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Power generation, transmission and distribution

Determine generators’ output to reliably meet the load
I
∑

Gen MW =
∑

Load MW, at all times.
I Power flows cannot exceed lines’ transfer capacity.
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Hydro-Thermal System (Philpott/F./Wets)

Let us assume that �1 > 0 and p(!)�2(!) > 0 for every ! 2 
. This corresponds to
a solution of SP meeting the demand constraints exactly, and being able to save money
by reducing demand in each time period and in each state of the world. Under this as-
sumption TP(i) and HP(i) also have unique solutions. Since they are convex optimization
problems their solution will be determined by their Karush-Kuhn-Tucker (KKT) condi-
tions. We de�ne the competitive equilibrium to be a solution to the following variational
problem:

CE: (u1(i); u2(i; !)) 2 argmaxHP(i), i 2 H
(v1(j); v2(j; !)) 2 argmaxTP(j), j 2 T
0 �

P
i2H Ui (u1(i)) +

P
j2T v1(j)� d1 ? �1 � 0;

0 � +
P

i2H Ui (u2(i; !)) +
P

j2T v2(j; !)� d2(!) ? �2(!) � 0; ! 2 
:

This gives the following result.

Proposition 2 Suppose every agent is risk neutral and has knowledge of all deterministic
data, as well as sharing the same probability distribution for in�ows. Then the solution
to SP is the same as the solution to CE.

3.1 Example

Throughout this paper we will illustrate the concepts using the hydro-thermal system
with one reservoir and one thermal plant, as shown in Figure 1. We let thermal cost be

Figure 1: Example hydro-thermal system.

C (v) = v2, and de�ne

U(u) = 1:5u� 0:015u2

V (x) = 30� 3x+ 0:025x2

We assume in�ow 4 in period 1, and in�ows of 1; 2; : : : ; 10 with equal probability in each
scenario in period 2. With an initial storage level of 10 units this gives the competitive
equilibrium shown in Table 1. The central plan that maximizes expected welfare (by
minimizing expected generation and future cost) is shown in Table 2. One can observe
that the two solutions are identical, as predicted by Proposition 2.

6
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Simple electricity “system optimization” problem

SO: max
dk ,ui ,vj ,xi≥0

∑
k∈K

Wk(dk)−
∑
j∈T

Cj(vj) +
∑
i∈H

Vi (xi )

s.t.
∑
i∈H

Ui (ui ) +
∑
j∈T

vj ≥
∑
k∈K

dk ,

xi = x0i − ui + h1i , i ∈ H

ui water release of hydro reservoir i ∈ H
vj thermal generation of plant j ∈ T
xi water level in reservoir i ∈ H
prod fn Ui (strictly concave) converts water release to energy

Cj(vj) denote the cost of generation by thermal plant

Vi (xi ) future value of terminating with storage x (assumed separable)

Wk(dk) utility of consumption dk
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SO equivalent to CE

Consumers k ∈ K solve CP(k): max
dk≥0

Wk (dk)− pTdk

Thermal plants j ∈ T solve TP(j): max
vj≥0

pT vj − Cj(vj)

Hydro plants i ∈ H solve HP(i): max
ui ,xi≥0

pTUi (ui ) + Vi (xi )

s.t. xi = x0i − ui + h1i

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: dk ∈ arg max CP(k), k ∈ K,
vj ∈ arg max TP(j), j ∈ T ,

ui , xi ∈ arg max HP(i), i ∈ H,

0 ≤ p ⊥
∑
i∈H

Ui (ui ) +
∑
j∈T

vj ≥
∑
k∈K

dk .
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Nash Equilibria (as a MOPEC)

Nash Games: x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i (xi , x
∗
−i , p),∀i ∈ I

x−i are the decisions of other players.

Prices p given exogenously, or via complementarity:

0 ≤ H(x , p) ⊥ p ≥ 0

empinfo: equilibrium
min loss(i) x(i) cons(i)
vi H p

Applications: Discrete-Time Finite-State Stochastic Games.
Specifically, the Ericson & Pakes (1995) model of dynamic
competition in an oligopolistic industry.
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Key point: models generated correctly solve quickly
Here S is mesh spacing parameter

S Var rows non-zero dense(%) Steps RT (m:s)

20 2400 2568 31536 0.48 5 0 : 03
50 15000 15408 195816 0.08 5 0 : 19
100 60000 60808 781616 0.02 5 1 : 16
200 240000 241608 3123216 0.01 5 5 : 12

Convergence for S = 200 (with new basis extensions in PATH)

Iteration Residual

0 1.56(+4)
1 1.06(+1)
2 1.34
3 2.04(−2)
4 1.74(−5)
5 2.97(−11)
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Agents have stochastic recourse?

Two stage stochastic programming, x1 is here-and-now decision,
recourse decisions x2 depend on realization of a random variable

ρ is a risk measure (e.g. expectation, CVaR)

SP: max cT x1 + ρ[qT x2]

s.t. Ax1 = b, x1 ≥ 0,

T (ω)x1 + W (ω)x2(ω) ≥ d(ω),

x2(ω) ≥ 0,∀ω ∈ Ω.

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 

EMP/SP extensions to facilitate these models
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Risk Measures

Modern approach to
modeling risk
aversion uses concept
of risk measures

CVaRα: mean of
upper tail beyond
α-quantile (e.g.
α = 0.95)

VaR, CVaR, CVaR+  and CVaR-

Loss 

F
re

q
u

e
n

c
y

1111 −−−−αααα

VaR

CVaR

Probability

Maximum
loss

mean-risk, mean deviations from quantiles, VaR, CVaR

Much more in mathematical economics and finance literature

Optimization approaches still valid, different objectives, varying
convex/non-convex difficulty
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Stochastic unit commitment: different risk measures
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Figure : Frequency plot for cost for 5000 (out-of-sample) simulations
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Equilibrium or optimization?

Each agent has its own risk measure

Is there a system risk measure?

Is there a system optimization problem?

min
∑
i

C (x1i ) + ρi
(
C (x2i (ω))

)
????

Can we modify (complete) system to have a social optimum by
trading risk?

How do we design these instruments? How many are needed? What
is cost of deficiency?

Can we solve efficiently / distributively?
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Contracts in MOPEC (F./Wets)

Competing agents (consumers, or generators in energy market)

Each agent minimizes objective independently (cost)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered
later (e.g. Arrow-Debreu Securities)

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Example as MOPEC: agents solve a Stochastic Program

Buy yi contracts in period 1, to deliver D(ω)yi in period 2, scenario ω
Each agent i :

min C (x1i ) + ρi
(
C (x2i (ω))

)
s.t. p1x1i + vyi ≤ p1e1i (budget time 1)

p2(ω)x2i (ω) ≤ p2(ω)(D(ω)yi + e2i (ω)) (budget time 2)

0 ≤ v ⊥ −
∑
i

yi ≥ 0 (contract)

0 ≤ p1 ⊥
∑
i

(
e1i − x1i

)
≥ 0 (walras 1)

0 ≤ p2(ω) ⊥
∑
i

(
D(ω)yi + e2i (ω)− x2i (ω)

)
≥ 0 (walras 2)
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Theory and Observations

agent problems are multistage stochastic optimization models

perfectly competitive partial equilibrium still corresponds to a social
optimum when all agents are risk neutral and share common
knowledge of the probability distribution governing future inflows
situation complicated when agents are risk averse

I utilize stochastic process over scenario tree
I under mild conditions a social optimum corresponds to a competitive

market equilibrium if agents have time-consistent dynamic coherent
risk measures and there are enough traded market instruments (over
tree) to hedge inflow uncertainty

Otherwise, must solve the stochastic equilibrium problem
Solution possible via disaggregation only seems possible in special
cases

I When problem is block diagonally dominant (Wathen/F./Rutherford)
I When overall (complementarity) problem is monotone
I (Pang): when problem is a potential game

Research challenge: develop reliable algorithms for large scale
decomposition approaches to MOPEC
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Security-constrained Economic Dispatch

Base-case network topology g0 and line flow x0.

If the k-th line fails, line flow jumps to xk in new topology gk .

Ensure that xk is within limit, for all k .

SCED model:

min
u,x0,...,xk

cTu + ρ(u) B Total cost

s.t. 0 ≤ u ≤ ū B GEN capacity const.

g0(x0, u) = 0 BBase-case network eqn.

−x̄ ≤ x0 ≤ x̄ BBase-case flow limit

gk(xk , u) = 0, k = 1, . . . ,K BCtgcy network eqn.

−x̄ ≤ xk ≤ x̄ , k = 1, . . . ,K BCtgcy flow limit
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Reality offers a sweeter deal...

Normal

LTE

STE

DAL

≤ 5 min

≤ 15 min

≤ 30 min

Time

Line flow

Contingency 
occurs

Operating procedure (ISO-NE) requires post-contingency line loadings be:

≤ STE (short time emergency) rating in 5 minutes;

≤ LTE (long time emergency) rating in 15 minutes;

≤ Normal rating in 30 minutes.
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What we will contribute

Research issues:

Corrective actions are not modeled in ISO’s dispatch software.

Because it was “insolvable” due to its large size (≥ 10GB LP).
I “We looked into SCED with corrective actions before, and were

hindered by the computational challenge.” – Feng Zhao, senior analyst
at ISO-NE, via private correspondence.

Our contributions:

We model the multi-period corrective rescheduling in SCED;
solutions much better quality

Enhance the Benders’ algorithm to solve the problem faster

Achieve about 50× speedup compared to traditional approaches
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Our model (K contingencies, T periods)

min
x0,...,xk ,u0,...,uk

cTu0

s.t. g0(x0, u0) = 0

h0(x0, u0) ≤ 0

gk(x tk , u
t
k) = 0 k = 1, . . . ,K , t = 0, . . . ,T

hk(x tk , u
t
k) ≤ 0 k = 1, . . . ,K , t = 0, . . . ,T

|utk − ut−1k | ≤ ∆t k = 1, . . . ,K , t = 1, . . . ,T

u0k − u0 = 0 k = 1, . . . ,K

Subscript 0 indicates a quantity in the base-case network topology.

This is a large-scale linear program.

What special structure does it have?

Ferris (Univ. Wisconsin) Risk & SCED Grid 18 / 32



Model structure
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Contingency 1, time 0
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Contingency 1, time 2

Figure : Sparsity structure of the
Jacobian matrix of a 6-bus case,
considering 3 contingencies and 3
post-contingency checkpoints.

Base Case

Contingency 1

Contingency 2

SCED Feasible 
Region

Cost-
minimizing 

direction

SCED optimal point

ED optimal point

Figure : On the u0 plane, the feasible
region of a SCED is the intersection of
K+1 polyhedra.
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Current state of the art (unsatisfactory)

Table : CPLEX v.s. Vanilla Benders Algorithm

Case Ctgcy
Big LP (time) Vanilla Benders

Simplex Barrier1 Iter LPs Time
118-bus 183 207.8 13.8 8 1464 123.5

2383-bus 20 175.0 205.5 52 1040 1281.2
2383-bus 50 1403.2 123.1 49 2450 2799.3
2383-bus 100 3621.8 240.6 32 3200 3688.6
2383-bus 400 - 2354.5 - - -

Three time-periods: 5-min STE, 15-min LTE and 30-min Normal.

Vanilla Benders’ algorithm is inferior to the big LP formulation.

Big LP cannot handle large instances.

1Barrier method without crossover. Crossover may take even more time.
Ferris (Univ. Wisconsin) Risk & SCED Grid 20 / 32



How we enhanced the Benders’ algorithm ...

1 Reduce the number of LPs

2 Solve subproblem LPs faster

3 Parallel computing

4 Add difficult contingencies to master model

Case Ctgcy
Big LP (time) Enhanced Benders

Simplex Barrier Iter LPs Time
118-bus 183 207.8 13.8 12 755 13.5

2383-bus 20 175.0 205.5 11 60 41.5
2383-bus 50 1403 123.1 11 135 46.5
2383-bus 100 3621 240.6 12 245 79.4
2383-bus 400 - 2354.5 13 879 197.8
2383 wp 2349 21 9529 515.7
2736 sp 2749 4 5500 220.9

2737 sop 2753 1 2753 100.5
2746 wop 2794 1 2794 118.5
2746 wp 2719 14 5558 333.5
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Illustration
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Figure : Benders’ algorithm with reduced number of subproblem LPs, 118-bus
case
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Computational Results

Case Ctgcy
RedLP+Opt Paraguss (8) Fatmaster (5)

Iter LPs Time Iter LPs Time Iter LPs Time
118-bus 183 10 764 72.6 14 776 15.1 12 755 13.5

2383 wp 20 46 115 99.8 48 117 95.4 11 60 41.5
2383 wp 50 48 193 160.3 48 193 101.7 11 135 46.5
2383 wp 100 33 289 226.0 32 288 96.3 12 245 79.4
2383 wp 400 35 953 913.3 38 956 218.0 13 879 197.8

Case Ctgcy
RedLP+Opt Paraguss (40) Fatmaster (5)

Iter LPs Time Iter LPs Time Iter LPs Time
2383wp 2349 106 12123 12165 104 9788 770 21 9529 516
2736sp 2749 45 5543 5836 44 5542 366 4 5500 221

2737sop 2753 1 2753 2801 1 2753 100 1 2753 101
2746wop 2794 1 2794 3046 1 2794 118 1 2794 119
2746wp 2719 262 8646 9738 278 8622 1428 14 5558 334

Big LP for 2383-bus 2349-contingency case generates a 18GB LP. CPLEX could
not solve it in 3 hours.

Computer used for the lower table: Dell R710 (opt-a006) 2 3.46G Chips 12 Cores,
288G Memory.
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Dealing with Infeasibility

Base Case

Contingency 1

Contingency 2Cut

Cut

(a) Contingency 2 is intrinsically in-
feasible. Either the corresponding
subproblem is infeasible or its Ben-
ders’ cuts will render the master prob-
lem infeasible.

Base Case

Contingency 1

Contingency 2

Cut

Cut

(b) Each individual contingency is
feasible, but they are not simultane-
ously feasible. Their Benders’ cuts
will render the master problem infea-
sible.

Figure : Two cases of infeasibility.
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Identifying infeasible contingencies in Benders’ algorithm

If a subproblem is infeasible (in the first iteration), the corresponding
contingency is intrinsically infeasible. Remove (tabu) it.

I Typically line failure results in an islanded load node or sub-network.

Master problem infeasible: solve a modified master model to find the
“minimal” set of problematic contingencies using sparse optimization.

min
x0,u0

f0(x0, u0) +
∑
k∈K

Mvk

s.t. g0(x0, u0) = 0, h0(x0, u0) ≤ 0

w̄ i
k + λ̄ik(u0 − ūi0)− vk ≤ 0, vk ≥ 0 ∀(k , i) ∈ CUT

I Solution of this model indicates the violated cuts.
I Tabu the contingency that has contributed one or more violated cuts.

Start a pre-screening daemon in parallel when the Active List size is
smaller than Lfc.

I Tabu infeasible ones, and add feasible ones to the master problem.
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Computational Results

Table : Solution for big cases on opt-a006, 80 threads, Lfc = 5

Case Ctgcy Iter LPs Time To Master Tabu
2383 wp 2896 15 7694 522.1 6 547
2736 sp 3269 4 6020 252.9 1 520

2737 sop 3269 4 6023 242.2 0 516
2746 wop 3307 4 6102 280.2 0 513
2746 wp 3279 8 6053 334.3 4 560
2383 wp 2353 16 7156 460.6 6 4
2736 sp 2749 4 5498 245.9 1 0

2737 sop 2753 1 2753 110.8 0 0
2746 wop 2794 1 2794 131.7 0 0
2746 wp 2719 14 5558 354.4 4 0

Upper: all lines are in the Contingency List (N-1 security).

Lower: all pre-screened lines are in the Contingency List.
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SCED with SDP subproblems

Economic dispatch is a short-term planning problem, so a “DC”
model is OK.

Contingency response is an operational problem, and should be
studied on full AC network representation.

But AC power flow gives a nonconvex problem, which cannot
generate valid cuts from a Benders’ subproblem.

Idea

Relaxing the AC feasibility problem using semi-definite programming
(SDP) to obtain a convex subproblem.

Goal

Producing a base-case dispatch solution such that contingencies are
“really” controllable in the AC context.
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SDP relaxation of AC feasibility problem

Model ACF-SDP:

min
W�0

A0 •W

s.t.
∑
g∈Gi

G real
g − D real

i ≤ A1i •W ≤
∑
g∈Gi

Ḡ real
g − D real

i ∀i ∈ BUS

∑
g∈Gi

G imag
g − D imag

i ≤ A2i •W ≤
∑
g∈Gi

Ḡ imag
g − D imag

i ∀i ∈ BUS

− F̄i,j ≤ A3ij •W ≤ F̄i,j ∀(i , j) ∈ LINE

(V i )
2 ≤ A4i •W ≤ (V̄i )

2 ∀i ∈ BUS∑
g∈Gi

(G 0
g −∆g ) ≤ A5i •W ≤

∑
g∈Gi

(G 0
g + ∆g ) ∀i ∈ BUS

It is a convex optimization problem and weak (strong) duality holds.

It is a relaxation because the requirement that W has rank 1 is
dropped.
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Experiments

Case Cont
Solution Performance

Model Tabu Cost Time IF FS FT

14 20
LP 0 13253.3 4.2 12 12 0
SDP 6 16065.8 18.4 6 0 0
SDP0 6 16003.4 11.9 6 0 0

30 40
LP 0 582.0 4.0 1 1 0
SDP 1 585.0 20.1 1 0 0
SDP0 1 600.5 22.1 1 0 0

57 20
LP 0 12508.0 1.9 1 1 0
SDP 1 12508.0 13.2 1 0 0
SDP0 1 12560.0 50.9 1 0 0

118 15
LP 0 139716.8 54.0 16 16 0
SDP 0 141372.2 2414.3 1 1 0
SDP0 0 144220.1 11951.1 0 0 0

SDP subproblem is “exact” in contingency response, no False Secure,
no False Tabu.

It takes longer time to solve (with room for improvement).
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Summary

1 SCED is a million-dollar problem for system operators.
2 SCED with corrective actions can save money, but is hard to solve.

I Too big for CPLEX
I Original Benders’ decomposition algorithm is slow.

3 Our algorithmic enhancements yield significant speedup.

4 Potential for practical deployment.

5 SDP extension allows for more accurate operational modeling.

Extension

1. Decomposition approach is useful in many applications.
2. Currently in collaboration with ISO-NE to deploy our algorithm.
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Conclusions

Optimization critical for understanding of power system markets

Different behaviors are present in practice and modeled here

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

Policy implications addressable using MOPEC

Stochastic MOPEC models capture behavioral effects (as an EMP)

Extended Mathematical Programming available within the GAMS
modeling system

Modeling, optimization, statistics and computation embedded within
the application domain is critical
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plq functions)

Currently available within GAMS

Ferris (Univ. Wisconsin) Risk & SCED Grid 32 / 32


	Motivation
	Hydro-Thermal System
	Nash Equilibria

	Stochastic Problems
	SCED
	SDP approach

	SCED with SDP sub-problems
	Conclusions

