Bipolar Quantum Wavepacket Dynamics for Multidimensional Systems

Bill Poirier

Texas Tech University

Brian Kendrick—Pro Wrestler

"Brian Kendrick is one of the more unusual and eccentric young Superstars on Raw...

Definition of Terms

-"real-valued, bipolar, analytic, time-dependent" in the BM BM
(Briggs-Meyers Bohmian Mechanics)

- "Bohmian Mechanics"
- exact, trajectory-based formulation of quantum mechanics.
- quantum wavefunction, ψ, represented by ensemble of trajectories.
- amplitude phase decomposition of ψ.
- "Quantum Trajectory"
- phase determines trajectory velocity at each point, x.
- amplitude determines quantum potential, Q, at each point, x.
- quantum trajectories obtained from $V_{\text {eff }}=V+Q$
- different meaning for bipolar stationary states.
- "Bipolar"
$\psi=\psi_{+}+\psi$.
ψ_{+}is "forward" or "incident" or "reacting" wave
ψ - is "backward" or "reflecting" or "non-reacting" wave
- "Wavepacket Dynamics"
- non-stationary state solutions of the time-dependent Schrödinger equation.
- ψ, ψ_{+}, and ψ _ must be localized at all time t.

The Quantum Potential

- 1 Dimension

$$
Q(x)=-\frac{\hbar^{2}}{2 m} \frac{1}{R}\left(\frac{\partial^{2} R}{\partial x^{2}}\right)
$$

where $R=|\psi|$

- Classical limit:

$$
\hbar \rightarrow 0 \Rightarrow Q=0 \quad \text { (ideally, but often in practice, } Q \neq 0 \text {) }
$$

The correspondence principle is not satisfied at the trajectory level, so that classical and quantum trajectories are completely different in the classical limit.

- It can even happen that Q diverges!!!

This is associated with the so-called "node problem", which makes it impossible to propagate quantum trajectories for realistic molecular applications, for which there is always some interference.

Correspondence Principle

PROBLEM: appears to violate correspondence principle!

- classical limit $=$ large action $=$ many nodes $=$ divergent $Q!$
- correspondence principle suggests $Q \rightarrow 0$.
- Resolution: bipolar expansion of ψ :
- unique exact quantum decomposition can be specified:

$$
\psi=\psi_{+}+\psi \psi_{-}
$$

$Q_{+}=Q_{-}$approaches zero in the classical limit.
CORRESPONDENCE PRINCIPLE SATISFIED

Overview of Bipolar

Decomposition Schemes (1D)

- Stationary bound states:
ψ_{+}and ψ_{-}are themselves solutions of TISE.
ψ_{+}and ψ_{-}complex conjugates $\left(R_{+}=R_{-} ; S_{+}=-S_{-}\right)$.
dynamical equations decoupled.
- Stationary scattering states:
ψ_{+}and ψ_{-}are not solutions of TISE.
$R_{+} \neq R_{-} ; p_{+}=-p_{\text {. }}$
dynamical equations coupled, by interaction potential.
- Localized wavepacket dynamics:
ψ_{+}and ψ_{-}are not solutions of TDSE.
$R_{+} \neq R_{-} ; S_{+} \neq-S_{-}$
dynamical equations coupled, by interaction potential.

Bipolar Velocities for
1D Stationary Scattering States

Momentum field definition:

$$
p_{ \pm}(x)= \pm \sqrt{2 m\left[E-V_{\mathrm{eff}}(x)\right]}
$$

- Classical trajectories (dashed line)

$$
V_{\text {eff }}(x)=V(x)
$$

barriers give rise to turning points.

- Constant velocity trajectories

$$
V_{\mathrm{eff}}(x)=0
$$

asymptotic coupling (interference).

- Monotonic trajectories (solid line)

$$
V_{\text {eff }}(x \rightarrow \pm \infty)=V(x \rightarrow \pm \infty)
$$

no turning points or asymp. coupling.

Combined Continuity Relation

Detailed balance relation between "forward reaction" and "reverse reaction"

1D Wavepacket Dynamics

Basic bipolar approach:

- generalize time-dependent stationary state approach.
- satisfy bipolar continuity equation: $\partial \rho_{ \pm} / \partial t=-j_{ \pm}^{\prime} \pm \dot{\rho}_{\mathrm{cpl}}$

$$
\begin{aligned}
& j_{+}^{\text {in }} \longrightarrow \rho_{+} \longrightarrow j_{+}^{\text {out }} \\
& \uparrow \dot{\rho}_{\text {cpl }} \\
& j_{-}^{\text {out }} \longleftarrow \rho_{-} \longleftarrow j_{-}^{\text {in }}
\end{aligned}
$$

- FAILS, where requirements for success are:

1) perfect asymptotic separation (time and space).
2) localized $\psi_{ \pm}$, if ψ itself is localized.
3) components $\psi_{ \pm}$themselves exhibit no interference.

Bipolar Stationary State Expansion

- Let $\varphi^{E}(x)=\varphi_{+}{ }^{E}(x)+\varphi_{-}^{E}(x)$ be the (unique) left-incident stationary scattering solution of the TISE, with energy E :

$$
\hat{H} \varphi^{E}=E \varphi^{E}
$$

- Bipolar components, $\varphi_{ \pm}{ }^{E}(x)$, obtained using constant-velocity trajectories, must satisfy the following coupled equations:

$$
\varphi_{ \pm}^{E}= \pm\left(\frac{i}{\hbar}\right) p \varphi_{ \pm}^{E} \mp\left(\frac{i}{\hbar}\right)\left(\frac{m}{p}\right) V\left[\varphi_{+}^{E}+\varphi_{-}^{E}\right]
$$

- Differentiating w/ respect to x, and substituting yields:

$$
\hat{H} \varphi_{ \pm}^{E}=E \varphi_{ \pm}^{E} \pm\left(\frac{i \hbar}{2 p}\right) V^{\prime}\left[\varphi_{+}^{E}+\varphi_{-}^{E}\right]
$$

Time-Independent WKB

λ

- Application to energy eigenstates of 1D Hamiltonians.
- Fundamental WKB assumption:
(small wavelength assumption)
$\lambda \ll \Delta x$, range over which V varies appreciably compared to $E-V$.
increasingly well satisfied in classical limit

$$
(\hbar \rightarrow 0 \text { OR } m \rightarrow \infty \text { OR } E \rightarrow \infty)
$$

- Equivalent conditions:
$\lambda\left|V^{\prime}(x)\right| \ll E-V=p^{2} / 2 m$ $4 \pi \hbar m\left|V^{\prime}(x)\right| / p^{3} \ll 1$
- Treat potential as constant, V_{0}, over region of width Δx.

Local WKB solutions are plane waves: $A_{+} e^{i p x / \hbar}$ and $A_{-} e^{-i p x / \hbar}$ where $p^{2}=2 m\left(E-V_{0}\right)$

Bipolar Stationary State Expansion

- Obtain $\varphi^{E}(x, t)$ evolution equations as follows:

$$
\begin{gathered}
\frac{\partial \varphi_{ \pm}^{E}}{\partial t}=-\left(\frac{i}{\hbar}\right) \hat{H} \varphi_{ \pm}^{E} \mp\left(\frac{V^{\prime}}{2 p}\right)\left[\varphi_{+}^{E}+\varphi_{-}^{E}\right] \\
\text { identity : }\left[\varphi_{+}^{E}+\varphi_{-}^{E}\right]=\left(\frac{i}{\hbar}\right) p\left[\varphi_{+}^{E}-\varphi_{-}^{E}\right] \\
\frac{\partial \varphi_{ \pm}^{E}}{\partial t}=-\left(\frac{i}{\hbar}\right)\left[\hat{H} \varphi_{ \pm}^{E} \pm\left(\frac{V^{\prime}}{2}\right)\left(\Phi_{+}^{E}-\Phi_{-}^{E}\right)\right] \\
\text { where } \Phi_{ \pm}^{E}(x)=\int_{-\infty}^{x} \varphi_{ \pm}^{E}\left(x^{\prime}\right) d x^{\prime}
\end{gathered}
$$

- Expand wavepacket $\Psi(x)$ as sum over stationary states $\varphi^{E}(x)$:

$$
\begin{aligned}
& \psi(x)=\int a(E) \varphi^{E}(x) d E \\
& \text { bipolar } \varphi^{E}(x)=\varphi_{+}{ }^{E}(x)+\varphi_{-}^{E}(x) \text { leads to } \psi(x)=\psi_{+}(x)+\psi_{-}(x), \\
& \psi_{ \pm}(x)=\int a(E) \varphi_{ \pm}{ }^{E}(x) d E
\end{aligned}
$$

1D Bipolar Wavepacket Dynamics

- Substitute into $\psi_{ \pm}(x, t)$ expansion:

$$
\begin{aligned}
& \frac{\partial \psi_{ \pm}}{\partial t}=-\left(\frac{i}{\hbar}\right)\left[\hat{H} \psi_{ \pm} \pm\left(\frac{V^{\prime}}{2}\right)\left(\Psi_{+}-\Psi_{-}\right)\right] \\
& \text {where } \quad \Psi_{ \pm}(x)=\int_{-\infty}^{x} \psi_{ \pm}\left(x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

- "Good" wavepacket conditions for initial $\psi(x, t=0)$:
a) localized in reactant asymptotic region of position space, x.
b) localized in positive region of momentum (Fourier) space, p.
- Formal properties of $\Psi_{ \pm}(x, t)$ time evolution:
a) implies $a(E)$ are Fourier components; b) implies initial $\psi=\psi_{+}$. $|a(E, t)|^{2}=$ const. then implies perfect sep'n at large t [condition (1)].
b) also implies $\Psi_{ \pm}$localized [condition (2)].
no formal proof for condition (3) (no nodes).
- Combined continuity equation not satisfied.

1D Eckart Barrier:
bipolar wavepacket scattering

1D Ramp Barrier:
bipolar wavepacket scattering

Multiple Surface Dynamics

All of above can be generalized for multisurface problems:

- unified framework for handling multiple components and surfaces.
- in both cases, interaction potentials induce transitions, trajectory hops.
- Underlying condition essentially the same as before:
$-\varphi_{i}{ }^{\prime}=a_{i+}\left(\varphi_{i+}{ }^{\mathrm{sc}}\right)^{\prime}+a_{i-}\left(\varphi_{i-}{ }^{\mathrm{sc}}\right)^{\prime}$ for each component, i.
- sufficient to determine unique decomposition for stationary state.
- Two-surface example (symmetric potential wavepacket dynamics):

$$
\begin{gathered}
\dot{\vec{\psi}}=-\left(\frac{i}{\hbar}\right) \tilde{H} \cdot \vec{\psi}, \quad \text { with } \quad \dot{\vec{\psi}}=\binom{\psi_{1}}{\psi_{2}} \quad ; \quad \widetilde{H}=\left(\begin{array}{cc}
\hat{H}_{1} & \hat{D} \\
\hat{D} & \hat{H}_{2}
\end{array}\right) \\
\frac{\partial \psi_{1 \pm}}{\partial t}=-\left(\frac{i}{\hbar}\right)\left[\hat{H}_{11} \psi_{1 \pm}+D \psi_{2 \pm} \pm\left(\frac{V_{1}^{\prime}}{2}\right)\left(\Psi_{1+}-\Psi_{1-}\right) \pm\left(\frac{D^{\prime}}{2}\right)\left(\Psi_{2+}-\Psi_{2-}\right)\right] \\
\frac{\partial \psi_{2 \pm}}{\partial t}=-\left(\frac{i}{\hbar}\right)\left[\hat{H}_{22} \psi_{2 \pm}+D \psi_{1 \pm} \pm\left(\frac{V_{2}^{\prime}}{2}\right)\left(\Psi_{2+}-\Psi_{2-}\right) \pm\left(\frac{D^{\prime}}{2}\right)\left(\Psi_{1+}-\Psi_{1-}\right)\right]
\end{gathered}
$$

Multiple Surface Dynamics:
bipolar wavepacket scattering

Density Plot

Multidimensional
Wavepacket Scattering

- How many components?

2 or $2 f$, where $f=\#$ degrees of freedom? Only 2 needed. $\psi_{ \pm}$interpretation: forward/backwards along reaction path. Integrated quantity, $\Psi_{ \pm}$is a line integral.

- Linear reaction paths in Cartesian coordinates: spatial coordinates are (x, \mathbf{y}), $x=$ rxn coord, $\mathbf{y}=\perp$ modes
- Time evolution equations:

$$
\frac{\partial \psi_{ \pm}}{\partial t}=-\left(\frac{i}{\hbar}\right)\left[\hat{H} \psi_{ \pm} \pm \frac{1}{2}\left(\frac{\partial V(x, \mathbf{y})}{\partial x}\right) \Psi_{\Delta}\right]
$$

where $\Psi_{\Delta}(x, \mathbf{y})=\int_{-\infty}^{x}\left[\psi_{+}\left(x^{\prime}, \mathbf{y}\right)-\psi_{-}\left(x^{\prime}, \mathbf{y}\right)\right] d x^{\prime}$

Bottleneck Potential System: unipolar wavepacket scattering

Density Plot

Bottleneck Potential System: bipolar wavepacket scattering

Density Plot

T E X A S TEEC H U N I V E R S I T Y Multidimensional Wavepacket Scattering

- Curvilinear reaction paths
Ψ_{Δ} still a line integral, taken around curvilinear path.

$$
\Psi_{\Delta}(\vec{x})=\int_{-\infty}^{0}\left(\psi_{+}-\psi_{-}\right) d \vec{x}^{\prime}[s]
$$

Time evolution equations now have commutator terms

- How should reaction paths be defined?

position x
vs.

position x

Universality of $\Psi_{\Delta}=\left(\Psi_{+}-\Psi_{-}\right)$

- It can be shown that Ψ_{Δ} is the same for all reaction path definitions that agree asymptotically.
- It can be shown that

$$
\frac{\partial \Psi_{\Delta}}{\partial t}=-\left(\frac{i}{\hbar}\right) \hat{H} \Psi_{\Delta}
$$

Ψ_{Δ} evolves as an ordinary TDSE wavepacket, without coupling to ψ. initial $\Psi_{\Delta}(x, t=0)=\Psi(x, t=0)$ known analytically for Gaussian $\psi(x, t=0)$

- Numerical propagation scheme:
- propagate $\psi(x, t)$ and $\Psi_{\Delta}(x, t)$ completely independently.
- no coupling or numerical integration required.
- use conventional, efficient TDSE techniques (e.g. Crank-Nicholson).
- compute bipolar components at any time obtained via

$$
\psi_{ \pm}=(1 / 2)\left[\psi \pm \hat{s} \cdot \vec{\nabla} \Psi_{\Delta}\right]
$$

Collinear $\mathrm{H}+\mathrm{H} 2$ in Jacobi Coordinates: unipolar wavepacket scattering

Density Plot

Collinear $\mathrm{H}+\mathrm{H} 2$ in Jacobi Coordinates: bipolar wavepacket scattering

Density Plot

Curvilinear Eckart + Harmonic Oscillator

Contour Plot of Potential Surface

Curvilinear Eckart + Harmonic Oscillator: bipolar wavepacket scattering

Density Plot

Acknowledgments:

Personnel:

- Postdoctoral Researchers:
-Corey Trahan
-Jeremy Maddox
-Kisam Park
- Graduate Students:
-Toufik Djama
- Undergraduate Students:
-Matt Reyes
- Visiting Professors:
-Gerard Parlant, CNRS,
Montpellier II University

Funding:

- Welch Foundation
- National Science Foundation

Small Grant for Exploratory Research
Small Grant for This Meeting!

- Los Alamos National Labs
- N.M. Institute for Advanced Studies

Los Alamos Personnel

- Brian "Spanky" Kendrick
- Adam Shipman

