x)) (I=1-2)
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Legendre DVR for V,

10™

fractional error

10-12

32

basis size

72




Q,(x) DVR for V, from n,(x) (n=1-N-2) , P,(cos(x)) (I=1-2)
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Conclusions



Legendre functions form for many applications a good basis set for
bending degrees of freedom

However, they offer a limited flexibility in particular for the description of
states with larger density close to the center of the interval

The combination of n,(x) and P,(cos(x)) functions appears to be an
interesting alternative to the pure Legendre basis

For mixed basis VBR calculations:

v" all matrix elements can be evaluated analytically
v computationally efficient because of Loewdin orthogonalization

v" more homogeneous accuracy distribution for different eigenstates
For mixed basis DVR calculations:

v" explicit orthogonalization complicated — but needs to be performed only once since
kinetic energy operator is always the same

v quadrature rule for mixed basis set has been derived

v" accuracy similar to Legendre DVR can be reached, but further improvement necessary
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