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Contingency	
  analysis
• N-1 security has been the core power systems 

operating principle for >50 years 

• While it has served us well, it also has limitations: 

• Not all contingencies are equally likely. 

• Not all limit violations are equally important—
some produce blackouts, others don’t. 

• Sometimes components fail in sets (e.g., storms) 
or in unexpected ways (Aug. 14 2003 blackout). 

• Binary: Imperfect data (e.g., from neighboring 
areas) can change the apparent state of system 
from insecure to secure. (2011 SW blackout)
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Beyond	
  contingency	
  analysis

• Valuable insight comes from contingency 
analysis, so replacing it would be unwise.  

• However, operators need additional 
indicators of risk. 

• Lots of ongoing work:  
PMU angle difference analysis, statistical indicators 
(variance, autocorrelation), energy function/Lyaponav 
methods, … 

• Focus: Given a state estimator or day-ahead 
planning model, quantify and explain the risk 
posed by all potential cascading blackouts.
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Beyond	
  contingency	
  analysis

• Focus: Given a state estimator or day-ahead 
planning model, quantify and explain the risk 
posed by all potential cascading blackouts. 

• Why this is hard: 

• All n-1 contingencies and most  
n-{2,3,4}s do not cause blackouts.  
Many samples needed to find one blackout. 

• Power-law in blackout sizes means that we 
need many blackout simulations to describe 
the risk. 

• Explaining why is always difficult (but 
probably the most important thing we can do)
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Illustration
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Case 1 (noon tomorrow)  
High blackout risk

Case 2 (2 pm tomorrow) 
Low blackout risk 

Both cases are secure. 
What makes the two cases different? 

How can we make Case 1 more like Case 2?
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1. Start with a grid model. 



2.	
  Now	
  find	
  many	
  of	
  the	
  outage	
  combinations	
  
that	
  cause	
  blackouts	
  (the	
  malignancies)
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The	
  Random	
  Chemistry	
  algorithm
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3.	
  Use	
  the	
  results	
  to	
  quantify	
  
blackout	
  risk
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The estimated number of 
malignancies of size k

The number of 
malignancies of size k 
found by RC

Blackout sizes

Probability
of (multiple)
contingency



4.	
  Estimating	
  the	
  number	
  of	
  blackout-­‐causing	
  
contingencies	
  by	
  modeling	
  the	
  rate	
  at	
  which	
  

unique	
  malignancies	
  are	
  found
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Comparing	
  RC	
  to	
  Monte	
  Carlo
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Now	
  that	
  we	
  can	
  estimate	
  blackout	
  
risk,	
  what	
  insight	
  can	
  we	
  gain?
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Risk	
  vs.	
  load,	
  given	
  SCOPF
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Adding the SCOPF 
changes the results 

substantially from prior 
work showing a phase 

transition in risk vs. load



Why?

• At high load levels SCOPF leaves larger margins 
on long inter-area tie lines (to allow for potential 
contingencies)
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Total absolute flow on lines with large (>200MW)  
base case flow



Finding	
  the	
  contribution	
  of	
  
elements	
  to	
  risk
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Differentiate the risk equation with respect to element  
outage probabilities



Distribution	
  of	
    
“risk	
  sensitivity”
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Yet another 
power-law tail



Can	
  we	
  use	
  this	
  insight	
  to	
  
reduce	
  risk?

• Take the 3 lines that contribute most to blackout risk 

• Re-dispatch generators to leave more margin between 
the flow on these lines and the limit (cut the limit in half) 

• Fuel costs increase by 1.6%  

• Large (S>5%) blackout risk decreases by 61% 

• Very large (S>40%) blackout risk decreases by 83% 

• Perhaps we would be better off without these lines?
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Before	
  and	
  after
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Do	
  the	
  blackout-­‐causing	
  n-­‐2	
  contingencies	
  
change	
  at	
  different	
  load	
  levels?
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39	
  n-­‐2	
  malignancies	
  at	
  75%	
  load
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540	
  n-­‐2	
  malignancies	
  at	
  100%
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378	
  n-­‐2	
  malignancies	
  at	
  115%
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Which	
  components	
  negatively	
  interact	
  with	
  
a	
  given	
  component	
  at	
  different	
  load	
  levels?

25



Branches	
  that	
  negatively	
  
interact	
  with	
  *	
  at	
  90%	
  load

26



Branches	
  that	
  negatively	
  	
  
interact	
  with	
  *	
  at	
  100%	
  load
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Branches	
  that	
  negatively	
  
interact	
  with	
  *	
  at	
  115%	
  load
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Returning	
  to	
  the	
  Illustration
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Case 1 (noon tomorrow)  
High blackout risk

Case 2 (2 pm tomorrow) 
Low blackout risk 

We now have a way to describe the differences  
in risk between these two cases and explain why the 

two cases are different. 



Conclusions
• It is possible to estimate cascading failure risk with a 

reasonable amount of computation (e.g., overnight given 
tomorrow’s peak-load model).  
  Random Chemistry approach is >100x faster than MC 
  Does this hold up for correlated event probabilities? 

• Doing so gives insight that can result in real risk reductions: 
  More load is not always worse (8/14/2003, 9/8/2011) 
  Adjusting the flow limits on critical lines 
  Perhaps switching them out entirely? 

• Providing visual feedback to operators may produce new 
isight and ideas for risk reduction

30paul.hines@uvm.edu

mailto:paul.hines@uvm.edu


Importantly,	
  this	
  method	
  is	
  completely	
  model-­‐
agnostic.	
  Describing	
  risk	
  in	
  interdependent	
  systems
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Work	
  in	
  Progress:	
  Influence	
  
Graphs
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A	
  larger	
  influence	
  graph
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graph showing links with a weight of 1000 or greater
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