Theory of microtubule depolymerization by kinesin-8 motors

From Q-Bio Seminar Series
Jump to: navigation, search

By Meredith Betterton, University of Colorado

Feb 3, 2009

CNLS Conference room.

Proteins from the kinesin-8 family promote microtubule (MT) depolymerization, a process thought to be important for the control of microtubule length in living cells. In addition to this MT shortening activity, kinesin 8s are motors that show plus-end directed motility on MTs. I will describe a simple model that incorporates directional motion and destabilization of the MT plus end by kinesin 8. The model quantitatively reproduces the key features of length-vs-time traces for stabilized MTs in the presence of purified kinesin 8, including length-dependent depolymerization. Comparison of model predictions with experiments suggests that kinesin 8 depolymerizes processively, i.e., one motor can remove multiple tubulin dimers from a stabilized MT. Fluctuations in MT length as a function of time are related to depolymerization processivity. I will discuss the parameter regime in which the rate of MT depolymerization is length dependent: length-dependent depolymerization occurs only when MTs are sufficiently short; this crossover is sensitive to the bulk motor concentration.

Back to CNLS q-bio Seminars.

Personal tools