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Recipe & ingredients for aRecipe & ingredients for a
vibrational calculationvibrational calculation

Part Part II
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Vibrational spectrum of HVibrational spectrum of H22OO
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How to compute very accurately the How to compute very accurately the vibrationalvibrational levels of Hlevels of H22O in the O in the 
electronic ground state?  electronic ground state?  

Compute potential energy surface on dense grid in (r1, r2, α) – space

Make decision: definition of potential energy operator V(r1, r2, α) directly on grid or 
via analytical model function

Select basis functions for description of vibrational wave functions. If V(r1, r2, α) is 
defined on discrete set of points basis functions are still needed for representation of 
T operator

Popular basis functions for radial degrees of freedom:  Popular basis functions for radial degrees of freedom:  
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See e.g. Colbert & Miller, JCP See e.g. Colbert & Miller, JCP 9696, 1982 (1992), 1982 (1992)
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Vibrational basis setsVibrational basis sets
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Why are the Why are the µµnn(x(x) and ) and ννnn(x(x)) functions popular?  functions popular?  

They yield analytic expressions for <µm|T|µn> and <νm|T|νn> for finite and infinite 
definition intervals [a,b]

They are associated with an equidistant quadrature grid (relation to Chebychev)

The quadrature rule is of Gaussian accuracy (discrete orthogonality) 
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Which basis sets are appropriate for bending motion? Which basis sets are appropriate for bending motion? 

The bending kinetic energy operator is: 
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Legendre basis for bending motionLegendre basis for bending motion
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In this form, Tbend is hermitian on [0,π] with respect to volume element sin(x) dx

µn(x) and νn(x) functions perform badly as basis functions for Tbend

The standard basis functions for Tbend are derived from Legendre polynomials Pl(x): 
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Pl(cos(x)) are the eigenfunctions of Tbend → diagonal analytic representation

Pl(cos(x)) are associated with quadrature rule of Gaussian accuracy

Grid point density increases moderately towards interval limits

PPll(cos(x(cos(x)) are suitable bending basis functions for harmonic type )) are suitable bending basis functions for harmonic type 
potential functions potential functions →→ performance good because the density of excited performance good because the density of excited 
state wave functions accumulates at interval borders  state wave functions accumulates at interval borders  
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Normalized Legendre functions Pl(cos(x)) 
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A new basis set for angular A new basis set for angular 
motion & comparison with motion & comparison with 

Legendre functionsLegendre functions

Part Part IIII
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The The ηηn n (x) angular basis functions(x) angular basis functions

is of Gaussian accuracyis of Gaussian accuracy
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Can we formulate basis functions for bending motion that are  Can we formulate basis functions for bending motion that are  
analoganalog to the to the µµnn(x(x) and ) and ννnn(x(x)) functions?  functions?  

How about:
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Properties of Properties of ηηnn(x(x) functions :) functions :

they are orthonormal on [0,π] wrt to volume element sin(x) dx

the matrix elements <ηm|Tbend |ηn> have simple analytic solutions

they are related to an equidistant quadrature grid

the quadrature rule  
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ηηnn(x(x) functions) functions
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Definition of model  HamiltonianDefinition of model  Hamiltonian

relatively harmonic potential relatively harmonic potential →→ well suited for well suited for LegendreLegendre basisbasis

VVariationalariational BBasis asis RRepresentionepresention (VBR) for H(VBR) for H

dxxwxOxxOx
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We compare the performance of We compare the performance of ηηnn(x(x) and ) and PPll(cos(x(cos(x)) basis functions)) basis functions

Model system: pure bending motion of HModel system: pure bending motion of H22OO
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For a true VBR, all matrix elements must be evaluated exactly
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Legendre VBR for H2O bending  
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ηηnn(x(x)) VBR for H2O bending
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How to improve performance of How to improve performance of ηηnn(x(x) ?) ?
Obviously, a basis formed exclusively by Obviously, a basis formed exclusively by ηηnn(x(x) functions is incomplete) functions is incomplete

Can we use the complementary functions?Can we use the complementary functions?
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Can we supplement the Can we supplement the ηηnn(x(x) functions? For example: ) functions? For example: 
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Switching functions (1-sr(x)), st(x) keep basis orthogonal

Evaluation of matrix elements tedious
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Supplementation of Supplementation of ηηnn(x(x) functions) functions
Is direct basis extension an option? For example:Is direct basis extension an option? For example:

( ) ( ) HUXUAUXU TT =

We construct representation of H in this mixed basis → symmetric matrix A
Loewdin (symmetric) orthogonalization of mixed basis:
- Diagonalization of overlap matrix yields eigenvector matrix U and the matrix 

X=diag(1/√ε1, 1/√ε2, … , 1/√εN)
- Orthogonalization of mixed basis according to:
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H is the desired representation of H in orthonormal mixed basis
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Mixed basis (+ P0,P1) VBR H2O bending



Los Alamos, 30.07.2008

Overview of localized & Overview of localized & 
delocalized representations,delocalized representations,

construction of localized mixed construction of localized mixed 
basis functions,basis functions,

applicationsapplications

Part Part IIIIII
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Overview: representationsOverview: representations
We differentiate between infinitely localized, nearly localized We differentiate between infinitely localized, nearly localized and and 
delocalized basis functionsdelocalized basis functions

Discrete representations are only possible for local operatorsDiscrete representations are only possible for local operators

DDiscrete iscrete VVariable ariable RRepresentation (DVR) of local operator O is a epresentation (DVR) of local operator O is a 
matrix diagonal over the grid points matrix diagonal over the grid points xxkk..

If the grid is related to orthogonal basis functions If the grid is related to orthogonal basis functions ϕϕmm(x(x) through a ) through a 
quadraturequadrature rule of the form:rule of the form:

then we can define a then we can define a FFinite inite BBasis asis RRepresentation (FBR):  epresentation (FBR):  
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VBR, FBR, DVR, NDVRVBR, FBR, DVR, NDVR
FBR matrix is an approximation to the VBR matrixFBR matrix is an approximation to the VBR matrix

FBR and DVR are equivalent:FBR and DVR are equivalent:

In analogy we can define:In analogy we can define:

NDVR matrix is an approximation to the DVR matrix:NDVR matrix is an approximation to the DVR matrix:

NDVR basis functions are approximately localized at grid points xk.

The term The term ““DVR calculationDVR calculation”” is not exact:is not exact:

DVR results are not variational!

How to perform How to perform ““DVR calculationDVR calculation”” for mixed basis functions for mixed basis functions QQnn(x(x)?)?

Definition of grid points through zeroes of QN+M+1(x) (from ηN+1(x) and PM(cos(x)))
→ explicit derivation of orthogonal mixed basis

Establishment of quadrature rule for mixed basis → derivation of Λ matrix

tDVRFBR OO ΛΛ=

tNDVRVBR OO ΛΛ=

VTH DVRNDVRDVR +=
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Qm(x) VBR for m=1,2,3,4 from ηηnn(x(x) (n=1) (n=1--8) , 8) , PPll(cos(x(cos(x)) (l=1)) (l=1--4)4)
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Qm(x) NDVR localized at xk, k=1,2,3,6 from ηηnn(x(x) (n=1) (n=1--30) , 30) , PPll(cos(x(cos(x)) (l=1)) (l=1--2)2)
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V1 = 300 + 3000 cos(x) + 8000 (cos(x))2 – 3000 (cos(x))3 – 2000 (cos(x))4

cbend = 10.0
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Legendre VBR for V1
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Qm(x) VBR for V1 from ηηnn(x(x) (n=1) (n=1--NN--2) , 2) , PPll(cos(x(cos(x)) (l=1)) (l=1--2)2)
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Legendre VBR for V1
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Qm(x) VBR for V1 from ηηnn(x(x) (n=1) (n=1--NN--2) , 2) , PPll(cos(x(cos(x)) (l=1)) (l=1--2)2)
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Legendre DVR for V1
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Qm(x) DVR for V1 from ηηnn(x(x) (n=1) (n=1--NN--2) , 2) , PPll(cos(x(cos(x)) (l=1)) (l=1--2)2)
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Legendre DVR for V1
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Qm(x) DVR for V1 from ηηnn(x(x) (n=1) (n=1--NN--2) , 2) , PPll(cos(x(cos(x)) (l=1)) (l=1--2)2)
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V2 = 420 - 4000 (cos(x))2 + 10000 (cos(x))4

cbend = 10.0
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Legendre VBR for V2
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Qm(x) VBR for V2 from ηηnn(x(x) (n=1) (n=1--NN--2) , 2) , PPll(cos(x(cos(x)) (l=1)) (l=1--2)2)
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Legendre VBR for V2
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Qm(x) VBR for V2 from ηηnn(x(x) (n=1) (n=1--NN--2) , 2) , PPll(cos(x(cos(x)) (l=1)) (l=1--2)2)
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Legendre DVR for V2
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Qm(x) DVR for V2 from ηηnn(x(x) (n=1) (n=1--NN--2) , 2) , PPll(cos(x(cos(x)) (l=1)) (l=1--2)2)
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Legendre DVR for V2
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Qm(x) DVR for V2 from ηηnn(x(x) (n=1) (n=1--NN--2) , 2) , PPll(cos(x(cos(x)) (l=1)) (l=1--2)2)
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ConclusionsConclusions

Part Part IVIV
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LegendreLegendre functions form for many applications a good basis set for functions form for many applications a good basis set for 
bending degrees of freedombending degrees of freedom

However, they offer a limited flexibility in particular for the However, they offer a limited flexibility in particular for the description of description of 
states with larger density close to the states with larger density close to the centercenter of the intervalof the interval

The combination of The combination of ηηnn(x(x) and ) and PPll(cos(x(cos(x)))) functions appears to be an functions appears to be an 
interesting alternative to the pure interesting alternative to the pure LegendreLegendre basisbasis

For mixed basis VBR calculations:For mixed basis VBR calculations:

all matrix elements can be evaluated analytically

computationally efficient because of Loewdin orthogonalization

more homogeneous accuracy distribution for different eigenstates

For mixed basis DVR calculations:For mixed basis DVR calculations:

explicit orthogonalization complicated → but needs to be performed only once since 
kinetic energy operator is always the same

quadrature rule for mixed basis set has been derived

accuracy similar to Legendre DVR can be reached, but further improvement necessary  
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