Noise-induced oscillations of NF-κB shuttling

Jaewook Joo1, Steven J. Plimpton2, and Jean-Loup Faulon1

\textit{Short Abstract} — NF-κB is a pleiotropic protein whose nucleo-cytoplasmic trafficking is tightly regulated by negative feedback loops embedded in its signaling network. We present numerical evidence for a universal dynamic behavior of NF-κB, namely oscillatory nucleo-cytoplasmic shuttling, due to the fundamentally stochastic nature of the NF-κB signaling network. We simulated the effect of extrinsic and intrinsic noise and demonstrate that extrinsic noise diversifies the shuttling patterns of NF-κB response, whereas intrinsic noise induces oscillatory behavior in many of the otherwise non-oscillatory patterns. We identify two key model parameters which significantly affect the NF-κB dynamic response and deduce two-dimensional phase-diagrams of the NF-κB response as a function of these parameters.

\textit{Keywords} — Noise-induced oscillations, extrinsic noise, intrinsic noise, phase diagram, bifurcation

Acknowledgements: This work was funded by and performed as part of the Microscale Immune Studies grand challenge LDRD.

1Computational Systems Biology Department, Sandia National Laboratories, NM, USA. E-mail: jjoo@sandia.gov and jfaulon@sandia.gov

2Scalable Department, Sandia National Laboratories, NM, USA. E-mail: sjplimp@sandia.gov