
  
Short Abstract — Tau leaping is an approach for accelerating 

stochastic simulations of chemically reactive systems. Despite 
its recent popularity, the method has yet to find widespread use 
in systems biology. A possible explanation is that, in its simplest 
form, tau leaping is analogous to a forward-Euler ODE 
integrator, which is usually insufficient for practical problems. 
To address this issue, we have developed a general framework 
for implementing higher-order versions of tau leaping. The 
approach extends on previous work in this area by considering 
aspects of the tau-leaping algorithm beyond just the generation 
of reaction firings, such as tau selection and post-leap checking. 

Keywords — Tau leaping, stochastic simulation, Runge-
Kutta methods. 

I. BACKGROUND 
AU leaping [1-3] is a promising approach for 
accelerating the stochastic simulation of biochemical 

reaction networks. In its simplest form, the tau-leaping 
algorithm is analogous to the simple forward-Euler method 
for numerically integrating ordinary differential equations 
(ODEs) [1]. Since many higher-order ODE integration 
methods exist with properties far superior to forward Euler, 
it is natural to investigate whether analogous tau-leaping 
methods are possible. Some higher-order tau-leaping 
methods have already been proposed. In his seminal paper 
on tau leaping [1], Gillespie proposed a simple higher-order 
extension, termed the “estimated-midpoint” method, which 
is analogous to an explicit second-order Runge-Kutta 
method. Burrage and Tian [4] proposed the Poisson Runge-
Kutta (PRK) methods as a generalization of this idea. 
Rathinam et al. [5] and Cao et al. [6] have proposed implicit 
tau-leaping methods that are analogous to the backwards-
Euler and trapezoidal ODE integration methods. 

II. APPROACH 
 We present a general framework for implementing higher-
order Runge-Kutta variants of tau leaping. We deconstruct 
the basic tau-leaping algorithm into four steps: (i) tau 
selection, (ii) reaction classification, (iii) firing generation, 
and (iv) post-leap checking. Tau-selection procedures come 
in two varieties: pre-leap [1-3] and post-leap [7]. Reaction 
classification can be as simple as segregating “critical” 
reactions with small reactant populations [3] or can be more 
sophisticated, e.g., partitioning reactions into groups, 
ranging from discrete-stochastic to continuous-deterministic, 
based on the current values of the reaction rates [8]. Firing 
generation usually involves generating Poisson random 
 

1Department of Computational and Systems Biology, University of 
Pittsburgh School of Medicine, Pittsburgh, PA 15260. E-mail: 
lharris@pitt.edu, faeder@pitt.edu. 

numbers and is the aspect of the tau-leaping algorithm that 
has been investigated most within the context of higher-
order approaches [1,4-6]. Finally, post-leap checking can 
involve simply ensuring that species populations do not 
become negative [3] or can require that the “leap condition,” 
on which the method is based, is strictly adhered to [7]. We 
show how to generalize these four steps within a Runge-
Kutta context while retaining previous approaches [1-8] as 
special cases. 

III. CONCLUSIONS 
 The approach has been applied to the “partitioned-leaping 
algorithm” [8-10], a tau-leaping variant, and implemented 
within the open-source modeling and simulation platform 
BioNetGen [11]. The current implementation is limited to 
explicit methods but will be extended to implicit methods in 
the near future. Forward-Euler, estimated-midpoint and 4th-
order Runge-Kutta are supported as standard methods. 
However, any explicit Runge-Kutta method can be used by 
defining a Butcher tableau [4] in a standard format input file. 
Results will be presented that illustrate the advantages of 
higher-order implementations of tau leaping in terms of 
improved simulation accuracy and efficiency [12]. 
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